# The maximum likelihood degree of rank 2 matrices via Euler characteristics 

Jose Israel Rodriguez<br>University of Notre Dame<br>Joint work with Botong Wang

Algebraic Statistics 2015
University of Genoa
June 9, 2015

## A mixture of independence models

(1) Consider a pair of four sided dice: one red die and one blue die $R_{1}, B_{1}$.
(2) Consider a second pair of four sided dice: one red die and one blue die $R_{2}, B_{2}$.
(3) Consider a biased coin $C=\left[c_{1}, c_{2}\right]$

- The following map induces a set of probability distributions denoted $\mathbb{M}_{44} \subset \triangle_{15} \subset \mathbb{R}^{16}$ and is called the model.


$$
c_{1} R_{1} B_{1}^{T}+c_{2} R_{2} B_{2}^{T}=\left[p_{i j}\right]
$$

- $\mathscr{M}_{44}$ is the set of $4 \times 4$ nonnegative rank at most 2 matrices.
- $\mathscr{M}_{44}$ is a mixture of two independence models.


## A mixture of independence models

(1) Consider a pair of four sided dice: one red die and one blue die $R_{1}, B_{1}$.
(2) Consider a second pair of four sided dice: one red die and one blue die $R_{2}, B_{2}$.
(3) Consider a biased coin $C=\left[c_{1}, c_{2}\right]$

- The following map induces a set of probability distributions denoted $\mathscr{M}_{44} \subset \triangle_{15} \subset \mathbb{R}^{16}$ and is called the model.

$$
\begin{gathered}
\Delta_{1} \times\left(\Delta_{3} \times \Delta_{3}\right) \times\left(\Delta_{3} \times \Delta_{3}\right) \rightarrow \mathscr{M}_{44} \subset \Delta_{15} \subset \mathbb{R}^{16} \\
c_{1} R_{1} B_{1}^{T}+c_{2} R_{2} B_{2}^{T}=\left[p_{i j}\right]
\end{gathered}
$$

- $\mathscr{M}_{44}$ is the set of $4 \times 4$ nonnegative rank at most 2 matrices.
- $\mathscr{M}_{44}$ is a mixture of two independence models.


## Collecting data and the likelihood function

## Roll the dice

- Rolling the dice we may observe the following data:

$$
u=\left[u_{i j}\right]=\left[\begin{array}{cccc}
160 & 8 & 16 & 24 \\
32 & 200 & 16 & 8 \\
8 & 24 & 176 & 32 \\
16 & 40 & 8 & 232
\end{array}\right]
$$

- To each $p$ in the set of probability distributions $\mathscr{M}_{44}$ we assign the likelihood of $p$ with respect to $u$ by the likelihood function:

$$
\ell_{u}(p)=\binom{\sum u_{i j}}{u_{11}, \ldots, u_{44}}^{-1} \prod_{i j} p_{i j}^{u_{i j}}
$$

- The probability distribution maximizing $\ell_{u}(p)$ on the set of distributions $\mathscr{M}_{1 \wedge}$ is called the maximum likelihood estimate (mle),


## Collecting data and the likelihood function

## Roll the dice

- Rolling the dice we may observe the following data:

$$
u=\left[u_{i j}\right]=\left[\begin{array}{cccc}
160 & 8 & 16 & 24 \\
32 & 200 & 16 & 8 \\
8 & 24 & 176 & 32 \\
16 & 40 & 8 & 232
\end{array}\right]
$$

- To each $p$ in the set of probability distributions $\mathscr{M}_{44}$ we assign the likelihood of $p$ with respect to $u$ by the likelihood function:

$$
\ell_{u}(p)=\binom{\sum u_{i j}}{u_{11}, \ldots, u_{44}}^{-1} \prod_{i j} p_{i j}^{u_{i j}}
$$

- The probability distribution maximizing $\ell_{u}(p)$ on the set of distributions $\mathscr{M}_{44}$ is called the maximum likelihood estimate (mle).
- The mle is the best point of $\mathscr{M}_{44}$ to describe the observed data.


## Collecting data and the likelihood function

## Roll the dice

- Rolling the dice we may observe the following data:

$$
u=\left[u_{i j}\right]=\left[\begin{array}{cccc}
160 & 8 & 16 & 24 \\
32 & 200 & 16 & 8 \\
8 & 24 & 176 & 32 \\
16 & 40 & 8 & 232
\end{array}\right]
$$

- To each $p$ in the set of probability distributions $\mathscr{M}_{44}$ we assign the likelihood of $p$ with respect to $u$ by the likelihood function:

$$
\ell_{u}(p)=\binom{\sum u_{i j}}{u_{11}, \ldots, u_{44}}^{-1} \prod_{i j} p_{i j}^{u_{i j}}
$$

- The probability distribution maximizing $\ell_{u}(p)$ on the set of distributions $\mathscr{M}_{44}$ is called the maximum likelihood estimate (mle).
- The mle is the best point of $\mathscr{M}_{44}$ to describe the observed data.
- The statistics problem is to determine mle's.


