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Abstract

This talk is meant to explain the evolution of research which originated a few years
ago from some problems in statistics.

In particular, the inverse problem for factorial designs gave birth to new ideas for the
study of special schemes, called Border Basis Schemes.

They parametrize zero-dimensional ideals which share a quotient basis, and turn out
to be open sets in the corresponding Hilbert Schemes.
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PART 1
The Inverse Problem in DoE (Design of Experiments)
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Points and Statistics

The following definition originated in a special branch of Statistics called
Design of Experiments (for short DoE).

Definition

Let `i ≥ 1 for i = 1, . . . , n and Di = {ai1, ai2, . . . , ai`i} with aij ∈ K.

• The affine point set D = D1 × · · · × Dn ⊆ Kn is called the full design on
(D1, . . . ,Dn) with levels `1, . . . , `n .

• The polynomials fi = (xi − ai1) · · · (xi − ai`i) with i = 1, . . . , n generate the
vanishing ideal I(D) of D . They are called the canonical polynomials of D.

Proposition

• For every term ordering σ on Tn , the canonical polynomials are the reduced
σ -Gröbner basis of I(D) .

• The order ideal (canonical set, factor closed set of power products,...)
OD = {xα1

1 · · · xαn
n | 0 ≤ αi < `i for i = 1, . . . , n} is canonically associated to D

and represents a K -basis of P/I(D) .
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Points and Statistics II

The main task is to identify an unknown function f̄ : D −→ K called the model.

In general it is not possible to perform all experiments corresponding to the
points in D and measuring the value of f̄ each time.

A subset F of a full design D is called a fraction.

We want to choose a fraction F ⊆ D that allows us to identify the model if we
have some extra knowledge about the shape of f̄ .

In particular, we need to describe the sets of power products whose residue
classes form a K -basis of P/I(F). Statisticians express this property by
saying that such sets of power products are identified by F.
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A Proposition

Proposition

The following conditions are equivalent.
• The order ideal O is identified by the fraction F .

• The vanishing ideal I(F) has an O -border basis.

• The evaluation matrix (ti(pj)) is invertible.

The Inverse Problem

Conversely, given O, how can we choose the fractions F such that the matrix
of coefficients is invertible?
In other words, given a full design D and an order ideal O ⊆ OD , which
fractions F ⊆ D have the property that the residue classes of the elements
of O are a K -basis of P/I(F) ?
This is called the inverse problem of DoE.
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Solution

This problem was partially solved in

M. Caboara and L. Robbiano: Families of Ideals in Statistics,
Proc. of ISSAC-1997 (Maui, Hawaii, July 1997) (New York, N.Y.),
W.W. Küchlin, Ed. (1997), 404–409.

with the use of Gröbner bases,

and totally solved in

M. Caboara and L. Robbiano: Families of Estimable Terms
Proc. of ISSAC 2001, (London, Ontario, Canada, July 2001) (New York, N.Y.),
B. Mourrain, Ed. ed (2001) 56–63.

with the use of Border bases.
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An Example

Let D be the full design D = {−1, 0, 1} × {−1, 0, 1} . The task it to solve the
inverse problem for the order ideal O = {1, x, y, x2, y2}
It turns out that we have to solve a system defined by 20 quadratic polynomials.
Using CoCoA, we check that among the 126 =

(9
5

)
five-tuples of points in D

there are exactly 81 five-tuples which solve the inverse problem.
It is natural to ask how many of these 81 fractions have the property that O
is of the form Tn \ LTσ{I(F)} with σ varying among the term orderings.
One can prove that 36 of those 81 fractions are not of that type.
This is a surprisingly high number which shows that border bases provide a
much more flexible environment for working with zero-dimensional ideals than
Gröbner bases do.
The details are explained in
M. Kreuzer – L. Robbiano: Computational Commutative Algebra 2,
Springer (2005), Tutorial 92.
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PART 2
Border Bases: The Continuous Case
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Two conics I

Example

Consider the polynomial system

f1 = 1
4 x2 + y2 − 1 = 0

f2 = x2 + 1
4 y2 − 1 = 0

X = Z(f1) ∩ Z(f2) consists of the four points X = {(±
√

4/5, ±
√

4/5)} .

The set {x2 − 4
5 , y2 − 4

5} is the universal reduced Gröbner basis of the ideal
I = (f1, f2) ⊆ C[x, y], in particular with respect to σ = DegRevLex .

