The maximum likelihood degree of rank 2 matrices via Euler characteristics

Jose Israel Rodriguez University of Notre Dame Joint work with Botong Wang

Algebraic Statistics 2015 University of Genoa June 9, 2015

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A mixture of independence models

- **O** Consider a pair of four sided dice: one red die and one blue die R_1, B_1 .
- Consider a second pair of four sided dice: one red die and one blue die R₂, B₂.
- Solution Consider a biased coin $C = [c_1, c_2]$
 - The following map induces a set of probability distributions denoted $\mathcal{M}_{44} \subset \triangle_{15} \subset \mathbb{R}^{16}$ and is called the model.

 $\Delta_1 imes (\Delta_3 imes \Delta_3) imes (\Delta_3 imes \Delta_3) o \mathscr{M}_{44} \subset \Delta_{15} \subset \mathbb{R}^{16}$

$$c_1 R_1 B_1^T + c_2 R_2 B_2^T = [p_{ij}]$$

- \mathcal{M}_{44} is the set of 4×4 nonnegative rank at most 2 matrices.
- *M*₄₄ is a mixture of two independence models.

A mixture of independence models

- **Or Example 1** Consider a pair of four sided dice: one red die and one blue die R_1, B_1 .
- Consider a second pair of four sided dice: one red die and one blue die R₂, B₂.
- Source Consider a biased coin $C = [c_1, c_2]$
 - The following map induces a set of probability distributions denoted $\mathcal{M}_{44} \subset \triangle_{15} \subset \mathbb{R}^{16}$ and is called the model.

$$\Delta_1 imes (\Delta_3 imes \Delta_3) imes (\Delta_3 imes \Delta_3) o \mathscr{M}_{44} \subset \Delta_{15} \subset \mathbb{R}^{10}$$
 $c_1 R_1 B_1^T + c_2 R_2 B_2^T = [p_{ij}]$

• \mathcal{M}_{44} is the set of 4×4 nonnegative rank at most 2 matrices.

• \mathcal{M}_{44} is a mixture of two independence models.

Collecting data and the likelihood function Roll the dice

• Rolling the dice we may observe the following data:

$$u = [u_{ij}] = \begin{bmatrix} 160 & 8 & 16 & 24 \\ 32 & 200 & 16 & 8 \\ 8 & 24 & 176 & 32 \\ 16 & 40 & 8 & 232 \end{bmatrix}$$

• To each *p* in the set of probability distributions \mathcal{M}_{44} we assign the likelihood of *p* with respect to *u* by the likelihood function:

$$\ell_u(p) = \left(\frac{\sum u_{ij}}{u_{11},\ldots,u_{44}}\right)^{-1} \prod_{ij} p_{ij}^{u_{ij}}$$

- The probability distribution maximizing l_u(p) on the set of distributions M₄₄ is called the maximum likelihood estimate (mle)
- The mle is the best point of \mathcal{M}_{44} to describe the observed data.
- The statistics problem is to determine mle's.

Collecting data and the likelihood function Roll the dice

• Rolling the dice we may observe the following data:

$$u = [u_{ij}] = \begin{bmatrix} 160 & 8 & 16 & 24 \\ 32 & 200 & 16 & 8 \\ 8 & 24 & 176 & 32 \\ 16 & 40 & 8 & 232 \end{bmatrix}$$

• To each *p* in the set of probability distributions \mathcal{M}_{44} we assign the likelihood of *p* with respect to *u* by the likelihood function:

$$\ell_u(p) = \left(\frac{\sum u_{ij}}{u_{11},\ldots,u_{44}}\right)^{-1} \prod_{ij} p_{ij}^{u_{ij}}$$

ロト・戸・・日・・日・・日・・のへで

- The probability distribution maximizing l_u(p) on the set of distributions M₄₄ is called the maximum likelihood estimate (mle).
- The mle is the best point of \mathcal{M}_{44} to describe the observed data.
- The statistics problem is to determine mle's.

Collecting data and the likelihood function Roll the dice

• Rolling the dice we may observe the following data:

$$u = [u_{ij}] = \begin{bmatrix} 160 & 8 & 16 & 24 \\ 32 & 200 & 16 & 8 \\ 8 & 24 & 176 & 32 \\ 16 & 40 & 8 & 232 \end{bmatrix}$$

• To each *p* in the set of probability distributions \mathcal{M}_{44} we assign the likelihood of *p* with respect to *u* by the likelihood function:

$$\ell_u(p) = \left(\frac{\sum u_{ij}}{u_{11},\ldots,u_{44}}\right)^{-1} \prod_{ij} p_{ij}^{u_{ij}}$$

- The probability distribution maximizing l_u(p) on the set of distributions M₄₄ is called the maximum likelihood estimate (mle).
- The mle is the best point of \mathcal{M}_{44} to describe the observed data.
- The statistics problem is to determine mle's.

