Elina Robeva UC Berkeley joint work with Bernd Sturmfels and Luke Oeding

June 8, 2015

Symmetric Tensors

T is an $\underbrace{n \times ... \times n}_{d \text{ times}}$ symmetric tensor with elements in a field $\mathbb{K} (= \mathbb{R}, \mathbb{C})$ if

$$T_{i_1i_2...i_d}=T_{i_{\sigma_1}i_{\sigma_2}...i_{\sigma_d}}$$

for all permutations σ of $\{1,2,...,d\}$. Notation: $T \in S^d(\mathbb{K}^n)$.

Example (symmetric matrices (d = 2))

$$T = \begin{pmatrix} T_{11} & T_{12} & \cdots & T_{1n} \\ T_{12} & T_{22} & \cdots & T_{2n} \\ & & \vdots & \\ T_{1n} & T_{2n} & \cdots & T_{nn} \end{pmatrix}$$

Symmetric Tensor Decomposition

For a tensor $T \in S^d(\mathbb{K}^n)$, a symmetric (or Waring) decomposition has the form

$$T = \sum_{i=1}^r \lambda_i v_i^{\otimes d}.$$

The smallest r for which such a decomposition exists is the *Waring rank* of T.

Orthogonal Tensor Decomposition

An orthogonal decomposition of a symmetric tensor $T \in S^d(\mathbb{R}^n)$ is a decomposition

$$T = \sum_{i=1}^{r} \lambda_i v_i^{\otimes d}$$

such that the vectors $v_1, ..., v_r$ are orthonormal. In particular, $r \leq n$.

Definition

A tensor $T \in S^d(\mathbb{R}^n)$ is *orthogonally decomposable*, for short *odeco*, if it has an orthogonal decomposition.

Examples

1. All symmetric matrices are odeco: by the spectral theorem

$$T = V^{T} \Lambda V = \begin{bmatrix} | & \dots & | \\ v_{1} & \cdots & v_{n} \\ | & \cdots & | \end{bmatrix} \begin{bmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{bmatrix} \begin{bmatrix} - & v_{1} & - \\ & \vdots \\ - & v_{n} & - \end{bmatrix}$$

$$=\sum_{i=1}^n \lambda_i v_i v_i^T = \sum_{i=1}^n \lambda_i v_i^{\otimes 2},$$

where $v_1, ..., v_n$ is an orthonormal basis of eigenvectors.

2. The Fermat polynomial: If $v_i = e_i$, for i = 1, ..., n, then

$$T = e_1^{\otimes d} + e_2^{\otimes d} + \dots + e_n^{\otimes d}.$$

An Application: Exchangeable Single Topic Models

Pick a topic $h \in \{1,2,...,k\}$ with distribution $(w_1,...,w_k) \in \Delta_{k-1}$. Given $h=j,\ x_1,...,x_d$ are i.i.d. random variables taking values in $\{1,2,...,n\}$ with distribution $\mu_j=(\mu_{j1},...,\mu_{jn})\in\Delta_{n-1}$.

An Application: Exchangeable Single Topic Models

Pick a topic $h \in \{1, 2, ..., k\}$ with distribution $(w_1, ..., w_k) \in \Delta_{k-1}$. Given h = j, $x_1, ..., x_d$ are i.i.d. random variables taking values in $\{1, 2, ..., n\}$ with distribution $\mu_i = (\mu_{i1}, ..., \mu_{in}) \in \Delta_{n-1}$.

Then, the joint distribution of $x_1,...,x_d$ is an $\underbrace{n \times n \times \cdots \times n}_{d \text{ times}}$ symmetric

tensor $T \in S^d(\mathbb{R}^n)$ whose entries sum to 1. Moreover,

$$T_{i_1,...,i_d} = \mathbb{P}(x_1 = i_1,...,x_d = i_d) = \sum_{i=1}^k \mathbb{P}(h = j) \prod_{k=1}^d \mathbb{P}(x_k = i_k | h = j).$$

So,
$$T = \sum_{i=1}^k w_i \mu_j^{\otimes d}$$
.

