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A mixture of independence models

© Consider a pair of four sided dice: one red die and one blue die Ry, B;.

© Consider a second pair of four sided dice: one red die and one blue
die RQ, Bz.

© Consider a biased coin C = [c1, c]
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© Consider a pair of four sided dice: one red die and one blue die Ry, B;.

© Consider a second pair of four sided dice: one red die and one blue
die RQ, Bz.

© Consider a biased coin C = [c1, c]

@ The following map induces a set of probability distributions denoted
Mas C Nis C R0 and is called the model.

A x (A3 x Az) x (A3 x A3) — Mag C Ays C R

aRiB] +RB) = [py]

@ 44 is the set of 4 x 4 nonnegative rank at most 2 matrices.

® 44 is a mixture of two independence models.



Collecting data and the likelihood function
Roll the dice

@ Rolling the dice we may observe the following data:

160 8 16 24
32 200 16 8
8 24 176 32

16 40 8 232

u = [uj] =

@ To each p in the set of probability distributions .#44 we assign the
likelihood of p with respect to u by the likelihood function:
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@ The probability distribution maximizing ¢, (p) on the set of
distributions .#a4 is called the maximum likelihood estimate (mle).

@ The mle is the best point of .#44 to describe the observed data.
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@ The probability distribution maximizing ¢, (p) on the set of
distributions .#a4 is called the maximum likelihood estimate (mle).

@ The mle is the best point of .#44 to describe the observed data.
@ The statistics problem is to determine mle's.



Applied Algebraic Geometry

The mle can be determined by solving the likelihood equations.

o Instead of .#44, we consider its Zariski closure Xag4.

@ The Zariski closure is described by zero sets of homogeneous
polynomials.
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Applied Algebraic Geometry

The mle can be determined by solving the likelihood equations.

o Instead of .#44, we consider its Zariski closure Xag4.

@ The Zariski closure is described by zero sets of homogeneous
polynomials.

@ The defining polynomials of X4 are the 3 x 3 minors of

P11 P12 P13 P14
P21 P22 P23 P24
P31 P32 P33 P34
P41 P42 Pa3  Paa

and the linear constraint py1 + p12+ -+ paa — ps = 0.
@ The equations define a projective variety of P1®: rank at < 2 matrices

@ We consider the homogenized likelihood function
Cy(p) =TT (Pij/ps)™ on Xaa.



Geometric definition of critical points

Critical points can be determined by solving a system of polynomial equations.

@ For the models in this talk, the mle is a critical point of the
homogenized likelihood function.

@ The solutions to the likelihood equations are critical points.

@ One way to formulate the likelihood equations is to use Lagrange
multipliers.

» We omit a formal description of the likelihood equations, but instead
give a geometric description of critical points.



Geometric definition of critical points (cont.)

Critical points can be determined by solving a system of polynomial equations.

@ Let X denote the open variety X \ {coordinate hyperplanes}.

» X° is the set of points in X which have nonzero coordinates.

@ The gradient of the likelihood function up to scaling equals
— | i U2 Usg  Us — ..
Vfu(p)— pir pi2 7T pas ps ]’ Us := ZU’J‘

ij

» The gradient is defined on X°.

@ We say p € X° is a complex critical point, whenever V¢, (p) is
orthogonal to the tangent space of X at p and p € X2,.

@ The mle is a critical point (in the cases we consider).



Two experiments and ML degree

Two experiments

o Consider vectorized datasets u for likelihood function £, (p) on Xas.
» u={160,8,16,24,32,200,16,8,8,24,176,32,16,40,8,232}
* 191 complex including 25 real
> u={292,45,62,41,142,51,44 42,213,75,67,63,119,85,58,70}
* 191 complex including 3 real

@ The # of complex solutions was always 191 (this is the ML degree).



Two experiments and ML degree

Two experiments

o Consider vectorized datasets u for likelihood function £, (p) on Xas.
» u={160,8,16,24,32,200,16,8,8,24,176,32,16,40,8,232}
* 191 complex including 25 real
> u={292,45,62,41,142,51,44 42,213,75,67,63,119,85,58,70}
* 191 complex including 3 real
@ The # of complex solutions was always 191 (this is the ML degree).