Applied Algebraic Geometry

The mle can be determined by solving the likelihood equations.

- Instead of \mathcal{M}_{44} , we consider its Zariski closure X_{44} .
- The Zariski closure is described by zero sets of homogeneous polynomials.
- The defining polynomials of X_{44} are the 3 \times 3 minors of

Γ	p_{11}	p_{12}	<i>p</i> ₁₃	<i>p</i> ₁₄
	p_{21}	p ₂₂	<i>p</i> ₂₃	<i>p</i> ₂₄
	<i>p</i> ₃₁	<i>p</i> ₃₂	<i>p</i> ₃₃	<i>p</i> ₃₄
	<i>p</i> ₄₁	p ₄₂	p 43	p44

and the linear constraint $p_{11} + p_{12} + \dots + p_{44} - p_s = 0$.

- The equations define a projective variety of \mathbb{P}^{16} : rank at ≤ 2 matrices
- We consider the homogenized likelihood function $\ell_u(p) = \prod_{ij} (p_{ij}/p_s)^{u_{ij}}$ on X_{44} .

Applied Algebraic Geometry

The mle can be determined by solving the likelihood equations.

- Instead of \mathcal{M}_{44} , we consider its Zariski closure X_{44} .
- The Zariski closure is described by zero sets of homogeneous polynomials.
- The defining polynomials of X_{44} are the 3×3 minors of

p ₁₁	p_{12}	<i>p</i> ₁₃	<i>p</i> ₁₄
P21	p 22	P 23	p ₂₄
<i>p</i> ₃₁	<i>p</i> ₃₂	<i>p</i> ₃₃	р ₃₄ р ₄₄
$\begin{bmatrix} p_{41} \end{bmatrix}$	<i>p</i> ₄₂	<i>p</i> ₄₃	p ₄₄

and the linear constraint $p_{11} + p_{12} + \cdots + p_{44} - p_s = 0$.

• The equations define a projective variety of \mathbb{P}^{16} : rank at ≤ 2 matrices

• We consider the homogenized likelihood function $\ell_u(p) = \prod_{ij} (p_{ij}/p_s)^{u_{ij}}$ on X_{44} .

Applied Algebraic Geometry

The mle can be determined by solving the likelihood equations.

- Instead of \mathcal{M}_{44} , we consider its Zariski closure X_{44} .
- The Zariski closure is described by zero sets of homogeneous polynomials.
- The defining polynomials of X_{44} are the 3×3 minors of

p ₁₁	p_{12}	<i>p</i> ₁₃	<i>p</i> ₁₄
P21	p 22	P 23	p ₂₄
<i>p</i> ₃₁	<i>p</i> ₃₂	<i>p</i> ₃₃	р ₃₄ р ₄₄
$\begin{bmatrix} p_{41} \end{bmatrix}$	<i>p</i> ₄₂	<i>p</i> ₄₃	p ₄₄

and the linear constraint $p_{11} + p_{12} + \cdots + p_{44} - p_s = 0$.

- The equations define a projective variety of \mathbb{P}^{16} : rank at ≤ 2 matrices
- We consider the homogenized likelihood function $\ell_u(p) = \prod_{ij} (p_{ij}/p_s)^{u_{ij}}$ on X_{44} .

Geometric definition of critical points

Critical points can be determined by solving a system of polynomial equations.

- For the models in this talk, the mle is a critical point of the homogenized likelihood function.
- The solutions to the likelihood equations are critical points.
- One way to formulate the likelihood equations is to use Lagrange multipliers.
 - We omit a formal description of the likelihood equations, but instead give a geometric description of critical points.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Geometric definition of critical points (cont.)

Critical points can be determined by solving a system of polynomial equations.

- Let X° denote the open variety X \ {coordinate hyperplanes}.
 - ► X^o is the set of points in X which have nonzero coordinates.
- The gradient of the likelihood function up to scaling equals

$$\nabla \ell_u(p) = \begin{bmatrix} \frac{u_{11}}{p_{11}} & \frac{u_{12}}{p_{12}} & \dots & \frac{u_{44}}{p_{44}} & \frac{u_s}{p_s} \end{bmatrix}, \quad u_s := -\sum_{ij} u_{ij}.$$

- The gradient is defined on X^o.
- We say p∈X^o is a complex critical point, whenever ∇ℓ_u(p) is orthogonal to the tangent space of X at p and p∈X^o_{reg}.
- The mle is a critical point (in the cases we consider).