## Applied Algebraic Geometry

The mle can be determined by solving the likelihood equations.

- Instead of $\mathscr{M}_{44}$, we consider its Zariski closure $X_{44}$.
- The Zariski closure is described by zero sets of homogeneous polynomials.
- The defining polynomials of $X_{44}$ are the $3 \times 3$ minors of

and the linear constraint $p_{11}+p_{12}+\cdots+p_{44}-p_{s}=0$.
- The equations define a projective variety of $\mathbb{P}^{16}$ : rank at $\leq 2$ matrices
- We consider the homogenized likelihood function $\ell_{u}(p)=\prod_{i j}\left(p_{i j} / p_{s}\right)^{u_{i j}}$ on $X_{44}$.


## Applied Algebraic Geometry

The mle can be determined by solving the likelihood equations.

- Instead of $\mathscr{M}_{44}$, we consider its Zariski closure $X_{44}$.
- The Zariski closure is described by zero sets of homogeneous polynomials.
- The defining polynomials of $X_{44}$ are the $3 \times 3$ minors of

$$
\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34} \\
p_{41} & p_{42} & p_{43} & p_{44}
\end{array}\right]
$$

and the linear constraint $p_{11}+p_{12}+\cdots+p_{44}-p_{s}=0$.

- The equations define a projective variety of $\mathbb{P}^{16}$ : rank at $\leq 2$ matrices
- We consider the homogenized likelihood function $\ell_{u}(p)=\prod_{i j}\left(p_{i j} / p_{s}\right)^{u_{i j}}$ on $X_{44}$.


## Applied Algebraic Geometry

## The mle can be determined by solving the likelihood equations.

- Instead of $\mathscr{M}_{44}$, we consider its Zariski closure $X_{44}$.
- The Zariski closure is described by zero sets of homogeneous polynomials.
- The defining polynomials of $X_{44}$ are the $3 \times 3$ minors of

$$
\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34} \\
p_{41} & p_{42} & p_{43} & p_{44}
\end{array}\right]
$$

and the linear constraint $p_{11}+p_{12}+\cdots+p_{44}-p_{s}=0$.

- The equations define a projective variety of $\mathbb{P}^{16}$ : rank at $\leq 2$ matrices
- We consider the homogenized likelihood function
$\ell_{u}(p)=\prod_{i j}\left(p_{i j} / p_{s}\right)^{u_{i j}}$ on $X_{44}$.


## Geometric definition of critical points

Critical points can be determined by solving a system of polynomial equations.

- For the models in this talk, the mle is a critical point of the homogenized likelihood function.
- The solutions to the likelihood equations are critical points.
- One way to formulate the likelihood equations is to use Lagrange multipliers.
- We omit a formal description of the likelihood equations, but instead give a geometric description of critical points.


## Geometric definition of critical points (cont.)

Critical points can be determined by solving a system of polynomial equations.

- Let $X^{\circ}$ denote the open variety $X \backslash$ \{coordinate hyperplanes $\}$.
- $X^{0}$ is the set of points in $X$ which have nonzero coordinates.
- The gradient of the likelihood function up to scaling equals

$$
\nabla \ell_{u}(p)=\left[\begin{array}{lllll}
\frac{u_{11}}{p_{11}} & \frac{u_{12}}{p_{12}} & \cdots & \frac{u_{44}}{p_{44}} & \frac{u_{s}}{p_{s}}
\end{array}\right], \quad u_{s}:=-\sum_{i j} u_{i j} .
$$

- The gradient is defined on $X^{0}$.
- We say $p \in X^{0}$ is a complex critical point, whenever $\nabla \ell_{u}(p)$ is orthogonal to the tangent space of $X$ at $p$ and $p \in X_{r e g}^{\circ}$.
- The mle is a critical point (in the cases we consider).


## Two experiments and ML degree

## Two experiments

- Consider vectorized datasets $u$ for likelihood function $\ell_{u}(p)$ on $X_{44}$.
- $u=\{160,8,16,24,32,200,16,8,8,24,176,32,16,40,8,232\}$
$\star 191$ complex including 25 real
- $u=\{292,45,62,41,142,51,44,42,213,75,67,63,119,85,58,70\}$
* 191 complex including 3 real
- The \# of complex solutions was always 191 (this is the ML degree).
- For general choices of $u$ we get the same number of complex critical points.