Eigenvectors of Symmetric Tensors

Consider a symmetric tensor $T \in S^d(\mathbb{K}^n)$.

Example
$$(d = 2)$$

T is an $n \times n$ matrix and $w \in \mathbb{K}^n$ is an eigenvector if

$$Tw = \begin{pmatrix} \vdots \\ \sum_{j=1}^{n} T_{i,j} w_j \\ \vdots \end{pmatrix} = \lambda w.$$

Eigenvectors of Symmetric Tensors

Definition

Given a symmetric tensor $T \in S^d(\mathbb{K}^n)$, an eigenvector of T with eigenvalue λ is a vector $w \in \mathbb{K}^n$ such that

$$Tw^{d-1} := \begin{pmatrix} \vdots \\ \sum_{i_2,...,i_d=1}^n T_{i,i_2,...,i_d} w_{i_2}...w_{i_d} \end{pmatrix} = \lambda w.$$

Two eigenvector-eigenvalue pairs (w, λ) and (w', λ') are equivalent if there exists $t \in \mathbb{K} \setminus \{0\}$ such that $t^{d-2}\lambda = \lambda'$ and tw = w'.

Eigenvectors of Symmetric Tensors

Example

Let

$$T = e_1^{\otimes 3} + e_2^{\otimes 3} + e_3^{\otimes 3}.$$

Then, $(x, y, z)^T$ is an eigenvector of T with eigenvalue λ if

$$T \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}^2 = \begin{pmatrix} 3x^2 \\ 3y^2 \\ 3z^2 \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Equivalently, the 2 \times 2 minors of the matrix $\begin{vmatrix} 3x^2 & x \\ 3y^2 & y \\ 2-2 & - \end{vmatrix}$ vanish. Therefore,

$$x^2v - xv^2 = x^2z - xz^2 = v^2z - vz^2 = 0.$$

The solutions are (up to scaling):

$$\{(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1)\}.$$

Eigenvectors of Odeco Tensors

If $T = \sum_{i=1}^{n} \lambda_i v_i^{\otimes d}$ is an odeco tensor, i.e. $v_1, ..., v_n$ are orthonormal, then $v_1, ..., v_n$ are eigenvectors of T with eigenvalues $\lambda_1, ..., \lambda_n$ respectively.

- ▶ Is there an easy way of finding these vectors, i.e. finding the orthogonal decomposition of an odeco tensor?
- Are these all of the eigenvectors of an odeco tensor?

Robust Eigenvectors and the Tensor Power Method

Definition

A unit vector $u \in \mathbb{R}^n$ is a robust eigenvector of a tensor $T \in S^d(\mathbb{R}^n)$ if there exists $\epsilon > 0$ such that for all $\theta \in \mathcal{B}_{\epsilon}(u) = \{u' : ||u - u'|| < \epsilon\}$, repeated iteration of the map

$$\theta \mapsto \frac{T\theta^{d-1}}{||T\theta^{d-1}||},\tag{1}$$

starting from θ converges to u.

Theorem (Anandkumar et al.)

Let T have an orthogonal decomposition $T = \sum_{i=1}^k \lambda_i v_i^{\otimes d}$ with $\lambda_1, ..., \lambda_k > 0$.

Then, the set of robust eigenvectors of T is equal to $\{v_1, v_2, ..., v_k\}$.

 $\frac{Question:}{\overline{Idea:}} \ How to enlarge the set of odeco tensors to contain tensors of higher ranks?$

 $lackbox{ Odeco tensors come from an orthonormal basis } V:= (oldsymbol{v}_1,\cdots,oldsymbol{v}_n)\in (\mathbb{R}^n)^n$, i.e.

$$VV^T = I_n$$
 and $||\mathbf{v}_j||^2 = 1, j = 1, ..., n$.