Two experiments and ML degree

- Consider vectorized datasets u for likelihood function $\ell_u(p)$ on X_{44} .
 - ▶ $u = \{160, 8, 16, 24, 32, 200, 16, 8, 8, 24, 176, 32, 16, 40, 8, 232\}$
 - ★ 191 complex including 25 real
 - ▶ $u = \{292, 45, 62, 41, 142, 51, 44, 42, 213, 75, 67, 63, 119, 85, 58, 70\}$
 - ★ 191 complex including 3 real
- The # of complex solutions was always 191 (this is the ML degree).
- For general choices of *u* we get the same number of complex critical points.

This number is called the ML degree of a variety.

Two experiments and ML degree

- Consider vectorized datasets u for likelihood function $\ell_u(p)$ on X_{44} .
 - ▶ $u = \{160, 8, 16, 24, 32, 200, 16, 8, 8, 24, 176, 32, 16, 40, 8, 232\}$
 - ★ 191 complex including 25 real
 - ▶ $u = \{292, 45, 62, 41, 142, 51, 44, 42, 213, 75, 67, 63, 119, 85, 58, 70\}$
 - ★ 191 complex including 3 real
- The # of complex solutions was always 191 (this is the ML degree).
- For general choices of *u* we get the same number of complex critical points.

This number is called the *ML degree* of a variety.

Previous Computational Results

 Consider the mixture model *Mmn* for *m*-sided red dice and *n*-sided blue dice. Denote its Zariski closure by *Xmn*.

Theorem										
The ML-degrees of X _{mn} include the following:										
(<i>m</i> , <i>n</i>)	3	4	5	6	7	8	9	10	11	12
3	10	26	58		250		1018	2042	4090	8186
4	26	191	843	3119	6776	?	?	?	?	?

- Reference: "Maximum likelihood for matrices with rank constraints"
 - ► J. Hauenstein, [], and B. Sturmfels using Bertini.
- Any conjectures? (Hint add 6.)
- "Maximum likelihood geometry in the presence of sampling and model zeros" gave supporting evidence for up to *n* = 15.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• E. Gross and [] using Macaulay2.

Previous Computational Results

Consider the mixture model *Mmn* for *m*-sided red dice and *n*-sided blue dice. Denote its Zariski closure by *Xmn*.

Theorem										
The ML-degrees of X _{mn} include the following:										
(<i>m</i> , <i>n</i>)	3	4	5	6	7	8	9	10	11	12
3	10	26	58		250		1018	2042	4090	8186
4	26	191	843	3119	6776	?	?	?	?	?

- Reference: "Maximum likelihood for matrices with rank constraints"
 - ▶ J. Hauenstein, [], and B. Sturmfels using Bertini.
- Any conjectures? (Hint add 6.)
- "Maximum likelihood geometry in the presence of sampling and model zeros" gave supporting evidence for up to n = 15.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• E. Gross and [] using Macaulay2.

Euler characteristics and ML degrees

Huh proves that the ML degrees are an Euler characteristic in the smooth case.

• Let X be a smooth variety of \mathbb{P}^{n+1} defined by homogeneous polynomials and the linear constraint

$$p_0+p_1+\cdots+p_n-p_s=0.$$

• Let X^o denote the open variety $X \setminus \{\text{coordinate hyperplanes}\}$.

Theorem [Huh]

The ML degree of the *smooth* variety X equals the signed Euler characteristic of X^o , i.e.

$$\chi(X^o) = (-1)^{\dim X} \operatorname{MLdegree}(X).$$

• The independence model (one sided coin) is smooth but the mixture model is not.

Euler characteristics and ML degrees

Huh proves that the ML degrees are an Euler characteristic in the smooth case.

• Let X be a smooth variety of \mathbb{P}^{n+1} defined by homogeneous polynomials and the linear constraint

$$p_0+p_1+\cdots+p_n-p_s=0.$$

• Let X^o denote the open variety $X \setminus \{\text{coordinate hyperplanes}\}$.

Theorem [Huh]

The ML degree of the *smooth* variety X equals the signed Euler characteristic of X^o , i.e.

$$\chi(X^o) = (-1)^{\dim X} \operatorname{MLdegree}(X).$$

• The independence model (one sided coin) is smooth but the mixture model is not.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Independence model ML degree

Use Huh's result to give a topological proof.