## Two experiments and ML degree

## Two experiments

- Consider vectorized datasets $u$ for likelihood function $\ell_{u}(p)$ on $X_{44}$.
- $u=\{160,8,16,24,32,200,16,8,8,24,176,32,16,40,8,232\}$
* 191 complex including 25 real
- $u=\{292,45,62,41,142,51,44,42,213,75,67,63,119,85,58,70\}$
* 191 complex including 3 real
- The \# of complex solutions was always 191 (this is the ML degree).
- For general choices of $u$ we get the same number of complex critical points.
- This number is called the ML degree of a variety.


## Previous Computational Results

- Consider the mixture model $\mathscr{M}_{m n}$ for $m$-sided red dice and $n$-sided blue dice. Denote its Zariski closure by $X_{m n}$.


## Theorem

The ML-degrees of $X_{m n}$ include the following:

| $(m, n)$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 10 | 26 | $\mathbf{5 8}$ | $\mathbf{1 2 2}$ | $\mathbf{2 5 0}$ | $\mathbf{5 0 6}$ | $\mathbf{1 0 1 8}$ | $\mathbf{2 0 4 2}$ | 4090 | 8186 |
| 4 | 26 | $\mathbf{1 9 1}$ | $\mathbf{8 4 3}$ | $\mathbf{3 1 1 9}$ | $\mathbf{6 7 7 6}$ | $?$ | $?$ | $?$ | $?$ | $?$ |

- Reference: "Maximum likelihood for matrices with rank constraints"
- J. Hauenstein, [], and B. Sturmfels using Bertini.
- Any conjectures? (Hint add 6.) model zeros" gave supporting evidence for up to $n=15$.


## Previous Computational Results

- Consider the mixture model $\mathscr{M}_{m n}$ for $m$-sided red dice and $n$-sided blue dice. Denote its Zariski closure by $X_{m n}$.


## Theorem

The ML-degrees of $X_{m n}$ include the following:

| $(m, n)$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 10 | 26 | $\mathbf{5 8}$ | $\mathbf{1 2 2}$ | $\mathbf{2 5 0}$ | $\mathbf{5 0 6}$ | $\mathbf{1 0 1 8}$ | $\mathbf{2 0 4 2}$ | 4090 | 8186 |
| 4 | 26 | $\mathbf{1 9 1}$ | $\mathbf{8 4 3}$ | $\mathbf{3 1 1 9}$ | $\mathbf{6 7 7 6}$ | $?$ | $?$ | $?$ | $?$ | $?$ |

- Reference: "Maximum likelihood for matrices with rank constraints"
- J. Hauenstein, [], and B. Sturmfels using Bertini.
- Any conjectures? (Hint add 6.)
- "Maximum likelihood geometry in the presence of sampling and model zeros" gave supporting evidence for up to $n=15$.
- E. Gross and [] using Macaulay2.


## Euler characteristics and ML degrees

Huh proves that the ML degrees are an Euler characteristic in the smooth case.

- Let $X$ be a smooth variety of $\mathbb{P}^{n+1}$ defined by homogeneous polynomials and the linear constraint

$$
p_{0}+p_{1}+\cdots+p_{n}-p_{s}=0 .
$$

- Let $X^{\circ}$ denote the open variety $X \backslash\{$ coordinate hyperplanes $\}$.


## Theorem [Huh]

The ML degree of the smooth variety $X$ equals the signed Euler characteristic of $X^{\circ}$, i.e.

$$
\chi\left(X^{o}\right)=(-1)^{\operatorname{dim} X} \text { MLdegree }(X)
$$

- The independence model (one sided coin) is smooth but the mixture model is not.


## Euler characteristics and ML degrees

Huh proves that the ML degrees are an Euler characteristic in the smooth case.

- Let $X$ be a smooth variety of $\mathbb{P}^{n+1}$ defined by homogeneous polynomials and the linear constraint

$$
p_{0}+p_{1}+\cdots+p_{n}-p_{s}=0
$$

- Let $X^{\circ}$ denote the open variety $X \backslash\{$ coordinate hyperplanes $\}$.


## Theorem [Huh]

The ML degree of the smooth variety $X$ equals the signed Euler characteristic of $X^{0}$, i.e.

$$
\chi\left(X^{o}\right)=(-1)^{\operatorname{dim} X} \text { MLdegree }(X)
$$

- The independence model (one sided coin) is smooth but the mixture model is not.


## Independence model ML degree

Use Huh's result to give a topological proof.

- Let $Z$ denote the Zariski closure of the independence model, a variety of $\mathbb{P}^{16}$.
- The following map gives an algebraic geometry parameterization of $Z$.

$$
\mathbb{P}^{3} \times \mathbb{P}^{3} \rightarrow Z
$$

$$
\left(\left[r_{1}, r_{2}, r_{3}, r_{4}\right],\left[b_{1}, b_{2}, b_{3}, b_{4}\right]\right) \rightarrow\left[r_{i} b_{j}, \sum_{i j} r_{i} b_{j}\right] \text { where } i, j \in\{1,2,3,4\}
$$

- Let $\mathscr{O}$ denote $\mathbb{P}^{3} \backslash V\left(x_{0} x_{1} x_{2} x_{3}\left(x_{0}\right.\right.$
parameterization of $X^{\circ}$ given by
because $\sum_{i j} r_{i} b_{j}=\left(\sum_{i} r_{i}\right)\left(\sum_{j} b_{j}\right)$
- Using inclusion-exclusion and the additive properties of Euler characteristics we see that $\chi(O)=-1$.
$\square$


## Independence model ML degree

Use Huh's result to give a topological proof.