<u>Question:</u> How to enlarge the set of odeco tensors to contain tensors of higher ranks? <u>Idea:</u>

 $lackbox{ Odeco tensors come from an orthonormal basis } V:=(\mathbf{v}_1,\cdots,\mathbf{v}_n)\in(\mathbb{R}^n)^n$, i.e.

$$VV^T = I_n$$
 and $||\mathbf{v}_j||^2 = 1, j = 1, ..., n$.

▶ Instead let $V := (\mathbf{v}_1, \cdots, \mathbf{v}_r) \in (\mathbb{R}^n)^r$ be a finite unit norm tight frame (or funtf) , i.e.

$$VV^T = -\frac{r}{n}I_n$$
 and $||\mathbf{v}_j||^2 = 1, j = 1, ..., r$.

Question: How to enlarge the set of odeco tensors to contain tensors of higher ranks? Idea:

 $lackbox{ Odeco tensors come from an orthonormal basis } V:=ig(old{v}_1,\cdots,old{v}_nig)\in(\mathbb{R}^n)^n$, i.e.

$$VV^T = \textit{I}_n \quad \text{and} \quad ||\textbf{v}_j||^2 = 1, j = 1, ..., n.$$

▶ Instead let $V := (\mathbf{v}_1, \dots, \mathbf{v}_r) \in (\mathbb{R}^n)^r$ be a finite unit norm tight frame (or funtf), i.e.

$$VV^T = \frac{r}{n}I_n$$
 and $||\mathbf{v}_j||^2 = 1, j = 1, ..., r$.

A tensor $T \in S^d(\mathbb{R}^n)$ is frame decomposable (or fradeco) if it can be written as

$$T = \sum_{i=1}^r \lambda_i \mathbf{v}_i^{\otimes d},$$

where $(\mathbf{v}_1, ..., \mathbf{v}_r)$ form a finite unit norm tight frame.

Finite Unit Norm Tight Frames

Examples

The Mercedes Benz Frame
$$V = \begin{pmatrix} 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ 1 & -\frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$
.

$$V = \frac{1}{3\sqrt{3}} \begin{pmatrix} -5 & 1 & 1 & 3\\ 1 & -5 & 1 & 3\\ 1 & 1 & -5 & 3 \end{pmatrix}.$$

$$V = \begin{pmatrix} 1 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & 1 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

The funtf variety, denoted by $\mathcal{F}_{r,n}$ is the sub variety of \mathbb{C}^{nr} defined by the equations

$$VV^T = \frac{r}{n}I_n$$
 and $||\mathbf{v}_j||^2 = 1, j = 1, ..., r$.

Finite Unit Norm Tight Frames

Theorem (Cahill, Mixon, Strawn, Dykema)

The funtf variety $\mathcal{F}_{r,n}$ is irreducible when $r \geq n+2 > 4$. We have

$$\dim(\mathcal{F}_{r,n}) = (n-1)\cdot(r-\frac{n}{2}-1)$$
 when $r>n\geq 2$.

$\overline{}$	_				
r	n	$\dim \mathcal{F}_{r,n}$	$\deg \mathcal{F}_{r,n}$	# components & degrees	
3	2	1	8 · 2	8 components, each degree 2	
4	2	2	12 · 4	12 components, each degree 4	
5	2	3	112	irreducible	
6	2	4	240	irreducible	
7	2	5	496	irreducible	
4	3	3	16 · 8	16 components, each degree 8	
5	3	5	1024	irreducible	
6	3	7	2048	irreducible	
7	3	9	4096	irreducible	
5	4	6	32 · 40	32 components, each degree 40	
6	4	9	20800	irreducible	
7	4	12	65536	irreducible	

Table: Dimension and degree of the funtf variety in some small cases

The Fradeco Variety

Questions:

- Does the tensor power method recover the decomposition of a fradeco tensor?
- Is there another way to recover the decomposition?

The variety of frame decomposable tensors or the fradeco variety, denoted by $\mathcal{T}_{r,n,d}$ is the Zariski closure in $S^d(\mathbb{C}^n)$ of all tensors that can be written as

$$T = \sum_{j=1}^r \lambda_j \mathbf{v}_j^{\otimes d},$$

where $(\mathbf{v}_1,...,\mathbf{v}_r) \in \mathcal{F}_{r,n}$.