@ For general choices of u we get the same number of complex critical
points.

» This number is called the ML degree of a variety.



Previous Computational Results

@ Consider the mixture model .#,,, for m-sided red dice and n-sided
blue dice. Denote its Zariski closure by X,,.

Theorem

The ML-degrees of Xy, include the following:

(mn) 3 4 5 6 7 8 9 10 11 12
3 10 26 58 122 250 506 1018 2042 4090 8186
4 26 191 843 3119 6776 ?  ? ? ? ?

@ Reference: “Maximum likelihood for matrices with rank constraints”

» J. Hauenstein, [], and B. Sturmfels using Bertini.

@ Any conjectures? (Hint add 6.)
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@ Consider the mixture model .#,,, for m-sided red dice and n-sided
blue dice. Denote its Zariski closure by X,,.

Theorem
The ML-degrees of X, include the following:

(mn) 3 4 5 6 7 8 9 10 11 12
3 10 26 58 122 250 506 1018 2042 4090 8186
4 26 191 843 3119 6776 ?  ? ? ? ?

@ Reference: “Maximum likelihood for matrices with rank constraints”
» J. Hauenstein, [], and B. Sturmfels using Bertini.
@ Any conjectures? (Hint add 6.)

@ “Maximum likelihood geometry in the presence of sampling and
model zeros" gave supporting evidence for up to n=15.

» E. Gross and [] using Macaulay?2.



Euler characteristics and ML degrees

Huh proves that the ML degrees are an Euler characteristic in the smooth case.

@ Let X be a smooth variety of P! defined by homogeneous
polynomials and the linear constraint

po+p1+---+pn—ps=0.

@ Let X© denote the open variety X \ {coordinate hyperplanes}.

The ML degree of the smooth variety X equals the signed Euler
characteristic of X?, i.e.

2(X°) = (1) X MLdegree (X).




Euler characteristics and ML degrees

Huh proves that the ML degrees are an Euler characteristic in the smooth case.

@ Let X be a smooth variety of P! defined by homogeneous
polynomials and the linear constraint

po+p1+---+pn—ps=0.

@ Let X© denote the open variety X \ {coordinate hyperplanes}.

The ML degree of the smooth variety X equals the signed Euler
characteristic of X?, i.e.

2(X°) = (1) X MLdegree (X).

@ The independence model (one sided coin) is smooth but the mixture
model is not.



Independence model ML degree

Use Huh's result to give a topological proof.

@ Let Z denote the Zariski closure of the independence model, a variety
of P16,
@ The following map gives an algebraic geometry parameterization of Z.

PPxP3 27

([re,r2,r3, 2], [b1, b2, b3, ba]) — [ribjazribj] where 7,j € {1,2,3,4}.
ij
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Use Huh's result to give a topological proof.
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Let Z denote the Zariski closure of the independence model, a variety
of P16,
The following map gives an algebraic geometry parameterization of Z.

PPxP3 27

([re,r2,r3, 2], [b1, b2, b3, ba]) — [ribjazribj where 7,j € {1,2,3,4}.
ij

Let & denote P3\ V (xpx1x2x3 (X0 + X1+ x2 +x3)). Then we have a

parameterization of X° given by

O x O — X°

because Y ribj = (¥;ri) (¥, bj)-

Using inclusion-exclusion and the additive properties of Euler
characteristics we see that (&) = —1.

By the product property x (0 x ) = 1.

This parameterization is a homeomorphism thus x (0 x €) = x (X°).




ML degrees of singular models
The ML degree is a stratified topological invariant.
o Let (51,5,...,5«) denote a Whitney stratification of X°.

» When X° is smooth the Whitney stratification is (X°).
» When k=2, 51 = X2 and 5 = X3, .

Given reduced irreducible X° with Whitney stratification (Si,...,Sk), we
have

X (X,‘;g) = e;1MLdegree (51) + ex1MLdegree (S;) + - - + ex1 MLdegree (Sx) .




