
The Geometry of Chain Event Graphs

Jim Smith and Christiane Görgen

University of Warwick

June 2015

Jim Smith (Warwick) Chain Event Graphs June 2015 1 / 24



The Plan of thisTalk

An introduction to CEGs, staged trees and their relationship to BNs.

How they can be used to describe a data set.

What their polynomial structure looks like.

Why the algebra gives extra insights about this model class.

Equivalence classes and inferred causation.

I will suppress the mathematics here which will be given more formally in
Christiane’s poster.
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Discrete Bayesian Networks for Multivariate Data

BNs represent statistical relationships over product spaces elegantly,
expressively & formally.

Guide conjugate learning.& model selection.

However!

BN specify dependences solely over a prespecified set of measurement
variables.

BN’s not entirely natural when specifying relationships in terms of
how processes might evolve.

Sample space - often critical to estimation and selection issues - not
depicted.

Can only express certain types of probabilistic symmetry.
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A BN (Barclay et al, 2012): Exploratory data analysis

Social
Background

↙ ↓ ↘
Economic
Situation

−→ Family
Life Events

→ Hospital
Admissions

Study 1265 children over 5 years: HA 0 or at least 1, LE on 3 levels,
Binary categories for ES & SB.

Scored all 4 node BNs using standard Bayes Factor scoring rule.

Best score amongst close competitors: where edges missing from
ES→LE, & one missing edge into HA. So given SB & LE, HA
independent of ES.
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Example: CHIDS event tree (omitting leaves)

.
So why not use trees!

HA HA HA HA HA
− ↖ ↑= ↗+

− ↑ ↗=

HA HA LE LE + → HA
↖= ↑+ ↑− ↗+

HA ←− LE ←+ ES ES HA
↑+ ↗− ↘- ↗−
SB LE = → HA

↘+

HA

Can introduce conditional independence through equating edge probs
associated with different nodes!!!!!
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Example of staged tree (omitting leaves from HA)

.

HA HA HA HA HA
− ↖ ↑= ↗+

− ↑ ↗=

HA HA LE LE + → HA
↖= ↑+ ↑− ↗+

HA ←− LE ←+ ES ES HA
↑+ ↗− ↘- ↗−
SB LE = → HA

↘+

HA

Colour partition
{
SB,ES,ES, LE , LE, HA, HA , HA

}
: edge probs.

(π1s ,π2s ) , (π1e ,π2e ) , (π1e ,π2e ) , (π1l ,π2l ,π3l ) ,
(π1l ,π2l ,π3l ) , (π1h,π2h) , (π1h,π2h) , (π1h,π2h)
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Example of staged tree (omitting leaves from HA)

.

Colour partition, stages
{
SB,ES,ES, LE , LE, HA, HA , HA

}
.

Positions
{
SB,ES,ES, LE1 , LE2 , LE, HA, HA , HA

}
- CEG nodes

Saturated model with 24 atoms = 23 dim. (atoms root -leaf paths).
CEG above 18 edge probs (with 8 constraints) = 10 dim.{

(π1s ,π2s ) , (π1e ,π2e ) , (π1e ,π2e ) , (π1l ,π2l ,π3l ) ,
(π1l ,π2l ,π3l ) , (π1h,π2h) , (π1h,π2h) , (π1h,π2h)

}
BN above 32 edge probs (with 13 constraints) = 19 dim.
Smallest independence model qSB,ES,LE,HA with 9 edge probs
and 4 constraints = 5 dim

Staged tree MAP score was 80 times better than best BN.

Jim Smith (Warwick) Chain Event Graphs June 2015 7 / 24



Chain Event Graphs

Simpler graph of staged tree showing sample space.

Construction: Event tree → Staged tree → CEG

Start with event tree & colour vertices - as illustrated above (→
staged tree).

Identify positions which (with w∞) form vertices of CEG.

Construct CEG by inheriting edges from tree in obvious way + attach
all leaves to w∞.
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Example CHIDS CEG for reading implied structure

A top scoring CEG when HA the response.

HA
- ↗ ↘↘

LE =
+ ⇒ HA ⇒ w∞

+↗ ↗− − ↗↗= ↑ �
ES LE +− + → HA
↑+ + ↑ | = ↗↗+
SB − → ES _→ LE

For SB+,ES. has no impact on LE or HA .

SB+ & LE− lead to child most favorable HA.

(SB+ & LE=,+) or (SB− & ES+& LE−,=) or (SB− & ES−& LE+)
lead to moderate HA.

(SB−& ES−& LE=,+) or (SB−& ES+& LE+) lead to worst HA.
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Bayesian Inference on CEG’s & Fast Learning

Likelihood separates! so class of regular CEG’s admits simple
conjugate learning.