Example

When r = n, $\mathcal{T}_{n,n,d}$ is the odeco variety.

▶ Can we give equations that define the variety $\mathcal{T}_{r,n,d}$.

The tensor power method

Conjecture

Let r=n+1 < d and $T=\sum_{j=1}^{n+1} \lambda_j \mathbf{v}_j^{\otimes d} \in \mathcal{T}_{n+1,n,d}$ with $\lambda_1,...,\lambda_{n+1}>0$. Then, $\mathbf{v}_1,...,\mathbf{v}_{n+1}$ are the robust eigenvectors of T, so they are found by the tensor power method.

Example (The Mercedes Benz Frame)

Let
$$T = \begin{pmatrix} 0 \\ 1 \end{pmatrix}^{\otimes 5} + \begin{pmatrix} \frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{pmatrix}^{\otimes 5} + \begin{pmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{pmatrix}^{\otimes 5}$$
. The dynamics of the power method looks like this

The tensor power method

Example

Let n = 2, r = 4, d = 5 and consider the tensor

$$\mathcal{T} = \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix}^{\otimes 4} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}^{\otimes 4} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{\otimes 4} + \begin{pmatrix} 1 \\ -1 \end{pmatrix}^{\otimes 4} \in \mathcal{T}_{4,2,5},$$

where $\alpha > 6$. The vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is an eigenvector, but none of the other eigenvectors are real. Therefore, the frame decomposition of $\mathcal T$ cannot be recovered from its eigenvectors.

Symmetric $2 \times 2 \times \cdots \times 2$ fradeco tensors

Given a symmetric tensor $T \in S^d(\mathbb{C}^2)$, denote

$$t_i = T_{i_1,\ldots,i_d}$$

whenever i of $i_1, ..., i_d$ are equal to 1 and the rest are equal to 0.

Theorem

Fix $r \in \{3, ..., 9\}$ and $d \ge 2r - 2$. There exists a matrix \mathcal{M}_r with

- (a) ... r-1 rows and d-r+1 columns, whose entries are linear forms in the coordinates t_0, t_1, \ldots, t_d on \mathbb{P}^d .
- (b) The columns of \mathcal{M}_r involve r+1 of the unknowns t_i , and they are identical up to index shifts.
- (c) The maximal minors of \mathcal{M}_r form a Gröbner basis for the homogeneous prime ideal of $\mathcal{T}_{r,2,d}$.

Lemma

The fradeco variety $\mathcal{T}_{r,2,d}$ has dimension 2r-3 in \mathbb{P}^d .

Matrices for Binary Fradeco Tensors

$$\mathcal{M}_{3} = \begin{pmatrix} t_{0} - 3t_{2} & t_{1} - 3t_{3} & t_{2} - 3t_{4} & t_{3} - 3t_{5} & \cdots & t_{d-3} - 3t_{d-1} \\ 3t_{1} - t_{3} & 3t_{2} - t_{4} & 3t_{3} - t_{5} & 3t_{4} - t_{6} & \cdots & 3t_{d-2} - t_{d} \end{pmatrix}$$

$$\mathcal{M}_{4} = \begin{pmatrix} t_{0} + t_{4} & t_{1} + t_{5} & t_{2} + t_{6} & t_{3} + t_{7} & \cdots & t_{d-4} + t_{d} \\ t_{1} - t_{3} & t_{2} - t_{4} & t_{3} - t_{5} & t_{4} - t_{6} & \cdots & t_{d-3} + t_{d-1} \\ t_{2} & t_{3} & t_{4} & t_{5} & \cdots & t_{d-5} + 5t_{d-3} \\ \end{pmatrix}$$