- Let $Z$ denote the Zariski closure of the independence model, a variety of $\mathbb{P}^{16}$.
- The following map gives an algebraic geometry parameterization of $Z$.

$$
\mathbb{P}^{3} \times \mathbb{P}^{3} \rightarrow Z
$$

$$
\left(\left[r_{1}, r_{2}, r_{3}, r_{4}\right],\left[b_{1}, b_{2}, b_{3}, b_{4}\right]\right) \rightarrow\left[r_{i} b_{j}, \sum_{i j} r_{i} b_{j}\right] \text { where } i, j \in\{1,2,3,4\} .
$$

- Let $\mathscr{O}$ denote $\mathbb{P}^{3} \backslash \mathbf{V}\left(x_{0} x_{1} x_{2} x_{3}\left(x_{0}+x_{1}+x_{2}+x_{3}\right)\right)$. Then we have a parameterization of $X^{0}$ given by

$$
\mathscr{O} \times \mathscr{O} \rightarrow X^{\circ}
$$

because $\sum_{i j} r_{i} b_{j}=\left(\sum_{i} r_{i}\right)\left(\sum_{j} b_{j}\right)$.

- Using inclusion-exclusion and the additive properties of Euler characteristics we see that $\chi(\mathscr{O})=-1$.
By the product property $\chi(\mathscr{O} \times \mathscr{O})=1$.


## Independence model ML degree

Use Huh's result to give a topological proof.

- Let $Z$ denote the Zariski closure of the independence model, a variety of $\mathbb{P}^{16}$.
- The following map gives an algebraic geometry parameterization of $Z$.

$$
\mathbb{P}^{3} \times \mathbb{P}^{3} \rightarrow Z
$$

$$
\left(\left[r_{1}, r_{2}, r_{3}, r_{4}\right],\left[b_{1}, b_{2}, b_{3}, b_{4}\right]\right) \rightarrow\left[r_{i} b_{j}, \sum_{i j} r_{i} b_{j}\right] \text { where } i, j \in\{1,2,3,4\}
$$

- Let $\mathscr{O}$ denote $\mathbb{P}^{3} \backslash \mathbf{V}\left(x_{0} x_{1} x_{2} x_{3}\left(x_{0}+x_{1}+x_{2}+x_{3}\right)\right)$. Then we have a parameterization of $X^{0}$ given by

$$
\mathscr{O} \times \mathscr{O} \rightarrow X^{\circ}
$$

because $\sum_{i j} r_{i} b_{j}=\left(\sum_{i} r_{i}\right)\left(\sum_{j} b_{j}\right)$.

- Using inclusion-exclusion and the additive properties of Euler characteristics we see that $\chi(\mathscr{O})=-1$.
- By the product property $\chi(\mathscr{O} \times \mathscr{O})=1$.
- This parameterization is a homeomorphism thus $\chi(\mathscr{O} \times \mathscr{O})=\chi\left(X^{0}\right)$.


## ML degrees of singular models

The ML degree is a stratified topological invariant.

- Let $\left(S_{1}, S_{2}, \ldots, S_{k}\right)$ denote a Whitney stratification of $X^{0}$.
- When $X^{\circ}$ is smooth the Whitney stratification is $\left(X^{\circ}\right)$.
- When $k=2, S_{1}=X_{\text {reg }}^{\circ}$ and $S_{2}=X_{\text {sing }}^{\circ}$.


## Theorem

Given reduced irreducible $X^{\circ}$ with Whitney stratification $\left(S_{1}, \ldots, S_{k}\right)$, we have
$\chi\left(X_{r e g}^{\circ}\right)=e_{11} \operatorname{MLdegree}\left(\bar{S}_{1}\right)+e_{21} \operatorname{MLdegree}\left(\bar{S}_{2}\right)+\cdots+e_{k 1} \operatorname{MLdegree}\left(\bar{S}_{k}\right)$.

- The $e_{i j}$ are topological invariants called Euler obstructions, which can be considered as the topological multiplicity of the singularities.
- This theorem is a corollary of Botong Wang and Nero Budur's result that relates ML degrees to Gaussian degrees.
- The Euler obstruction $e_{11}$ always equals $(-1)^{\operatorname{dim} X^{\circ}}$


## ML degrees of singular models

The ML degree is a stratified topological invariant.