ML degrees of singular models
The ML degree is a stratified topological invariant.

o Let (51,5,...,5«) denote a Whitney stratification of X°.

» When X° is smooth the Whitney stratification is (X°).
» When k=2, 51 = X2 and 5 = X3, .

Given reduced irreducible X° with Whitney stratification (Si,...,Sk), we
have

X (X,%g) = e1MLdegree (51) + ex1MLdegree (S2) + - - + ex; MLdegree (S ) .

@ The ¢ are topological invariants called Euler obstructions, which can
be considered as the topological multiplicity of the singularities.

@ This theorem is a corollary of Botong Wang and Nero Budur's result
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ML degrees of singular models
The ML degree is a stratified topological invariant.
o Let (51,5,...,5«) denote a Whitney stratification of X°.

» When X° is smooth the Whitney stratification is (X°).
» When k=2, 51 = X2 and 5 = X3, .

Given reduced irreducible X° with Whitney stratification (Si,...,Sk), we
have

% (X2g) = e11MLdegree (51) + ex1MLdegree (S;) + - - + ex1 MLdegree (Sx) .

@ The ¢ are topological invariants called Euler obstructions, which can
be considered as the topological multiplicity of the singularities.

@ This theorem is a corollary of Botong Wang and Nero Budur's result
that relates ML degrees to Gaussian degrees.

@ The Euler obstruction e;; always equals (—1)dimX°_



Ternary Cubic Example for Singular Case

We determine the ML degree of a singular X using the previous theorem.
o Let X be defined by

p2 (p1— p2)° — (o — p2)* = po -+ p1 + p2 — ps = 0.

@ The Whitney stratification of X consists of 5; the regular points (so
S1 = X) and S the singular point which is [1:1:1:3],

x (51) = e;1MLdegree (X) + ex;MLdegree (52).
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Ternary Cubic Example for Singular Case

We determine the ML degree of a singular X using the previous theorem.

o Let X be defined by

p2 (p1— p2)° — (o — p2)* = po -+ p1 + p2 — ps = 0.

@ The Whitney stratification of X consists of 5; the regular points (so
S1 = X) and S the singular point which is [1:1:1:3],

x (51) = e;1MLdegree (X) + ex;MLdegree (52).

@ Sy is a point so S5y = S, and MLdegree (32) =1.
@ The Euler obstruction ey; is the signed multiplicity of the singular
point, i.e. e; = —2.
» In general, the sign depends on the dimension of S; and the
multiplicity is actually the Euler characteristic of a link [Kashiwara].

@ The Euler obstruction e always equals (—1)di'“X,



Returning to the mixture model
We apply the Whitney stratification-ML degree theorem to X3,,.

@ The Whitney stratification of X° = X¢2,, is given by (51,52) where 5;

are the regular points X2 \Z2, and S, are the singular points Z2,.

» Denote the singular points of X2 by Z2,.
» Z?°, should be thought of as the set of rank 1 matrices (Zmy is the
Zariski closure of the independence model)

@ By the theorem we have

x (X2 ,\Z2,) = e;1MLdegree (Xmn) + e21MLdegree (Z,)-
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Returning to the mixture model
We apply the Whitney stratification-ML degree theorem to X3,,.

@ The Whitney stratification of X° = X¢2,, is given by (51,52) where 5;
are the regular points X2 \Z2, and S, are the singular points Z2,.

» Denote the singular points of X2 by Z2,.
» Z?°, should be thought of as the set of rank 1 matrices (Zmy is the
Zariski closure of the independence model)

@ By the theorem we have
x (X2 ,\Z2,) = e;1MLdegree (Xmn) + e21MLdegree (Z,)-

@ It is already well known e;; = —1 and MLdegree(Z,,,) = 1.

@ The first lemma we would prove determines e;:
e = (—1)™" Y (min{m,n} —1).

o If we knew x (X2,\Z5,), then we would know MLdegree (Xin).



