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A mixture of independence models

1 Consider a pair of four sided dice: one red die and one blue die R1,B1.

2 Consider a second pair of four sided dice: one red die and one blue
die R2,B2.

3 Consider a biased coin C = [c1,c2]

The following map induces a set of probability distributions denoted
M44 ⊂△15 ⊂ R

16 and is called the model.

∆1 × (∆3 ×∆3)× (∆3 ×∆3)→ M44 ⊂∆15 ⊂R
16

c1R1BT
1 + c2R2BT

2 = [pij ]

M44 is the set of 4×4 nonnegative rank at most 2 matrices.

M44 is a mixture of two independence models.
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Collecting data and the likelihood function
Roll the dice

Rolling the dice we may observe the following data:

u = [uij ] =









160 8 16 24
32 200 16 8
8 24 176 32
16 40 8 232









To each p in the set of probability distributions M44 we assign the
likelihood of p with respect to u by the likelihood function:

ℓu (p) =

(

∑uij

u11, . . . ,u44

)−1

∏
ij

p
uij

ij .

The probability distribution maximizing ℓu (p) on the set of
distributions M44 is called the maximum likelihood estimate (mle).

The mle is the best point of M44 to describe the observed data.

The statistics problem is to determine mle’s.



Collecting data and the likelihood function
Roll the dice

Rolling the dice we may observe the following data:

u = [uij ] =









160 8 16 24
32 200 16 8
8 24 176 32
16 40 8 232









To each p in the set of probability distributions M44 we assign the
likelihood of p with respect to u by the likelihood function:

ℓu (p) =

(

∑uij

u11, . . . ,u44

)−1

∏
ij

p
uij

ij .

The probability distribution maximizing ℓu (p) on the set of
distributions M44 is called the maximum likelihood estimate (mle).

The mle is the best point of M44 to describe the observed data.

The statistics problem is to determine mle’s.



Collecting data and the likelihood function
Roll the dice

Rolling the dice we may observe the following data:

u = [uij ] =









160 8 16 24
32 200 16 8
8 24 176 32
16 40 8 232









To each p in the set of probability distributions M44 we assign the
likelihood of p with respect to u by the likelihood function:

ℓu (p) =

(

∑uij

u11, . . . ,u44

)−1

∏
ij

p
uij

ij .

The probability distribution maximizing ℓu (p) on the set of
distributions M44 is called the maximum likelihood estimate (mle).

The mle is the best point of M44 to describe the observed data.

The statistics problem is to determine mle’s.



Applied Algebraic Geometry
The mle can be determined by solving the likelihood equations.

Instead of M44, we consider its Zariski closure X44.

The Zariski closure is described by zero sets of homogeneous
polynomials.

The defining polynomials of X44 are the 3×3 minors of









p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44









and the linear constraint p11 +p12 + · · ·+p44−ps = 0.

The equations define a projective variety of P16: rank at ≤ 2 matrices

We consider the homogenized likelihood function
ℓu (p) = ∏ij (pij/ps)

uij on X44.



Applied Algebraic Geometry
The mle can be determined by solving the likelihood equations.

Instead of M44, we consider its Zariski closure X44.

The Zariski closure is described by zero sets of homogeneous
polynomials.

The defining polynomials of X44 are the 3×3 minors of









p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44









and the linear constraint p11 +p12 + · · ·+p44−ps = 0.

The equations define a projective variety of P16: rank at ≤ 2 matrices

We consider the homogenized likelihood function
ℓu (p) = ∏ij (pij/ps)

uij on X44.



Applied Algebraic Geometry
The mle can be determined by solving the likelihood equations.

Instead of M44, we consider its Zariski closure X44.

The Zariski closure is described by zero sets of homogeneous
polynomials.

The defining polynomials of X44 are the 3×3 minors of









p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44









and the linear constraint p11 +p12 + · · ·+p44−ps = 0.

The equations define a projective variety of P16: rank at ≤ 2 matrices

We consider the homogenized likelihood function
ℓu (p) = ∏ij (pij/ps)

uij on X44.



Geometric definition of critical points
Critical points can be determined by solving a system of polynomial equations.

For the models in this talk, the mle is a critical point of the
homogenized likelihood function.

The solutions to the likelihood equations are critical points.

One way to formulate the likelihood equations is to use Lagrange
multipliers.

◮ We omit a formal description of the likelihood equations, but instead
give a geometric description of critical points.



Geometric definition of critical points (cont.)
Critical points can be determined by solving a system of polynomial equations.

Let X o denote the open variety X \{coordinate hyperplanes}.

◮ Xo is the set of points in X which have nonzero coordinates.