- Let $\left(S_{1}, S_{2}, \ldots, S_{k}\right)$ denote a Whitney stratification of $X^{0}$.
- When $X^{\circ}$ is smooth the Whitney stratification is $\left(X^{\circ}\right)$.
- When $k=2, S_{1}=X_{\text {reg }}^{\circ}$ and $S_{2}=X_{\text {sing }}^{o}$.


## Theorem

Given reduced irreducible $X^{\circ}$ with Whitney stratification $\left(S_{1}, \ldots, S_{k}\right)$, we have
$\chi\left(X_{r e g}^{\circ}\right)=e_{11} \operatorname{MLdegree}\left(\bar{S}_{1}\right)+e_{21} \operatorname{MLdegree}\left(\bar{S}_{2}\right)+\cdots+e_{k 1} \operatorname{MLdegree}\left(\bar{S}_{k}\right)$.

- The $e_{i j}$ are topological invariants called Euler obstructions, which can be considered as the topological multiplicity of the singularities.
- This theorem is a corollary of Botong Wang and Nero Budur's result that relates ML degrees to Gaussian degrees.


## ML degrees of singular models

The ML degree is a stratified topological invariant.

- Let $\left(S_{1}, S_{2}, \ldots, S_{k}\right)$ denote a Whitney stratification of $X^{0}$.
- When $X^{\circ}$ is smooth the Whitney stratification is $\left(X^{\circ}\right)$.
- When $k=2, S_{1}=X_{\text {reg }}^{\circ}$ and $S_{2}=X_{\text {sing }}^{o}$.


## Theorem

Given reduced irreducible $X^{\circ}$ with Whitney stratification $\left(S_{1}, \ldots, S_{k}\right)$, we have
$\chi\left(X_{r e g}^{\circ}\right)=e_{11} \operatorname{MLdegree}\left(\bar{S}_{1}\right)+e_{21} \operatorname{MLdegree}\left(\bar{S}_{2}\right)+\cdots+e_{k 1} \operatorname{MLdegree}\left(\bar{S}_{k}\right)$.

- The $e_{i j}$ are topological invariants called Euler obstructions, which can be considered as the topological multiplicity of the singularities.
- This theorem is a corollary of Botong Wang and Nero Budur's result that relates ML degrees to Gaussian degrees.
- The Euler obstruction $e_{11}$ always equals $(-1)^{\operatorname{dim} X^{\circ}}$.


## Ternary Cubic Example for Singular Case

We determine the ML degree of a singular $X$ using the previous theorem.

- Let $X$ be defined by

$$
p_{2}\left(p_{1}-p_{2}\right)^{2}-\left(p_{0}-p_{2}\right)^{3}=p_{0}+p_{1}+p_{2}-p_{s}=0
$$

- The Whitney stratification of $X^{0}$ consists of $S_{1}$ the regular points (so $\left.\bar{S}_{1}=X\right)$ and $S_{2}$ the singular point which is $[1: 1: 1: 3]$,

$$
\chi\left(S_{1}\right)=e_{11} \operatorname{MLdegree}(X)+e_{21} \operatorname{MLdegree}\left(\bar{S}_{2}\right)
$$

- $S_{2}$ is a point so $S_{2}=\bar{S}_{2}$ and MLdegree $\left(\bar{S}_{2}\right)=1$.
- The Euler obstruction $e_{21}$ is the signed multiplicity of the singular point, i.e. $e_{21}=-2$.
- The Euler obstruction $e_{11}$ always equals $(-1)^{\operatorname{dim} X}$


## Ternary Cubic Example for Singular Case

We determine the ML degree of a singular $X$ using the previous theorem.

- Let $X$ be defined by

$$
p_{2}\left(p_{1}-p_{2}\right)^{2}-\left(p_{0}-p_{2}\right)^{3}=p_{0}+p_{1}+p_{2}-p_{s}=0
$$

- The Whitney stratification of $X^{\circ}$ consists of $S_{1}$ the regular points (so $\left.\bar{S}_{1}=X\right)$ and $S_{2}$ the singular point which is $[1: 1: 1: 3]$,

$$
\chi\left(S_{1}\right)=e_{11} \operatorname{MLdegree}(X)+e_{21} \operatorname{MLdegree}\left(\bar{S}_{2}\right)
$$

- $S_{2}$ is a point so $S_{2}=\bar{S}_{2}$ and MLdegree $\left(\bar{S}_{2}\right)=1$.
$\qquad$


## Ternary Cubic Example for Singular Case

We determine the ML degree of a singular $X$ using the previous theorem.