- Let Z denote the Zariski closure of the independence model, a variety of ℙ¹⁶.
- The following map gives an algebraic geometry parameterization of Z.

$$\mathbb{P}^{3} \times \mathbb{P}^{3} \to Z$$
$$[r_{1}, r_{2}, r_{3}, r_{4}], [b_{1}, b_{2}, b_{3}, b_{4}]) \to \left[r_{i}b_{j}, \sum_{ij}r_{i}b_{j}\right] \text{ where } i, j \in \{1, 2, 3, 4\}.$$

• Let \mathscr{O} denote $\mathbb{P}^3 \setminus \mathbf{V}(x_0x_1x_2x_3(x_0+x_1+x_2+x_3))$. Then we have a parameterization of X^o given by

$$\mathscr{O} \times \mathscr{O} \to X^{o}$$

because $\sum_{ij} r_i b_j = (\sum_i r_i) (\sum_j b_j)$.

- Using inclusion-exclusion and the additive properties of Euler characteristics we see that $\chi(\mathcal{O}) = -1$.
- By the product property $\chi(\mathscr{O} \times \mathscr{O}) = 1$.
- This parameterization is a homeomorphism thus $\chi(\mathscr{O} \times \mathscr{O}) = \chi(X^{\circ})$.

Independence model ML degree

Use Huh's result to give a topological proof.

- Let Z denote the Zariski closure of the independence model, a variety of ℙ¹⁶.
- The following map gives an algebraic geometry parameterization of Z.

$$\mathbb{P}^{\mathsf{s}} \times \mathbb{P}^{\mathsf{s}} \to Z$$
$$([r_1, r_2, r_3, r_4], [b_1, b_2, b_3, b_4]) \to \left[r_i b_j, \sum_{ij} r_i b_j\right] \text{ where } i, j \in \{1, 2, 3, 4\}.$$

• Let \mathscr{O} denote $\mathbb{P}^3 \setminus \mathbf{V}(x_0x_1x_2x_3(x_0+x_1+x_2+x_3))$. Then we have a parameterization of X^o given by

$$\mathscr{O}\times\mathscr{O}\to X^o$$

because $\sum_{ij} r_i b_j = (\sum_i r_i) (\sum_j b_j)$.

- Using inclusion-exclusion and the additive properties of Euler characteristics we see that $\chi(\mathcal{O}) = -1$.
- By the product property $\chi(\mathscr{O} \times \mathscr{O}) = 1$.
- This parameterization is a homeomorphism thus $\chi(\mathcal{O} \times \mathcal{O}) = \chi(X^{\circ})$.

Independence model ML degree

Use Huh's result to give a topological proof.

- Let Z denote the Zariski closure of the independence model, a variety of ℙ¹⁶.
- The following map gives an algebraic geometry parameterization of Z.

$$\mathbb{P}^{3} \times \mathbb{P}^{3} \to Z$$

([r_1, r_2, r_3, r_4], [b_1, b_2, b_3, b_4]) $\to \left[r_i b_j, \sum_{ij} r_i b_j\right]$ where $i, j \in \{1, 2, 3, 4\}$.

• Let \mathscr{O} denote $\mathbb{P}^3 \setminus \mathbf{V}(x_0x_1x_2x_3(x_0+x_1+x_2+x_3))$. Then we have a parameterization of X^o given by

$$\mathscr{O} \times \mathscr{O} \to X^o$$

because $\sum_{ij} r_i b_j = (\sum_i r_i) (\sum_j b_j).$

- Using inclusion-exclusion and the additive properties of Euler characteristics we see that $\chi(\mathcal{O}) = -1$.
- By the product property $\chi(\mathscr{O} \times \mathscr{O}) = 1$.
- This parameterization is a homeomorphism thus $\chi(\mathcal{O} \times \mathcal{O}) = \chi(X^o)$.

ML degrees of singular models

The ML degree is a stratified topological invariant.

- Let (S_1, S_2, \dots, S_k) denote a Whitney stratification of X^o .
 - ▶ When X^o is smooth the Whitney stratification is (X^o).

• When
$$k = 2$$
, $S_1 = X_{reg}^o$ and $S_2 = X_{sing}^o$.

