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Degree-centric models not enough for statistical network analysis
Setting: statistical models for random graphs

How to capture node importance?

In some applications, it matters not just to how many other nodes a
particular node in the network is connected, but also to which other nodes
it is connected.

— Is degree-centric analysis suitable? <
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@ Examples: information dispersal, the spread of disease or viruses, or
robustness to node failure...

@ Social network setting: record 'node celebrity status’.
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Discrete math tool: Cores decomposition of a graph

Classifying vertices: coreness (a.k.a. shell index)

[Seidman83]: A k-core decomposition of a graph captures precisely this:

A A A &

Any vertex may live in many cores, but only one shell.

Vast literature on:
@ Fast computation of shell indices;
@ Interesting applications and heuristic studies.
Not surfaced in stats literature so far:
@ A rigorous statistical model for networks relying on core structure.

— Core structure is summarized by shell distribution. <
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The ERGM: Shell distribution as sufficient statistic

The shell distribution model.

@ G = g: a random instance of a graph on n nodes
@ ni(g): number of vertices in shell i; p;: the “shel parameter”

n—1
P(G =gip)=o(p) [ [ p"®
i=0
Exponential family form

P(G = £:p) = o> m(e)0i — (0)}.
i=0

. . . *——o0 *——0
@ Shell ¥4 degree distribution:
@ Erdos-Rényi not a formal submodel
@ Log-linear structure only on ‘atomic
level.
(Karwa,Petrovic,Pelsmajer, Stasi, Wilburne) ERGM for network shell structure as2015

3/12



Motivating example: Authorship dataset

Sampling from the model - Authorship dataset

The largest connected
component of the network
science co-authorship network

(379 nodes)
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Motivating example: Authorship dataset

Typical graphs from the model - Authorship dataset

. what to
do with
this??
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Exploring structure of graphs within a fiber

@ The author network component core distribution can be realized with
graphs that have from about 250 to 500 triangles.

@ Simulations: examples from n = 18 to n = 57 nodes, algorithm never
visited the same graph twice, min and max number of triangles differ
by a fa ctor Of 2 or 3 shelldist.of the big component of author dataset

A typical histogram of number of triangles:

So what do we have?
@ Model that provides necessary formalism for using k-cores in
statistical considerations

@ Algorithm for constructing all graphs with given shell structure

o MCMC algorithm for simulating from the model
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Sampling from the model ... and sampling from fibers

3 problems (... or: the usual ERGM suspects)

@ Model fitting questions lead to three important subproblems;
* Solving these is crucial for MLE estimates and goodness of fit tests *
1) Existence of MLE - captured by the model polytope:

Theorem

The polytope of all shell distribution vectors is a dilate of a simplex.
All realizable lattice points lie on the boundary of this polytope.
The MLE never exists for a sample of size 1.

2) Sampling from the fibers (via the Metropolis algorithm):

Algorithm

Randomly construct a graph with a given shell distribution.
Constructs all graphs with positive probability.

Experiments: fast graph discovery.
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3 problems (continued) (... or: the usual ERGM suspects)

3) Sampling from the model: direct sampling intractable
@ Sampson data set: 18 monks in a New England
Monastery: ns(g) = (0,2,3,15,0,0,...)
@ MCMC scheme: “tie-no-tie” proposal [Caimo et al]
- good mixing

@ Probability of accepting: 7 = min (1 I p"’(g (g)>.
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Dealing with model degeneracy A nested family of models / polytopes

Model degeneracy! - example
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Extending the model family

Introduce a parameter for the degeneracy of a graph:

n—1

P(G = g;p,m) = ¢(p) H pi"(8) if g € Gnm :={G : dgen(G) < m}.
i=0

It means that all graphs under this model will have degeneracy at least m.

e Treat m as a parameter (that needs to be estimated)

- analogous to choosing the number of components in a mixture model
vs. assuming that it is known.

@ We treat m as fixed - select the observed value of m.

@ Estimation - open; but at least the new model is not degenerate.

(Karwa,Petrovic,Pelsmajer, Stasi, Wilburne) ERGM for network shell structure as2015 10 / 12



A stz (Bl of Gesldb / pelbimpes
Simulations - Sampson network

Two submodels: support graphs with degeneracy < 3, or = 3 (observed).
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@ Parameter used = good estimate of MLE (moment equations)

(expected shell distrib. under the MLE very close to observed)
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Dealing with model degeneracy A nested family of models / polytopes

Simulations - Sampson network - typical graphs
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