- Let $X$ be defined by

$$
p_{2}\left(p_{1}-p_{2}\right)^{2}-\left(p_{0}-p_{2}\right)^{3}=p_{0}+p_{1}+p_{2}-p_{s}=0
$$

- The Whitney stratification of $X^{\circ}$ consists of $S_{1}$ the regular points (so $\left.\bar{S}_{1}=X\right)$ and $S_{2}$ the singular point which is $[1: 1: 1: 3]$,

$$
\chi\left(S_{1}\right)=e_{11} \operatorname{MLdegree}(X)+e_{21} \operatorname{MLdegree}\left(\bar{S}_{2}\right)
$$

- $S_{2}$ is a point so $S_{2}=\bar{S}_{2}$ and MLdegree $\left(\bar{S}_{2}\right)=1$.
- The Euler obstruction $e_{21}$ is the signed multiplicity of the singular point, i.e. $e_{21}=-2$.
- In general, the sign depends on the dimension of $S_{2}$ and the multiplicity is actually the Euler characteristic of a link [Kashiwara].
- The Euler obstruction $e_{11}$ always equals $(-1)^{\operatorname{dim} X}$.


## Returning to the mixture model

We apply the Whitney stratification-ML degree theorem to $X_{m n}^{o}$.

- The Whitney stratification of $X^{o}=X_{m n}^{o}$ is given by $\left(S_{1}, S_{2}\right)$ where $S_{1}$ are the regular points $X_{m n}^{o} \backslash Z_{m n}^{o}$ and $S_{2}$ are the singular points $Z_{m n}^{o}$.
- Denote the singular points of $X_{m n}^{o}$ by $Z_{m n}^{o}$.
- $Z_{m n}^{o}$ should be thought of as the set of rank 1 matrices ( $Z_{m n}$ is the Zariski closure of the independence model)
- By the theorem we have

$$
\chi\left(X_{m n}^{o} \backslash Z_{m n}^{o}\right)=e_{11} \operatorname{MLdegree}\left(X_{m n}\right)+e_{21} \operatorname{MLdegree}\left(Z_{m n}\right)
$$

- It is already well known $e_{11}=-1$ and $\operatorname{MLdegree}\left(Z_{m n}\right)=1$.
- The first lemma we would prove determines $e_{21}$

$$
e_{21}=(-1)^{m+n-1}(\min \{m, n\}-1) .
$$

## Returning to the mixture model

We apply the Whitney stratification-ML degree theorem to $X_{m n}^{o}$.

- The Whitney stratification of $X^{o}=X_{m n}^{o}$ is given by $\left(S_{1}, S_{2}\right)$ where $S_{1}$ are the regular points $X_{m n}^{o} \backslash Z_{m n}^{o}$ and $S_{2}$ are the singular points $Z_{m n}^{o}$.
- Denote the singular points of $X_{m n}^{o}$ by $Z_{m n}^{o}$.
- $Z_{m n}^{o}$ should be thought of as the set of rank 1 matrices ( $Z_{m n}$ is the Zariski closure of the independence model)
- By the theorem we have

$$
\chi\left(X_{m n}^{o} \backslash Z_{m n}^{o}\right)=e_{11} \operatorname{MLdegree}\left(X_{m n}\right)+e_{21} \operatorname{MLdegree}\left(Z_{m n}\right)
$$

- It is already well known $e_{11}=-1$ and $\operatorname{MLdegree}\left(Z_{m n}\right)=1$.
- The first lemma we would prove determines $e_{21}$ :

$$
e_{21}=(-1)^{m+n-1}(\min \{m, n\}-1) .
$$

## Returning to the mixture model

We apply the Whitney stratification-ML degree theorem to $X_{m n}^{o}$.

- The Whitney stratification of $X^{o}=X_{m n}^{o}$ is given by $\left(S_{1}, S_{2}\right)$ where $S_{1}$ are the regular points $X_{m n}^{o} \backslash Z_{m n}^{o}$ and $S_{2}$ are the singular points $Z_{m n}^{o}$.
- Denote the singular points of $X_{m n}^{o}$ by $Z_{m n}^{o}$.
- $Z_{m n}^{o}$ should be thought of as the set of rank 1 matrices ( $Z_{m n}$ is the Zariski closure of the independence model)
- By the theorem we have

$$
\chi\left(X_{m n}^{o} \backslash Z_{m n}^{o}\right)=e_{11} \operatorname{MLdegree}\left(X_{m n}\right)+e_{21} \operatorname{MLdegree}\left(Z_{m n}\right)
$$

- It is already well known $e_{11}=-1$ and $\operatorname{MLdegree}\left(Z_{m n}\right)=1$.
- The first lemma we would prove determines $e_{21}$ :

$$
e_{21}=(-1)^{m+n-1}(\min \{m, n\}-1)
$$

- If we knew $\chi\left(X_{m n}^{o} \backslash Z_{m n}^{o}\right)$, then we would know MLdegree $\left(X_{m n}\right)$.