Determining the Euler characteristic  (X2,\Z2,)

This is our main theorem.

o If we knew x (X2,\Z%,), then we would know MLdegree (Xsn).

@ Let A, be a sequence of m—1 integers (A1,42,...,Am—-1).

Theorem [ - and B. Wang]

Fix m greater than or equal to 2. Then, there exists A,, such that

XXeNZo) = (-1t Y A A

1<icm_1 i+l S+l

@ Now we prove the conjecture of Hauenstein, [], Sturmfels.



Using the main theorem

Fix m=3.
o oy _ n—1 Mo A A n—1 Ao n—1
0ENZ5) = () (G ) - (Frie ).
x(X2,\Z2,) = —MLdegree (X3,) + (—1)3+"_1 (min{3,n} —1).

@ MLdegree(X32) =1 yields the relation —4; — A, = 0.
@ MLdegree (X33) = 10 yields the relation —A; = —12.

MLdegree (X3,) = (2""! —6) + (—1)"((min{3,n} —3))
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Fix m=3.
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0ENZ5) = () (G ) - (Frie ).
x(X2,\Z2,) = —MLdegree (X3,) + (—1)3+"_1 (min{3,n} —1).

@ MLdegree(X32) =1 yields the relation —4; — A, = 0.
@ MLdegree (X33) = 10 yields the relation —A; = —12.
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MLdegree (Xm2) , MLdegree (Xm3), ..., MLdegree (Xmm)
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Do Better
@ Main idea (from previous slide): For fixed m, if we knew
MLdegree (Xm2) , MLdegree (Xm3), ..., MLdegree (Xmm)

then we can solve for Ay, = (A1,...,Am_1) thereby giving a closed
form expression for MLdegree (X,,) for all n.



Do Better
@ Main idea (from previous slide): For fixed m, if we knew
MLdegree (Xm2) , MLdegree (Xm3), ..., MLdegree (Xmm)

then we can solve for Ay, = (A1,...,Am_1) thereby giving a closed
form expression for MLdegree (X,,) for all n.

@ We can recursively determine A, thereby giving a closed form formula
for MLdegree (Xmn) for fixed m but any n.

» Note MLdegree (Xinn) = MLdegree (Xum).
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Do Better
@ Main idea (from previous slide): For fixed m, if we knew
MLdegree (Xm2) , MLdegree (Xm3), ..., MLdegree (Xmm)

then we can solve for Ay, = (A1,...,Am_1) thereby giving a closed
form expression for MLdegree (X,,) for all n.

@ We can recursively determine A, thereby giving a closed form formula
for MLdegree (Xmn) for fixed m but any n.

» Note MLdegree (Xinn) = MLdegree (Xum).
» Prove Ap_1 of Ay is (m—1)ml.

@ Closed form expressions for fixed m and n> m:
MLdegXs, =25-1""1 —40.2""1 4 23.37"1

MLdegXs, = —90-1""1+260-2"1 —270.3""1 406.4""1
MLdegXs, =301-1""1 —1400-2" 1 +2520-3""1 —2016-4""1 4+600-5"*



Using Numerical Algebraic Geometry

Witness sets allow us to use parallelizable algorithms.

@ Treat the uj; as parameter values that we can adjust,

o If we have a set of critical points for generic data, then we can solve
any specific instance of data quickly using a parameter homotopy.

@ Critical points of £, for Ugenera are taken to

> critical points of £, for uspecific
> by a parameter homotopy

(I I A A 160 8 16 24

oo oo} S 32 200 16 8

O 0o 0o - 8 24 176 32

O 0o 0o - 16 40 8 232
191 points — —— > 191 points

» [ denotes a random complex number.



Thank You

@ Contact information

» Jose Israel Rodriguez
» jo.ro@ND.edu
» http://www.nd.edu/~jrodril8/

@ SIAM: AG15 in Daejeon, Korea, Aug 3-7.

» Co-organizing a mini-sympoium with Xiaoxian Tang:
Maximum Likelihood Degrees and Critical Points
» http://www.nd.edu/~jrodril8/quickLinks/AG15rt/
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