Theorem

Given reduced irreducible X^o with Whitney stratification (S_1, \ldots, S_k) , we have

$\chi\left(X_{\text{reg}}^{o}\right) = e_{11}\mathsf{MLdegree}\left(\bar{S}_{1}\right) + e_{21}\mathsf{MLdegree}\left(\bar{S}_{2}\right) + \dots + e_{k1}\mathsf{MLdegree}\left(\bar{S}_{k}\right).$

- The *e_{ij}* are topological invariants called Euler obstructions, which can be considered as the topological multiplicity of the singularities.
- This theorem is a corollary of Botong Wang and Nero Budur's result that relates ML degrees to Gaussian degrees.

• The Euler obstruction e_{11} always equals $(-1)^{\dim X^o}$.

ML degrees of singular models

The ML degree is a stratified topological invariant.

- Let (S_1, S_2, \dots, S_k) denote a Whitney stratification of X^o .
 - ▶ When X^o is smooth the Whitney stratification is (X^o).

• When
$$k = 2$$
, $S_1 = X_{reg}^o$ and $S_2 = X_{sing}^o$.

Theorem

Given reduced irreducible X^o with Whitney stratification (S_1, \ldots, S_k) , we have

$$\chi\left(X_{reg}^{o}\right) = e_{11}\mathsf{MLdegree}\left(\bar{S}_{1}\right) + e_{21}\mathsf{MLdegree}\left(\bar{S}_{2}\right) + \dots + e_{k1}\mathsf{MLdegree}\left(\bar{S}_{k}\right).$$

- The *e*_{*ij*} are topological invariants called Euler obstructions, which can be considered as the topological multiplicity of the singularities.
- This theorem is a corollary of Botong Wang and Nero Budur's result that relates ML degrees to Gaussian degrees.

(日) (日) (日) (日) (日) (日) (日) (日)

• The Euler obstruction e_{11} always equals $(-1)^{\dim X^o}$

ML degrees of singular models

The ML degree is a stratified topological invariant.

- Let (S_1, S_2, \dots, S_k) denote a Whitney stratification of X^o .
 - ▶ When X^o is smooth the Whitney stratification is (X^o).

• When
$$k = 2$$
, $S_1 = X_{reg}^o$ and $S_2 = X_{sing}^o$.

Theorem

Given reduced irreducible X^o with Whitney stratification (S_1, \ldots, S_k) , we have

$$\chi\left(X_{reg}^{o}\right) = e_{11}\mathsf{MLdegree}\left(\bar{S}_{1}\right) + e_{21}\mathsf{MLdegree}\left(\bar{S}_{2}\right) + \dots + e_{k1}\mathsf{MLdegree}\left(\bar{S}_{k}\right).$$

- The *e*_{*ij*} are topological invariants called Euler obstructions, which can be considered as the topological multiplicity of the singularities.
- This theorem is a corollary of Botong Wang and Nero Budur's result that relates ML degrees to Gaussian degrees.
- The Euler obstruction e_{11} always equals $(-1)^{\dim X^o}$.

Ternary Cubic Example for Singular Case

We determine the ML degree of a singular X using the previous theorem.

• Let X be defined by

$$p_2(p_1-p_2)^2-(p_0-p_2)^3=p_0+p_1+p_2-p_s=0.$$

• The Whitney stratification of X^o consists of S_1 the regular points (so $\overline{S}_1 = X$) and S_2 the singular point which is [1:1:1:3],

 $\chi(S_1) = e_{11} \mathsf{MLdegree}(X) + e_{21} \mathsf{MLdegree}(\overline{S}_2).$

- S_2 is a point so $S_2 = \overline{S}_2$ and MLdegree $(\overline{S}_2) = 1$.
- The Euler obstruction e_{21} is the signed multiplicity of the singular point, i.e. $e_{21} = -2$.
 - In general, the sign depends on the dimension of S₂ and the multiplicity is actually the Euler characteristic of a link [Kashiwara]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The Euler obstruction e_{11} always equals $(-1)^{\dim X}$.

Ternary Cubic Example for Singular Case

We determine the ML degree of a singular X using the previous theorem.

• Let X be defined by

$$p_2(p_1-p_2)^2-(p_0-p_2)^3=p_0+p_1+p_2-p_s=0.$$

• The Whitney stratification of X^o consists of S_1 the regular points (so $\overline{S}_1 = X$) and S_2 the singular point which is [1:1:1:3],

 $\chi(S_1) = e_{11}\mathsf{MLdegree}(X) + e_{21}\mathsf{MLdegree}(\bar{S}_2).$

• S_2 is a point so $S_2 = \overline{S}_2$ and MLdegree $(\overline{S}_2) = 1$.