## Determining the Euler characteristic $\chi\left(X_{m n}^{o} \backslash Z_{m n}^{o}\right)$

 This is our main theorem.- If we knew $\chi\left(X_{m n}^{o} \backslash Z_{m n}^{o}\right)$, then we would know MLdegree $\left(X_{m n}\right)$.
- Let $\Lambda_{m}$ be a sequence of $m-1$ integers $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m-1}\right)$.


## Theorem [ - and B. Wang]

Fix $m$ greater than or equal to 2 . Then, there exists $\Lambda_{m}$ such that

$$
\chi\left(X_{m n}^{o} \backslash Z_{m n}^{o}\right)=(-1)^{n-1} \sum_{1 \leq i \leq m-1} \frac{\lambda_{i}}{i+1}-\sum_{1 \leq i \leq m-1} \frac{\lambda_{i}}{i+1} \cdot i^{n-1}
$$

- Now we prove the conjecture of Hauenstein, [], Sturmfels.


## Using the main theorem

Fix $m=3$.

$$
\begin{aligned}
& \chi\left(X_{3 n}^{o} \backslash Z_{3 n}^{o}\right)=(-1)^{n-1}\left(\frac{\lambda_{1}}{2}+\frac{\lambda_{2}}{3}\right)-\left(\frac{\lambda_{1}}{2} \cdot 1^{n-1}+\frac{\lambda_{2}}{3} \cdot 2^{n-1}\right) . \\
& \chi\left(X_{m n}^{o} \backslash Z_{m n}^{o}\right)=-\operatorname{MLdegree}\left(X_{3 n}\right)+(-1)^{3+n-1}(\min \{3, n\}-1) .
\end{aligned}
$$

- $\operatorname{MLdegree}\left(X_{32}\right)=1$ yields the relation $-\lambda_{1}-\lambda_{2}=0$.
- $\operatorname{MLdegree}\left(X_{33}\right)=10$ yields the relation $-\lambda_{2}=-12$.

$$
\operatorname{MLdegree}\left(X_{3 n}\right)=\left(2^{n+1}-6\right)+(-1)^{n}((\min \{3, n\}-3))
$$

- Main idea: For fixed $m$, if we knew

$$
\operatorname{MLdegree}\left(X_{m 2}\right), \operatorname{MLdegree}\left(X_{m 3}\right), \ldots, \operatorname{MLdegree}\left(X_{m m}\right)
$$

## Using the main theorem

Fix $m=3$.

$$
\begin{aligned}
& \chi\left(X_{3 n}^{o} \backslash Z_{3 n}^{o}\right)=(-1)^{n-1}\left(\frac{\lambda_{1}}{2}+\frac{\lambda_{2}}{3}\right)-\left(\frac{\lambda_{1}}{2} \cdot 1^{n-1}+\frac{\lambda_{2}}{3} \cdot 2^{n-1}\right) . \\
& \chi\left(X_{m n}^{o} \backslash Z_{m n}^{o}\right)=-\operatorname{MLdegree}\left(X_{3 n}\right)+(-1)^{3+n-1}(\min \{3, n\}-1) .
\end{aligned}
$$

- $\operatorname{MLdegree}\left(X_{32}\right)=1$ yields the relation $-\lambda_{1}-\lambda_{2}=0$.
- $\operatorname{MLdegree}\left(X_{33}\right)=10$ yields the relation $-\lambda_{2}=-12$.

$$
\operatorname{MLdegree}\left(X_{3 n}\right)=\left(2^{n+1}-6\right)+(-1)^{n}((\min \{3, n\}-3))
$$

- Main idea: For fixed $m$, if we knew
$\operatorname{MLdegree}\left(X_{m 2}\right), \operatorname{MLdegree}\left(X_{m 3}\right), \ldots, \operatorname{MLdegree}\left(X_{m m}\right)$
then we can solve for $\Lambda_{m}=\left(\lambda_{1}, \ldots, \lambda_{m-1}\right)$ thereby giving a closed form expression for MLdegree $\left(X_{m n}\right)$ for all $n$.


## Do Better

- Main idea (from previous slide): For fixed $m$, if we knew

$$
\operatorname{MLdegree}\left(X_{m 2}\right), \operatorname{MLdegree}\left(X_{m 3}\right), \ldots, \operatorname{MLdegree}\left(X_{m m}\right)
$$

then we can solve for $\Lambda_{m}=\left(\lambda_{1}, \ldots, \lambda_{m-1}\right)$ thereby giving a closed form expression for MLdegree $\left(X_{m n}\right)$ for all $n$.

- We can recursively determine $\Lambda_{m}$ thereby giving a closed form formula for MLdegree $\left(X_{m n}\right)$ for fixed $m$ but any $n$.
- $\operatorname{Note} \operatorname{MLdegree}\left(X_{m n}\right)=\operatorname{MLdegree}\left(X_{n m}\right)$. - Prove $\lambda_{m-1}$ of $\Lambda_{m}$ is $(m-1) m$ !.
- Closed form expressions for fixed $m$ and $n \geq m$ :

$$
\mathrm{MLdeg}_{4 n}=25 \cdot 1^{n-1}-40 \cdot 2^{n-1}+23 \cdot 3^{n-1}
$$

$$
M \operatorname{deg} X_{5 n}=-90 \cdot 1^{n-1}+260 \cdot 2^{n-1}-270 \cdot 3^{n-1}+96 \cdot 4^{n-1}
$$

## Do Better

- Main idea (from previous slide): For fixed $m$, if we knew

$$
\operatorname{MLdegree}\left(X_{m 2}\right), \operatorname{MLdegree}\left(X_{m 3}\right), \ldots, \operatorname{MLdegree}\left(X_{m m}\right)
$$

then we can solve for $\Lambda_{m}=\left(\lambda_{1}, \ldots, \lambda_{m-1}\right)$ thereby giving a closed form expression for MLdegree $\left(X_{m n}\right)$ for all $n$.

- We can recursively determine $\Lambda_{m}$ thereby giving a closed form formula for MLdegree $\left(X_{m n}\right)$ for fixed $m$ but any $n$.
- $\operatorname{Note} \operatorname{MLdegree}\left(X_{m n}\right)=\operatorname{MLdegree}\left(X_{n m}\right)$.
- Prove $\lambda_{m-1}$ of $\Lambda_{m}$ is $(m-1) m$ !.
- Closed form expressions for fixed $m$ and $n \geq m$ :



## Do Better

- Main idea (from previous slide): For fixed $m$, if we knew

$$
\operatorname{MLdegree}\left(X_{m 2}\right), \operatorname{MLdegree}\left(X_{m 3}\right), \ldots, \operatorname{MLdegree}\left(X_{m m}\right)
$$

then we can solve for $\Lambda_{m}=\left(\lambda_{1}, \ldots, \lambda_{m-1}\right)$ thereby giving a closed form expression for MLdegree $\left(X_{m n}\right)$ for all $n$.

- We can recursively determine $\Lambda_{m}$ thereby giving a closed form formula for MLdegree $\left(X_{m n}\right)$ for fixed $m$ but any $n$.
- $\operatorname{Note} \operatorname{MLdegree}\left(X_{m n}\right)=\operatorname{MLdegree}\left(X_{n m}\right)$.
- Prove $\lambda_{m-1}$ of $\Lambda_{m}$ is $(m-1) m$ !.
- Closed form expressions for fixed $m$ and $n \geq m$ :

$$
\begin{gathered}
\mathrm{MLdeg}_{4 n}=25 \cdot 1^{n-1}-40 \cdot 2^{n-1}+23 \cdot 3^{n-1} \\
\mathrm{MLdeg} X_{5 n}=-90 \cdot 1^{n-1}+260 \cdot 2^{n-1}-270 \cdot 3^{n-1}+96 \cdot 4^{n-1} \\
\mathrm{MLdeg}_{6 n}=301 \cdot 1^{n-1}-1400 \cdot 2^{n-1}+2520 \cdot 3^{n-1}-2016 \cdot 4^{n-1}+600 \cdot 5^{n-1}
\end{gathered}
$$

## Using Numerical Algebraic Geometry

## Witness sets allow us to use parallelizable algorithms.

- Treat the $u_{i j}$ as parameter values that we can adjust,
- If we have a set of critical points for generic data, then we can solve any specific instance of data quickly using a parameter homotopy.
- Critical points of $\ell_{u}$ for $u_{\text {general }}$ are taken to
- critical points of $\ell_{u}$ for $u_{\text {specific }}$
- by a parameter homotopy

$$
\left[\begin{array}{llll}
\square & \square & \square & \square \\
\square & \square & \square & \square \\
\square & \square & \square & \square \\
\square & \square & \square & \square
\end{array}\right]--->\left[\begin{array}{cccc}
160 & 8 & 16 & 24 \\
32 & 200 & 16 & 8 \\
8 & 24 & 176 & 32 \\
16 & 40 & 8 & 232
\end{array}\right]
$$

191 points $--->191$ points

- $\square$ denotes a random complex number.


## Thank You

- Contact information
- Jose Israel Rodriguez
- jo.ro@ND.edu
- http://www.nd.edu/~jrodri18/
- SIAM: AG15 in Daejeon, Korea, Aug 3-7.
- Co-organizing a mini-sympoium with Xiaoxian Tang: Maximum Likelihood Degrees and Critical Points
- http://www.nd.edu/~jrodri18/quickLinks/AG15rt/


## Outline

- Statistics
- Mixture model
- Applied algebraic geometry
- Critical points
- Topology
- ML degree
- Euler obstructions