Explicitly the likelihood under complete random sampling is given by

l(π) = ∏
u∈U

lu(πu)

lu(πu) = ∏
i∈u

π
x (i ,u)
i ,u

where x(i , u) # units entering stage u & proceeding along edge
labelled (i , u), ∑i πu,i = 1

Independent Dirichlet priors D(α(u)) on the vectors πu leads to
independent Dirichlet D(α∗(u)) posteriors where

α∗(i , u) = α(i , u) + x(i , u)
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Score each CEG to find best explanation

Score simple fn. of sampled data {x(i , u, C)} counting units going
from a stage then along edge in given CEG C.
Modular parameter priors over CEGs ⇒ log marginal likelhood score
linear in CEG stage scores. Select highest scoring C
For α = (α1, . . . , αk ), let s(α) = log Γ(∑k

i=1 αi ) &
t(α) = ∑k

i=1 log Γ(αi )

Ψ(C ) = log p(C ) = ∑
u∈C

Ψu(c )

Ψu(c ) = ∑ s(α(i , u))− s(α∗(i , u)) + t∗(α(i , u))− t(α(i , u))

e.g. MAP model selection/ NLP priors (Collazo & Smith, 2015) with
D Prog (see Cowell & Smith,2014) or when nec. greedy search e.g.
AHC → simple & fast over vast space of CEG’s possible.

Each CEG has an associated causal interpretation (see below).
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Embellishing a CEG with probabilities

Note that the positions in the same stage have the same associated
edge probabilities.

Probabilities of atoms calculated by multiplying up edge probabilities
on each root to leaf path.

HA
π3l ↗ π1h

↘↘π2h

LE π2l
π1l ⇒ HA π1h

π2h ⇒ w∞
π2e↗ ↗π1e

π3l ↗↗π2l

π3l ↑ π1h �π2h

ES LE π1l− + → HA
↑π2s π2e ↑ | π2l ↗↗π1l

SB π1s → ES π1e → LE
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Atomic probs as monomials in primitive probs

p(ω1) = π2sπ2eπ3lπ2h p(ω13) = π1sπ2eπ3lπ2h
p(ω2) = π2sπ2eπ3lπ1h p(ω14) = π1sπ2eπ3lπ1h
p(ω3) = π2sπ2eπ2lπ2h p(ω15) = π1sπ2eπ2lπ2h
p(ω4) = π2sπ2eπ2lπ1h p(ω16) = π1sπ2eπ2lπ1h
p(ω5) = π2sπ2eπ1lπ2h p(ω17) = π1sπ2eπ1lπ2h
p(ω6) = π2sπ2eπ1lπ1h p(ω18) = π1sπ2eπ1lπ1h
p(ω7) = π2sπ1eπ3lπ2h p(ω19) = π1sπ1eπ3lπ2h
p(ω8) = π2sπ1eπ3lπ1h p(ω20) = π1sπ1eπ3lπ1h
p(ω9) = π2sπ1eπ2lπ2h p(ω21) = π1sπ1eπ2lπ2h
p(ω10) = π2sπ1eπ2lπ1h p(ω22) = π1sπ1eπ2lπ1h
p(ω11) = π2sπ1eπ1lπ2h p(ω23) = π1sπ1eπ1lπ2h
p(ω12) = π2sπ1eπ1lπ1h p(ω24) = π1sπ1eπ1lπ1h

Because based on BN monomials are all of same degree (a property
not required for CEGs). But with less symmetry in indeterminates!.
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Example CHIDS a different CEG

A best model identified through Dynamic Programming allowing changed
response variable.

ES + → HA −
+ ⇒ LE

↗+ ↘− − ↗ ↘ ↘↘
SB HA w∞

↘− + ↗ + ↘ ↗ ↗↗
ES − → HA −

+ ⇒ LE

This model sees life events as a result of poor child health.

Increased incidents of hospital admissions relates only to poverty (2
categories).

High life events unaffected by Hospital Admissions except that when
exactly one of SB or ES is low then poor child health can shift into
lower life event category.
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New atomic probabilities

Now have stages {SB,ES,ES, HA , HA, LE, LE} with 16 parameters and 7
constraints = 9 dim space