• The Euler obstruction e_{21} is the signed multiplicity of the singular point, i.e. $e_{21} = -2$.

In general, the sign depends on the dimension of S₂ and the multiplicity is actually the Euler characteristic of a link [Kashiwara]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The Euler obstruction e_{11} always equals $(-1)^{\dim X}$.

Ternary Cubic Example for Singular Case

We determine the ML degree of a singular X using the previous theorem.

• Let X be defined by

$$p_2(p_1-p_2)^2-(p_0-p_2)^3=p_0+p_1+p_2-p_s=0.$$

• The Whitney stratification of X^o consists of S_1 the regular points (so $\overline{S}_1 = X$) and S_2 the singular point which is [1:1:1:3],

 $\chi(S_1) = e_{11} \mathsf{MLdegree}(X) + e_{21} \mathsf{MLdegree}(\overline{S}_2).$

- S_2 is a point so $S_2 = \overline{S}_2$ and MLdegree $(\overline{S}_2) = 1$.
- The Euler obstruction e_{21} is the signed multiplicity of the singular point, i.e. $e_{21} = -2$.
 - In general, the sign depends on the dimension of S₂ and the multiplicity is actually the Euler characteristic of a link [Kashiwara].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The Euler obstruction e_{11} always equals $(-1)^{\dim X}$.

Returning to the mixture model

We apply the Whitney stratification-ML degree theorem to X_{mn}^{o} .

- The Whitney stratification of $X^o = X^o_{mn}$ is given by (S_1, S_2) where S_1 are the regular points $X^o_{mn} \setminus Z^o_{mn}$ and S_2 are the singular points Z^o_{mn} .
 - Denote the singular points of X_{mn}^o by Z_{mn}^o .
 - ► Z_{mn}^{o} should be thought of as the set of rank 1 matrices (Z_{mn} is the Zariski closure of the independence model)
- By the theorem we have

 $\chi(X_{mn}^{o} \setminus Z_{mn}^{o}) = e_{11} \mathsf{MLdegree}(X_{mn}) + e_{21} \mathsf{MLdegree}(Z_{mn}).$

- It is already well known $e_{11} = -1$ and MLdegree $(Z_{mn}) = 1$.
- The first lemma we would prove determines e₂₁:

$$e_{21} = (-1)^{m+n-1} (\min\{m,n\}-1).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• If we knew $\chi(X_{mn}^o \setminus Z_{mn}^o)$, then we would know MLdegree (X_{mn}) .

Returning to the mixture model

We apply the Whitney stratification-ML degree theorem to X_{mn}^{o} .

- The Whitney stratification of $X^o = X^o_{mn}$ is given by (S_1, S_2) where S_1 are the regular points $X^o_{mn} \setminus Z^o_{mn}$ and S_2 are the singular points Z^o_{mn} .
 - Denote the singular points of X_{mn}^o by Z_{mn}^o .
 - ► Z_{mn}^{o} should be thought of as the set of rank 1 matrices (Z_{mn} is the Zariski closure of the independence model)
- By the theorem we have

 $\chi(X_{mn}^{o} \setminus Z_{mn}^{o}) = e_{11} \mathsf{MLdegree}(X_{mn}) + e_{21} \mathsf{MLdegree}(Z_{mn}).$

• It is already well known $e_{11} = -1$ and $MLdegree(Z_{mn}) = 1$.

• The first lemma we would prove determines e₂₁:

$$e_{21} = (-1)^{m+n-1} (\min\{m,n\}-1).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• If we knew $\chi(X_{mn}^o \setminus Z_{mn}^o)$, then we would know MLdegree (X_{mn}) .

Returning to the mixture model

We apply the Whitney stratification-ML degree theorem to X_{mn}^{o} .

- The Whitney stratification of $X^o = X^o_{mn}$ is given by (S_1, S_2) where S_1 are the regular points $X^o_{mn} \setminus Z^o_{mn}$ and S_2 are the singular points Z^o_{mn} .
 - Denote the singular points of X^o_{mn} by Z^o_{mn}.
 - ► Z_{mn}^{o} should be thought of as the set of rank 1 matrices (Z_{mn} is the Zariski closure of the independence model)
- By the theorem we have

 $\chi(X_{mn}^{o} \setminus Z_{mn}^{o}) = e_{11} \mathsf{MLdegree}(X_{mn}) + e_{21} \mathsf{MLdegree}(Z_{mn}).$

- It is already well known $e_{11} = -1$ and $MLdegree(Z_{mn}) = 1$.
- The first lemma we would prove determines e₂₁:

$$e_{21} = (-1)^{m+n-1} (\min\{m,n\}-1).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• If we knew $\chi(X_{mn}^o \setminus Z_{mn}^o)$, then we would know MLdegree (X_{mn}) .