The gradient of the likelihood function up to scaling equals

∇ℓu (p) =
[

u11

p11

u12

p12
. . . u44

p44

us

ps

]

, us :=−∑
ij

uij .

◮ The gradient is defined on Xo .

We say p ∈ X o is a complex critical point, whenever ∇ℓu (p) is
orthogonal to the tangent space of X at p and p ∈ X o

reg .

The mle is a critical point (in the cases we consider).



Two experiments and ML degree
Two experiments

Consider vectorized datasets u for likelihood function ℓu (p) on X44.

◮ u = {160,8,16,24,32,200,16,8,8,24,176,32,16,40,8,232}

⋆ 191 complex including 25 real

◮ u = {292,45,62,41,142,51,44,42,213,75,67,63,119,85,58,70}

⋆ 191 complex including 3 real

The # of complex solutions was always 191 (this is the ML degree).

For general choices of u we get the same number of complex critical
points.

◮ This number is called the ML degree of a variety.
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Previous Computational Results

Consider the mixture model Mmn for m-sided red dice and n-sided
blue dice. Denote its Zariski closure by Xmn.

Theorem

The ML-degrees of Xmn include the following:

(m,n) 3 4 5 6 7 8 9 10 11 12
3 10 26 58 122 250 506 1018 2042 4090 8186

4 26 191 843 3119 6776 ? ? ? ? ?

Reference: “Maximum likelihood for matrices with rank constraints”

◮ J. Hauenstein, [], and B. Sturmfels using Bertini.

Any conjectures? (Hint add 6.)

“Maximum likelihood geometry in the presence of sampling and
model zeros” gave supporting evidence for up to n = 15.

◮ E. Gross and [] using Macaulay2.
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Euler characteristics and ML degrees
Huh proves that the ML degrees are an Euler characteristic in the smooth case.

Let X be a smooth variety of Pn+1 defined by homogeneous
polynomials and the linear constraint

p0 +p1+ · · ·+pn −ps = 0.

Let X o denote the open variety X \{coordinate hyperplanes}.

Theorem [Huh]

The ML degree of the smooth variety X equals the signed Euler
characteristic of X o, i.e.

χ (X o) = (−1)dimX MLdegree (X ) .

The independence model (one sided coin) is smooth but the mixture
model is not.
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Independence model ML degree
Use Huh’s result to give a topological proof.

Let Z denote the Zariski closure of the independence model, a variety
of P16.

The following map gives an algebraic geometry parameterization of Z .

P
3 ×P

3 → Z

([r1, r2, r3, r4] , [b1,b2,b3,b4])→

[

ribj ,∑
ij

ribj

]

where i , j ∈ {1,2,3,4}.

Let O denote P
3 \V(x0x1x2x3 (x0+ x1 + x2+ x3)). Then we have a

parameterization of X o given by

O ×O → X o

because ∑ij ribj = (∑i ri)
(

∑j bj

)

.

Using inclusion-exclusion and the additive properties of Euler
characteristics we see that χ (O) =−1.

By the product property χ (O ×O) = 1.

This parameterization is a homeomorphism thus χ (O×O) = χ (X o).
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ML degrees of singular models
The ML degree is a stratified topological invariant.

Let (S1,S2, . . . ,Sk) denote a Whitney stratification of X o.

◮ When Xo is smooth the Whitney stratification is (Xo).
◮ When k = 2, S1 = Xo

reg and S2 = Xo
sing .

Theorem

Given reduced irreducible X o with Whitney stratification (S1, . . . ,Sk), we
have

χ
(

X o
reg

)

= e11MLdegree
(

S̄1

)

+e21MLdegree
(

S̄2

)

+ · · ·+ek1MLdegree
(

S̄k

)

.

The eij are topological invariants called Euler obstructions, which can
be considered as the topological multiplicity of the singularities.

This theorem is a corollary of Botong Wang and Nero Budur’s result
that relates ML degrees to Gaussian degrees.

The Euler obstruction e11 always equals (−1)dimX o

.
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Ternary Cubic Example for Singular Case
We determine the ML degree of a singular X using the previous theorem.

Let X be defined by

p2 (p1 −p2)
2 − (p0 −p2)

3 = p0 +p1 +p2−ps = 0.

The Whitney stratification of X o consists of S1 the regular points (so
S̄1 = X ) and S2 the singular point which is [1 : 1 : 1 : 3],

χ (S1) = e11MLdegree (X )+ e21MLdegree
(

S̄2

)

.

S2 is a point so S2 = S̄2 and MLdegree
(

S̄2

)

= 1.

The Euler obstruction e21 is the signed multiplicity of the singular
point, i.e. e21 =−2.

◮ In general, the sign depends on the dimension of S2 and the
multiplicity is actually the Euler characteristic of a link [Kashiwara].

The Euler obstruction e11 always equals (−1)dimX .
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Returning to the mixture model
We apply the Whitney stratification-ML degree theorem to X

o
mn.

The Whitney stratification of X o = X o
mn is given by (S1,S2) where S1

are the regular points X o
mn\Z o

mn and S2 are the singular points Z o
mn.

◮ Denote the singular points of Xo
mn by Z o

mn.
◮ Z o

mn should be thought of as the set of rank 1 matrices (Zmn is the
Zariski closure of the independence model)

By the theorem we have

χ (X o
mn\Z o

mn) = e11MLdegree (Xmn)+ e21MLdegree (Zmn).

It is already well known e11 =−1 and MLdegree (Zmn) = 1.

The first lemma we would prove determines e21:

e21 = (−1)m+n−1 (min{m,n}−1) .

If we knew χ (X o
mn\Z o

mn), then we would know MLdegree (Xmn).
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Determining the Euler characteristic χ (X o
mn\Z

o
mn)

This is our main theorem.

If we knew χ (X o
mn\Z o

mn), then we would know MLdegree (Xmn).

Let Λm be a sequence of m−1 integers (λ1,λ2, . . . ,λm−1).

Theorem [ - and B. Wang]

Fix m greater than or equal to 2. Then, there exists Λm such that

χ (X o
mn\Z o

mn) = (−1)n−1 ∑
1≤i≤m−1

λi

i +1
− ∑

1≤i≤m−1

λi

i +1
· in−1.

Now we prove the conjecture of Hauenstein, [], Sturmfels.



Using the main theorem

Fix m = 3.

χ (X o
3n\Z o

3n) = (−1)n−1

(

λ1

2
+

λ2

3

)

−

(

λ1

2
·1n−1 +

λ2

3
·2n−1

)

.

χ (X o
mn\Z o

mn) =−MLdegree (X3n)+ (−1)3+n−1 (min{3,n}−1).

MLdegree (X32) = 1 yields the relation −λ1 −λ2 = 0.

MLdegree (X33) = 10 yields the relation −λ2 =−12.

MLdegree (X3n) =
(

2n+1 −6
)

+(−1)n ((min{3,n}−3))

Main idea: For fixed m, if we knew

MLdegree (Xm2) ,MLdegree (Xm3) , . . . ,MLdegree (Xmm)

then we can solve for Λm = (λ1, . . . ,λm−1) thereby giving a closed
form expression for MLdegree(Xmn) for all n.
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Do Better

Main idea (from previous slide): For fixed m, if we knew

MLdegree (Xm2) ,MLdegree (Xm3) , . . . ,MLdegree (Xmm)

then we can solve for Λm = (λ1, . . . ,λm−1) thereby giving a closed
form expression for MLdegree(Xmn) for all n.

We can recursively determine Λm thereby giving a closed form formula
for MLdegree (Xmn) for fixed m but any n.

◮ Note MLdegree(Xmn) = MLdegree(Xnm).
◮ Prove λm−1 of Λm is (m− 1)m!.

Closed form expressions for fixed m and n ≥ m:

MLdegX4n = 25 ·1n−1 −40 ·2n−1 +23 ·3n−1

MLdegX5n =−90 ·1n−1 +260 ·2n−1 −270 ·3n−1 +96 ·4n−1

MLdegX6n = 301·1n−1−1400·2n−1+2520·3n−1−2016·4n−1+600·5n−1
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Using Numerical Algebraic Geometry
Witness sets allow us to use parallelizable algorithms.

Treat the uij as parameter values that we can adjust,

If we have a set of critical points for generic data, then we can solve
any specific instance of data quickly using a parameter homotopy.

Critical points of ℓu for ugeneral are taken to

◮ critical points of ℓu for uspecific

◮ by a parameter homotopy
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◮ � denotes a random complex number.



Thank You

Contact information

◮ Jose Israel Rodriguez
◮ jo.ro@ND.edu
◮ http://www.nd.edu/~jrodri18/

SIAM: AG15 in Daejeon, Korea, Aug 3-7.

◮ Co-organizing a mini-sympoium with Xiaoxian Tang:
Maximum Likelihood Degrees and Critical Points

◮ http://www.nd.edu/~jrodri18/quickLinks/AG15rt/



Outline

Statistics

◮ Mixture model

Applied algebraic geometry

◮ Critical points

Topology

◮ ML degree
◮ Euler obstructions