$$\mathcal{M}_{5} = \begin{pmatrix} t_{0} + 5t_{2} & t_{1} + 5t_{3} & t_{2} + 5t_{4} & t_{3} + 5t_{5} & \cdots & t_{d-5} + 5t_{d-3} \\ t_{1} - 3t_{3} & t_{2} - 3t_{4} & t_{3} - 3t_{5} & t_{4} - 3t_{6} & \cdots & t_{d-4} - 3t_{d-2} \\ 3t_{2} - t_{4} & 3t_{3} - t_{5} & 3t_{4} - t_{6} & 3t_{5} - t_{7} & \cdots & 3t_{d-3} - t_{d-1} \\ 5t_{3} + t_{5} & 5t_{4} + t_{6} & 5t_{5} + t_{7} & 5t_{6} + t_{8} & \cdots & 5t_{d-2} + t_{d} \end{pmatrix}$$

$$\mathcal{M}_{6} = \begin{pmatrix} t_{0} + 3t_{2} & t_{1} + 3t_{3} & t_{2} + 3t_{4} & t_{3} + 3t_{5} & \cdots & t_{d-6} + 3t_{d-4} \\ t_{1} + t_{5} & t_{2} + t_{6} & t_{3} + t_{7} & t_{4} + t_{8} & \cdots & t_{d-5} + t_{d-1} \\ t_{2} - t_{4} & t_{3} - t_{5} & t_{4} - t_{6} & t_{5} - t_{7} & \cdots & t_{d-4} - t_{d-2} \\ t_{3} & t_{4} & t_{5} & t_{6} & \cdots & t_{d-3} \\ 3t_{4} + t_{6} & 3t_{5} + t_{7} & 3t_{6} + t_{8} & 3t_{7} + t_{9} & \cdots & 3t_{d-2} + t_{d} \end{pmatrix}$$

..

We conjecture that this works for all r.

Higher Dimensions

Theorem

The following table describes the fradeco varieties $\mathcal{T}_{r,n,d}$ in the cases when $n \geq 3$ and $1 \leq \dim(\mathcal{T}_{r,n,d}) \cdot \operatorname{codim}(\mathcal{T}_{r,n,d}) \leq 100$.

dim	codim	degree	known equations
6	3	17	3 cubics, 6 quartics
6	8	74	6 quadrics, 37 cubics
6	14	191	27 quadrics, 104 cubics
9	5	210	1 cubic, 6 quartics
9	11	1479	20 cubics, 213 quartics
12	2	99	none in degree ≤ 5
12	8	4269	one quartic
15	5	≥ 38541	none in degree ≤ 4
18	2	690	none in degree ≤ 5
24	3	≥ 16252	none in degree ≤ 7
10	9	830	none in degree ≤ 4
14	5	1860	none in degree ≤ 3
18	1	194	one in degree 194
	6 6 9 9 12 12 15 18 24 10	6 3 6 8 6 14 9 5 9 11 12 2 12 8 15 5 18 2 24 3 10 9 14 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Proposition

For all $r>n, d\geq 3$, the dimension of $\mathcal{T}_{r,n,d}$ is bounded above by

$$\min \left\{ (r-n)(n-1) + \binom{n-1}{2} \, + \, r-1 \, , \, \binom{n+d-1}{d} - 1 \right\}.$$

References

A. Anandkumar, R. Ge, D. Hsu, S. Kakade, and M. Telegarsky: *Tensor Decompositions for Learning Latent Variable Models*

A. Anandkumar, D. Hsu, and S. Kakade: A Method of Moments for Mixture Models and Hidden Markov Models

J. Brachat, P. Common, B. Mourrain, and E. Tsigaridas: *Symmetric Tensor Decomposition*

P. Common, G. Golub, L. Lim, and B. Mourrain: *Symmetric Tensors and Symmetric Tensor Rank*

D. Cartwright and B. Sturmfels: The Number of Eigenvalues of a Tensor

D. Eisenbud and B. Sturmfels: Binomial Ideals

L. Oeding and G. Ottaviani: Eigenvectors of Tensors and Algorithms for Waring Decomposition