Determining the Euler characteristic $\chi(X_{mn}^o \setminus Z_{mn}^o)$ This is our main theorem.

If we knew χ (X^o_{mn} \Z^o_{mn}), then we would know MLdegree (X_{mn}).
Let Λ_m be a sequence of m−1 integers (λ₁, λ₂,..., λ_{m−1}).

Theorem [- and B. Wang]

Fix *m* greater than or equal to 2. Then, there exists Λ_m such that

$$\chi\left(X_{mn}^{o}\setminus Z_{mn}^{o}\right) = \left(-1\right)^{n-1}\sum_{1\leq i\leq m-1}\frac{\lambda_{i}}{i+1} - \sum_{1\leq i\leq m-1}\frac{\lambda_{i}}{i+1} \cdot i^{n-1}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Now we prove the conjecture of Hauenstein, [], Sturmfels.

Using the main theorem

Fix m = 3.

$$\chi\left(X_{3n}^{o}\setminus Z_{3n}^{o}\right) = \left(-1\right)^{n-1}\left(\frac{\lambda_{1}}{2}+\frac{\lambda_{2}}{3}\right) - \left(\frac{\lambda_{1}}{2}\cdot 1^{n-1}+\frac{\lambda_{2}}{3}\cdot 2^{n-1}\right).$$

 $\chi(X_{mn}^{o} \setminus Z_{mn}^{o}) = -\mathsf{MLdegree}(X_{3n}) + (-1)^{3+n-1}(\min\{3,n\}-1).$

- MLdegree $(X_{32}) = 1$ yields the relation $-\lambda_1 \lambda_2 = 0$.
- MLdegree $(X_{33}) = 10$ yields the relation $-\lambda_2 = -12$.

MLdegree $(X_{3n}) = (2^{n+1}-6) + (-1)^n ((\min\{3,n\}-3))$

• Main idea: For fixed *m*, if we knew

 $MLdegree(X_{m2}), MLdegree(X_{m3}), \dots, MLdegree(X_{mm})$

then we can solve for $\Lambda_m = (\lambda_1, \dots, \lambda_{m-1})$ thereby giving a closed form expression for MLdegree (X_{mn}) for all n.

Using the main theorem

Fix m = 3.

$$\chi\left(X_{3n}^{o}\setminus Z_{3n}^{o}\right) = \left(-1\right)^{n-1}\left(\frac{\lambda_{1}}{2}+\frac{\lambda_{2}}{3}\right) - \left(\frac{\lambda_{1}}{2}\cdot 1^{n-1}+\frac{\lambda_{2}}{3}\cdot 2^{n-1}\right).$$

 $\chi(X_{mn}^{o} \setminus Z_{mn}^{o}) = -\mathsf{MLdegree}(X_{3n}) + (-1)^{3+n-1}(\min\{3,n\}-1).$

- MLdegree $(X_{32}) = 1$ yields the relation $-\lambda_1 \lambda_2 = 0$.
- MLdegree $(X_{33}) = 10$ yields the relation $-\lambda_2 = -12$.

MLdegree $(X_{3n}) = (2^{n+1}-6) + (-1)^n ((\min\{3,n\}-3))$

• Main idea: For fixed *m*, if we knew

 $MLdegree(X_{m2}), MLdegree(X_{m3}), \dots, MLdegree(X_{mm})$

then we can solve for $\Lambda_m = (\lambda_1, \dots, \lambda_{m-1})$ thereby giving a closed form expression for MLdegree (X_{mn}) for all n.

Do Better

• Main idea (from previous slide): For fixed *m*, if we knew

 $MLdegree(X_{m2}), MLdegree(X_{m3}), \dots, MLdegree(X_{mm})$

then we can solve for $\Lambda_m = (\lambda_1, \dots, \lambda_{m-1})$ thereby giving a closed form expression for MLdegree (X_{mn}) for all n.

- We can recursively determine Λ_m thereby giving a closed form formula for MLdegree (X_{mn}) for fixed m but any n.
 - ▶ Note MLdegree(X_{mn}) = MLdegree(X_{nm}).
 - Prove λ_{m-1} of Λ_m is (m-1)m!.