p(ω1) = π2sπ2eπ2hπ3l p(ω13) = π1sπ2eπ2hπ3l
p(ω2) = π2sπ2eπ1hπ3l p(ω14) = π1sπ2eπ1hπ3l
p(ω3) = π2sπ2eπ2hπ2l p(ω15) = π1sπ2eπ2hπ2l
p(ω4) = π2sπ2eπ1hπ2l p(ω16) = π1sπ2eπ1hπ2l
p(ω5) = π2sπ2eπ2hπ1l p(ω17) = π1sπ2eπ2hπ1l
p(ω6) = π2sπ2eπ1hπ1l p(ω18) = π1sπ2eπ1hπ1l
p(ω7) = π2sπ1eπ2hπ3l p(ω19) = π1sπ1eπ2hπ3l
p(ω8) = π2sπ1eπ1hπ3l p(ω20) = π1sπ1eπ1hπ3l
p(ω9) = π2sπ1eπ2hπ2l p(ω21) = π1sπ1eπ2hπ2l
p(ω10) = π2sπ1eπ1hπ2l p(ω22) = π1sπ1eπ1hπ2l
p(ω11) = π2sπ1eπ2hπ1l p(ω23) = π1sπ1eπ2hπ1l
p(ω12) = π2sπ1eπ1hπ1l p(ω24) = π1sπ1eπ1hπ1l
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Interpretation & equivalent models Görgen & Smith(2015)

Likelihoods of 2 statistically equivalent (se) CEGs will always be the
same: regardless of data.

To interpret results of search need to determine what topological
features are shared across equivalence class & which differ.

In above example best CEG has HA causing LE: but is this true for all
se CEGs - or is there an equivalent model which appear to suggest LE
causes HA? If so then clearly cannot convincingly propose HA causes
LE!!!

All good scoring methods will score these models the same. But often
not able to search whole of space so not score all equivalence class.

Two discrete BNs are se iff they the same essential graph (or pattern).

However need algebraic characterization (not graphical) for CEGs!!
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Determining equivalent statistical models Görgen and
Smith(2015)

Definition
The interpolating polynomial C (π) of a CEG G whose root to sink
paths/atoms ω ∈ Ω have associated probabilities monomials λGω(π) in
π(G ) the vector of all edge probabilities in G is given by

CG (π) , ∑
ω∈Ω

cωλGω(π)

where {cω : ω ∈ Ω} are indicators on the atoms, not depending on G .

Theorem

If CG1(π) = CG2(π) then the CEGs G1,G2 are statistically equivalent .

Can ignore sum to one conditions on π(G ). Statistical equivalence
corresponds to existence of maps between interpolating polynomials:
characterising ∼ for many classes of CEG - see Görgen & Smith (2015).
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Orbiting an equivalence class with swaps and contractions

Definition

Say G1 & G2 are polynomially equivalent iff CG1(π) = CG2(π).

By last theorem C (π) becomes label for a particular probability
model associated with many topologically different CEGs just as
topology of a BN embeds many equivalent factorizations under
different partial orders.

Theorem
Two CEGs G1,G2 are polynomially equivalent iff G2 can be obtained from
G1 through sequence of swap operations.

Formal definition of swap in Christaine’s poster & Görgen & Smith
(2015).
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Example of Swap

y
b ⇒ a ⇒ e
↓ ↘
d c

to

y
a ⇒ b ⇒ e
↓ ↘
d c

"Arc reversals" allow us to transverse set of all equivalent BNs.

Swaps do the same for polynomial equivalent models! But now a
collection of matrix operations.
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Additional complications for CEGs

Two statistically equivalent CEGs need not be polynomially equivalent.

a π2 → b φ2 → ω3

↓π1
φ2 ↘

ω1 G1 ω2

to
a π′3 → ω3

↓π1
π′2 ↘

ω1 G2 ω2

Here G1 statistically equivalent to G2 - both saturated model on
{ω1,ω2,ω3}. But

CG1(π) = c1π1 + c2π2φ2 + c3π2φ3
CG2(π′) = c1π1 + c2π′2 + c3π

′
3

so not polynomially equivalent!!!!

Need additional local operation called resize to traverse whole space
for general CEGs.
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Return to the CHIDs example

Question In our best scoring model is there a statistically equivalent
model that has a CEG representation with LR before HA?
If so then there is no reason to conjecture that Hospital Admissions cause
Life Events and not vice versa.

Exhaustive search demonstrates that - at least over those models that
retain SB,ES ,HA, LE strata all se models have HA ≺ LE .
More elegantly the same result can be shown by demonstrating that
no sequence of contraction/expansion or swaps allows us to have
HA ≺ LE within this class.
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Conclusions

Usefulness of CEGs in biology, social processes, health & forensic
science now established.
Like a BN, a CEG embeds certain causal conjectures that can be
tested.

Like a BN, a CEG has associated vector of polynomials ⇒ properties
of a CEG usefully formalised & examined using techniques of
algebraic geometry - see Christiane’s poster.

In particular computer algebra can be used to determine when two
CEGs are statistically indistinguishable, explore the sensitivity of a
given model & proximity of models within the class & examine
identifiability of class & properties of estimators.
Discovering causal explanations behind a CEG, consistent across the
discovered equivalence classes are especially useful in applications.

THANK YOU FOR YOUR ATTENTION!!
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