LTσ(I) = (x2, y2), and the residue classes of the terms in
T2 \ LTσ{I} = {1, x, y, xy} form a C -vector space basis of C[x, y]/I.
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LTσ(I) = (x2, y2), and the residue classes of the terms in
T2 \ LTσ{I} = {1, x, y, xy} form a C -vector space basis of C[x, y]/I.
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Two conics II

Now consider the slightly perturbed polynomial system

f̃1 = 1
4 x2 + y2 + ε xy− 1 = 0

f̃2 = x2 + 1
4 y2 + ε xy− 1 = 0

The intersection of Z(f̃1) and Z(f̃2) consists of four perturbed points X̃ close
to the points in X .

The ideal Ĩ = (f̃1, f̃2) has the reduced σ -Gröbner basis

{x2 − y2, xy + 5
4ε y2 − 1

ε , y3 − 16ε
16ε2−25 x + 20

16ε2−25 y}

Moreover, we have LTσ(Ĩ) = (x2, xy, y3) and T2 \ LTσ{Ĩ} = {1, x, y, y2} .
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Border Bases

The basic idea of border basis theory is to describe a zero-dimensional ring P/I by
an order ideal of monomials O whose residue classes form a K -basis of P/I and
by the multiplication matrices of this basis.
Let K be a field, let P = K[x1, . . . , xn] , let Tn be the monoid of terms, and let
O ⊆ Tn be an order ideal.

Definition (Border Prebases)

Let O have µ elements and ∂O have ν elements.
The border of O is the set ∂O = Tn · O \ O = (x1O ∪ · · · ∪ xnO) \ O .
A set of polynomials G = {g1, . . . , gν} in P is called an O -border prebasis if the
polynomials have the form gj = bj −

∑µ
i=1 αijti with αij ∈ K for 1 ≤ i ≤ µ ,

1 ≤ j ≤ ν, bj ∈ ∂O, ti ∈ O .

Definition (Border Bases)

Let G = {g1, . . . , gν} be an O -border prebasis, and let I ⊆ P be an ideal
containing G . The set G is called an O -border basis of I if the residue classes
O = {̄t1, . . . , t̄µ} form a K -vector space basis of P/I .
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Two conics III

What are the border bases in the two cases of the conics and the perturbed
conics?

Two conics

{x2 − 4
5 , x2y− 4

5 y,

xy2 − 4
5 x, y2 − 4

5}

Two perturbed conics

{x2 + 4
5 εxy− 4

5 , x2y− 16ε
16ε2−25 x + 20

16ε2−25 y,

xy2 + 20
16ε2−25 x + 16ε

16ε2−25 y, y2 + 4
5 εxy− 4

5}

Lorenzo Robbiano (Università di Genova) Factorial Designs and Hilbert Schemes Genova, June 2015 14 / 31



Two conics III

What are the border bases in the two cases of the conics and the perturbed
conics?

Two conics

{x2 − 4
5 , x2y− 4

5 y,

xy2 − 4
5 x, y2 − 4

5}

Two perturbed conics

{x2 + 4
5 εxy− 4

5 , x2y− 16ε
16ε2−25 x + 20

16ε2−25 y,

xy2 + 20
16ε2−25 x + 16ε

16ε2−25 y, y2 + 4
5 εxy− 4

5}

Lorenzo Robbiano (Università di Genova) Factorial Designs and Hilbert Schemes Genova, June 2015 14 / 31



Two conics III

What are the border bases in the two cases of the conics and the perturbed
conics?

Two conics

{x2 − 4
5 , x2y− 4

5 y,

xy2 − 4
5 x, y2 − 4

5}

Two perturbed conics

{x2 + 4
5 εxy− 4

5 , x2y− 16ε
16ε2−25 x + 20

16ε2−25 y,

xy2 + 20
16ε2−25 x + 16ε

16ε2−25 y, y2 + 4
5 εxy− 4

5}

Lorenzo Robbiano (Università di Genova) Factorial Designs and Hilbert Schemes Genova, June 2015 14 / 31



Two conics III

What are the border bases in the two cases of the conics and the perturbed
conics?

Two conics

{x2 − 4
5 , x2y− 4

5 y,

xy2 − 4
5 x, y2 − 4

5}

Two perturbed conics

{x2 + 4
5 εxy− 4

5 , x2y− 16ε
16ε2−25 x + 20

16ε2−25 y,

xy2 + 20
16ε2−25 x + 16ε

16ε2−25 y, y2 + 4
5 εxy− 4

5}

Lorenzo Robbiano (Università di Genova) Factorial Designs and Hilbert Schemes Genova, June 2015 14 / 31



Existence and Uniqueness of Border Bases

Proposition

Let O = {t1, . . . , tµ} be an order ideal, let I ⊆ P be a zero-dimensional ideal, and
assume that the residue classes of the elements of O form a K -vector space basis
of P/I . Then there exists a unique O -border basis of I .

Proposition

Let σ be a term ordering on Tn , and let Oσ(I) be the order ideal Tn \ LTσ{I} .
Then there exists a unique Oσ(I) -border basis G of I , and the reduced
σ -Gröbner basis of I is the subset of G corresponding to the corners of Oσ(I) .
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Commuting matrices

The following is a fundamental fact.

B. Mourrain: A new criterion for normal form algorithms, AAECC Lecture
Notes in Computer Science 1719 (1999), 430–443.

Theorem (Border Bases and Commuting Matrices)

Let O = {t1, . . . , tµ} be an order ideal, let G = {g1, . . . , gν} be an O -border
prebasis, and let I = (g1, . . . , gν) . Then the following conditions are equivalent.

1 The set G is an O -border basis of I .
2 The multiplication matrices of G are pairwise commuting.

In that case the multiplication matrices represent the multiplication
endomorphisms of P/I with respect to the basis {̄t1, . . . , t̄µ} .
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PART 3
Border Bases and the Hilbert Scheme
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A glimpse at punctual Hilbert schemes

Punctual Hilbert schemes are schemes which parametrize all the
zero-dimensional projective subschemes of Pn which share the same
multiplicity.

Every zero-dimensional sub-scheme of Pn is contained in a standard open
set which is an affine space, say An ⊂ Pn .

There is a one-to-one correspondence between zero-dimensional ideals in
P = K[x1, . . . , xn] and zero-dimensional saturated homogeneous ideals in
P = K[x0, x1, . . . , xn] . The correspondence is set via homogenization and
dehomogenization.
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An Example: Hilbert Polynomial = 4

Zero-dimensional subschemes of P2 with Hilbert polynomial 4 correspond to
saturated homogeneous ideals I such that if P denotes the polynomial ring
K[x, y, z] , then the Hilbert function of P/I is
either HFP/I = 1, 2, 3, 4, 4, . . . or HFP/I = 1, 3, 4, 4, . . . .

The difference function is
either HFP/I = 1, 1, 1, 1, 0, . . . or HFP/I = 1, 2, 1, 0, . . . .

What are the possible good bases?
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Good bases
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Border Basis Schemes

• Let O = {t1, . . . , tµ} be an order ideal in Tn , and let ∂O = {b1, . . . , bν} be
its border.

Definition (The Border Basis Scheme)

Let {cij | 1 ≤ i ≤ µ, 1 ≤ j ≤ ν} be a set of further indeterminates.

1 The generic O -border prebasis is the set of polynomials G = {g1, . . . , gν}
in Q = K[x1, . . . , xn, c11, . . . , cµν ] given by gj = bj −

∑µ
i=1 cijti .

2 For k = 1, . . . , n , let Ak ∈ Matµ(K[cij]) be the kth formal multiplication
matrix associated to G . Then the affine scheme BO ⊆ Kµν defined by the
ideal I(BO) generated by the entries of the matrices AkA` −A`Ak with
1 ≤ k < ` ≤ n is called the O -border basis scheme.
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Border Basis and Gröbner Basis Schemes

The Four Points

Let O = {1, x, y, xy} . We observe that t1 = 1 , t2 = x , t3 = y , t4 = xy ,
b1 = x2 , b2 = y2 , b3 = x2y , b4 = xy2 . Let σ = DegRevLex , so that x >σ y .

g1 = x2 − c111− c21x− c31y− c41xy
g2 = y2 − c121− c22x− c32y− c42xy
g3 = x2y− c131− c23x− c33y− c43xy
g4 = xy2 − c141− c24x− c34y− c44xy

If we do the Gröbner computation via critical pairs, then necessarily c42 = 0 , so
that g2 is replaced by

g∗2 = y2 − c121− c22x− c32y

and we get a seven-dimensional scheme Y .
If we use the commutativity criterion to get the border basis scheme we get an
eigth-dimensional scheme X such that Y is an hyperplane section.
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Border Basis and Gröbner Basis Schemes

Philosophy

A border basis of an ideal of points I in P is intrinsically related to
a basis O of the quotient ring.

If we move the points slightly, O is still a basis of the perturbed ideal Ĩ , since
the evaluation matrix of the elements of O at the points has determinant
different from zero.

Moving the points moves the border basis, and the movement traces a path inside
the border basis scheme.

Lorenzo Robbiano (Università di Genova) Factorial Designs and Hilbert Schemes Genova, June 2015 23 / 31



Border Basis and Gröbner Basis Schemes

Philosophy

A border basis of an ideal of points I in P is intrinsically related to
a basis O of the quotient ring.

If we move the points slightly, O is still a basis of the perturbed ideal Ĩ , since
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Border Basis and Gröbner Basis Schemes

The Gröbner Scheme and the Universal Family

Gröbner basis schemes and their associated universal families can be viewed as
weighted projective schemes.

Gröbner basis schemes can be obtained as sections of border basis schemes with
suitable linear spaces.

The process of construction Gröbner basis schemes via Buchberger’s Algorithm
turns out to be canonical.

Let O be an order ideal and σ a term ordering on Tn . If the order ideal O
is a σ -cornercut then there is a natural isomorphism of schemes between GO,σ
and BO .
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Border Basis and Gröbner Basis Schemes

Border Bases and Hilbert Schemes

Here we collect some basic observations about border basis schemes in relation with
Hilbert schemes.
A good reference is
E. Miller, B. Sturmfels: Combinatorial Commutative Algebra, Graduate Texts in
Mathematics 277, Springer 2005.

BO can be embedded as an open affine subscheme of the Hilbert scheme which
parametrizes subschemes of An of length µ .

There is an irreducible component of BO of dimension nµ which is the
closure of the set of radical ideals having an O -border basis.

The border basis scheme is in general reducible (see the well-known example by
Iarrobino).

In the case n = 2 more precise information is available: for instance, it is
known that BO is reduced, irreducible and smooth of dimension 2µ . Recently
M. Huibregtse showed that it is a complete intersection.
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closure of the set of radical ideals having an O -border basis.

The border basis scheme is in general reducible (see the well-known example by
Iarrobino).

In the case n = 2 more precise information is available: for instance, it is
known that BO is reduced, irreducible and smooth of dimension 2µ . Recently
M. Huibregtse showed that it is a complete intersection.
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An Open Problem

The scheme GO,σ is connected since it is a quasi-cone, and hence all its points
are connected to the origin.

We know the precise relation between the two schemes GO,σ and BO .
However, the problem of the connectedness of BO is still open.
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The Posters: Presentation

E. Palezzato: Computing simplicial complexes with CoCoA.

I. Burke: Exploiting symmetry in characterizing bases of toric ideals.

A. Bigatti, M. Caboara: A statistical package in CoCoA-5.

D. Pavlov: Finding the statistical fan of an experimental design.
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Posters I

Given a full design D and an order ideal O ⊆ OD , which fractions F ⊆ D
have the property that the residue classes of the elements of O are a K -basis
of P/I(F) ?

This is called the inverse problem of DoE.

This problem was partially solved in

M. Caboara and L. Robbiano: Families of Ideals in Statistics,
Proc. of ISSAC-1997 (Maui, Hawaii, July 1997) (New York, N.Y.), W.W. Küchlin,
Ed. (1997), 404–409.

with the use of Gröbner bases,

and totally solved in

M. Caboara and L. Robbiano: Families of Estimable Terms
Proc. of ISSAC 2001, (London, Ontario, Canada, July 2001) (New York, N.Y.), B.
Mourrain, Ed. 56–63.

with the use of Border bases.
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Posters II: Fans (of Gröbner?)

Mora, T., Robbiano, L. The Gröbner Fan of an Ideal,
J. Symbolic Comput. 6 183–208 (1988).

Bayer, D., Morrison, I. Standard bases and geometric invariant theory I.
Initial ideals and state polytopes
J. Symbolic Comput. 6 209–217 (1988).

Lorenzo Robbiano (Università di Genova) Factorial Designs and Hilbert Schemes Genova, June 2015 31 / 31


	Border Basis and Gröbner Basis Schemes