• Closed form expressions for fixed m and $n \ge m$:

$$\mathsf{MLdeg}X_{4n} = 25 \cdot 1^{n-1} - 40 \cdot 2^{n-1} + 23 \cdot 3^{n-1}$$

 $\mathsf{MLdeg}X_{5n} = -90 \cdot 1^{n-1} + 260 \cdot 2^{n-1} - 270 \cdot 3^{n-1} + 96 \cdot 4^{n-1}$

 $\mathsf{MLdeg}X_{6n} = 301 \cdot 1^{n-1} - 1400 \cdot 2^{n-1} + 2520 \cdot 3^{n-1} - 2016 \cdot 4^{n-1} + 600 \cdot 5^{n-1}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Do Better

• Main idea (from previous slide): For fixed *m*, if we knew

 $MLdegree(X_{m2}), MLdegree(X_{m3}), \dots, MLdegree(X_{mm})$

then we can solve for $\Lambda_m = (\lambda_1, \dots, \lambda_{m-1})$ thereby giving a closed form expression for MLdegree (X_{mn}) for all n.

- We can recursively determine Λ_m thereby giving a closed form formula for MLdegree (X_{mn}) for fixed m but any n.
 - Note $MLdegree(X_{mn}) = MLdegree(X_{nm})$.
 - Prove λ_{m-1} of Λ_m is (m-1)m!.

• Closed form expressions for fixed m and $n \ge m$:

$$\mathsf{MLdeg}X_{4n} = 25 \cdot 1^{n-1} - 40 \cdot 2^{n-1} + 23 \cdot 3^{n-1}$$

 $\mathsf{MLdeg}X_{5n} = -90 \cdot 1^{n-1} + 260 \cdot 2^{n-1} - 270 \cdot 3^{n-1} + 96 \cdot 4^{n-1}$

 $\mathsf{MLdeg}X_{6n} = 301 \cdot 1^{n-1} - 1400 \cdot 2^{n-1} + 2520 \cdot 3^{n-1} - 2016 \cdot 4^{n-1} + 600 \cdot 5^{n-1}$

Do Better

• Main idea (from previous slide): For fixed *m*, if we knew

 $MLdegree(X_{m2}), MLdegree(X_{m3}), \dots, MLdegree(X_{mm})$

then we can solve for $\Lambda_m = (\lambda_1, \dots, \lambda_{m-1})$ thereby giving a closed form expression for MLdegree (X_{mn}) for all n.

- We can recursively determine Λ_m thereby giving a closed form formula for MLdegree (X_{mn}) for fixed m but any n.
 - Note $MLdegree(X_{mn}) = MLdegree(X_{nm})$.
 - Prove λ_{m-1} of Λ_m is (m-1)m!.
- Closed form expressions for fixed *m* and $n \ge m$:

$$\mathsf{MLdeg}X_{4n} = 25 \cdot 1^{n-1} - 40 \cdot 2^{n-1} + 23 \cdot 3^{n-1}$$

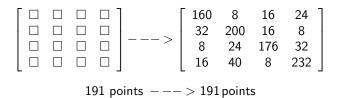
 $\mathsf{MLdeg}X_{5n} = -90 \cdot 1^{n-1} + 260 \cdot 2^{n-1} - 270 \cdot 3^{n-1} + 96 \cdot 4^{n-1}$

 $\mathsf{MLdeg}X_{6n} = 301 \cdot 1^{n-1} - 1400 \cdot 2^{n-1} + 2520 \cdot 3^{n-1} - 2016 \cdot 4^{n-1} + 600 \cdot 5^{n-1}$

Using Numerical Algebraic Geometry

Witness sets allow us to use parallelizable algorithms.

- Treat the *u_{ij}* as parameter values that we can adjust,
- If we have a set of critical points for generic data, then we can solve any specific instance of data quickly using a parameter homotopy.
- Critical points of ℓ_u for $u_{general}$ are taken to
 - critical points of ℓ_u for $u_{specific}$
 - by a parameter homotopy



 \blacktriangleright \Box denotes a random complex number.

Thank You

- Contact information
 - Jose Israel Rodriguez
 - ▶ jo.ro@ND.edu
 - http://www.nd.edu/~jrodri18/
- SIAM: AG15 in Daejeon, Korea, Aug 3-7.
 - Co-organizing a mini-sympoium with Xiaoxian Tang: Maximum Likelihood Degrees and Critical Points
 - http://www.nd.edu/~jrodri18/quickLinks/AG15rt/

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

- Statistics
 - Mixture model
- Applied algebraic geometry
 - Critical points
- Topology
 - ML degree
 - Euler obstructions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで