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Motivation 1: Toric Geometry

A central theme in Algebraic Statistics is the connection
between toric varieties and discrete exponential families.
Binomial equations defining toric varieties are Markov bases.

[Diaconis-St 1998]

Example (Independence of binary random variables)

The Segre variety V = P1 × P1 ⊂ P3 is defined by

det

(
p00 p01
p10 p11

)
= 0.

The moment map takes V onto K = the square = ∆1 ×∆1.
It computes sufficient statistics:

V≥0 −→ K

This is invertible. Its inverse is the maximum likelihood estimator.
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Motivation 2: Gaussian Geometry
Let L be a linear space of real symmetric m ×m-matrices.

[St-Uhler 2010] studied the variety

L−1 =
{
σ ∈ Sym2Rm : σ−1 ∈ L

}cl
The Gaussian model is the subset of covariance matrices

L−1�0 =
{
σ ∈ L−1 : σ positive definite

}
Example (Graphical models)

L encodes sparsity of an undirected graph with m nodes.

The map dual to L ↪→ Sym2Rm computes sufficient statistics:

L−1�0 −→ K = (L�0)∨.

This is invertible. Its inverse is the maximum likelihood estimator.
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Exponential Families
An exponential family is a parametric statistical model

pθ(x) = exp
(
−〈 θ,T (x)〉 − A(θ)

)
.

on a sample space (X , ν,T ), with T : X → Rd measurable.

Here A(θ) is the log-partition function.

Since
∫
X pθ(x)ν(dx) = 1,

A(θ) = log

∫
X

exp
(
−〈θ,T (x)〉

)
ν(dx).

The following sets are convex:

Space of canonical parameters: C =
{
θ ∈ Rd : A(θ) < +∞

}
Space of sufficient statistics: K = conv

(
T (X )

)
⊂ Rd

Theorem
Suppose C is open and K spans Rd . The gradient map

F : Rd → Rd , θ 7→ −∇A(θ)

defines an analytic bijection between C and int(K ).
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From Analysis to Algebra

Our exponential families satisfy

A(θ) = −α · log(f (θ)),

where f (θ) is a homogeneous polynomial and α > 0.

The gradient of the log-partition function is the rational function

F : Rd 99K Rd : θ 7→ α

f (θ)
·
( ∂f
∂θ1

,
∂f

∂θ2
, . . . ,

∂f

∂θd

)
.

Algebraic geometers prefer

F : CPd−1 99K CPd−1 : θ 7→
( ∂f
∂θ1

:
∂f

∂θ2
: · · · :

∂f

∂θd

)
.

The partition function f (θ)α admits a nice integral representation.
Which polynomials f (θ) and convex sets C ,K ⊂ Rd are possible?
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Duality of Polytopes

Example (How to morph a cube into an octahedron?)

[St-Uhler 2010, Example 3.5]
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Duality of Polytopes

Example (Exponential family for cube → octahedron)

Fix the product of linear forms

f (θ) = (θ21 − θ24)(θ22 − θ24)(θ23 − θ24)

The space of canonical parameters is

C = cone over the 3-cube
{
|θi | < 1 : i = 1, 2, 3

}
The space of sufficient statistics is

K = cone over the octahedron conv{±e1,±e2,±e3}

Gradient map ∇f : P3 99K P3 gives bijection between C
and int(K ). Its inverse is an algebraic function of degree 7.

Question: What is (X , ν,T ) in this case?

Answer: X = K , T = id, and ν constructed via hypergeometric functions
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Hyperbolic Polynomials

A homog. polynomial f ∈ R[θ1, . . . , θd ] of degree k is hyperbolic
if, for some t ∈ Rd , every line through t intersects the complex
hypersurface {f = 0} in k real points. The connected component
C of t in Rd\{f = 0} is the hyperbolicity cone. It is convex.

Our integral representation lives on the dual hyperbolicity cone:

Theorem (Gårding 1951 ... Scott-Sokal 2015)

If α > d , there exists a measure ν on the cone K = C∨ such that

f (θ)−α =

∫
K

exp(−〈θ, σ〉) ν(dσ) for all θ ∈ C .

Furthermore, this property characterizes hyperbolic polynomials.

Proof: Riesz kernels and more. Lots of analysis.

The resulting statistical models are hyperbolic exponential families.

Related to hyperbolic programming in convex optimization [Güler].
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Hyperbolic Exponential Families: An Example

The space of canonical parameters C is the hyperbolicity cone of

f = θ1θ2θ3 + θ1θ2θ4 + θ1θ3θ4 + θ2θ3θ4.
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Its dual K = C∨ is the space of sufficient statistics:

Steiner surface a.k.a Roman surface∑
σ4i − 4

∑
σ3i σj + 6

∑
σ2i σ

2
j + 4

∑
σ2i σjσk − 40σ1σ2σ3σ4.
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Duality

Gradient map ∇f : P3 → P3 gives a bijection between C and K :

We shall be interested in the geometry its graph Xf ⊂ P3 × P3.
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Gaussian Family is Hyperbolic

Let X = Rm, where ν is Lebesgue measure, and set

T (x) =
1

2
x · xT ∈ Sym2(Rm) ' Rd .

The symmetric determinant f (θ) = det(θ) is a hyperbolic
polynomial in d =

(m+1
2

)
unknowns. Its hyperbolicity cone C

consists of positive definite matrices. This cone is self-dual:

K = C∨ = conv(T (X )) ' C .

Integral for pθ(x) is the standard multivariate Gaussian, with

A(θ) = −1

2
log det(θ) +

m

2
log(2π).

The gradient map is matrix inversion F : C → K , θ 7→ 1
2θ
−1.

The measure that represents f (θ)−1/2 comes from the Wishart
distribution, i.e. the distribution of the sample covariance matrix ...
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Intersecting with a Subspace

Fix exponential family with rational gradient map F : C → K .

Main case: F = ∇f where f is hyperbolic

Consider a linear subspace L ⊂ Rd with CL := L ∩ C nonempty:
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Exponential Varieties
The exponential variety is the image under the gradient map:

LF := F (L) ⊂ Pd−1.

  Its positive part LF�0 lives in K .
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Convexity and Positivity

Theorem
Let (X , ν,T ) be an exponential family with rational gradient
map F : Rd 99K Rd , and L ⊂ Rd a linear subspace.

The restricted gradient map FL is the composition

CL ⊂ C
F−→ K

πL−→ KL.

The convex set CL of canonical parameters maps bijectively to
the positive exponential variety LF�0, and LF�0 maps bijectively
to the interior of the convex set KL of sufficient statistics.

Maximum Likelihood Estimation for an exponential variety
means inverting these two bijections, by solving polynomials.

Math question: What is the algebraic degree of this inversion?
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Bijections in Pictures

Green maps to blue maps to green∨. Inverting this map is MLE.

  

-10 -5 0 5
-10

-5

0

5
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Graph of Gradient Map

Fix a hyperbolic polynomial f (θ), and let Xf ⊂ Pd−1 × Pd−1 be
the graph of its gradient map ∇f , a variety of dimension d − 1.

The gradient multidegree of f is its class [Xf ] in the cohomology

H∗
(
Pd−1 × Pd−1;Z

)
= Z[ s, t ]/〈sd , td〉.

If αi is the cardinality of a linear section Xf ∩ (Li−1 ×Md−i ) then

[Xf ] = αds
d−1+αd−1s

d−2t+αd−2s
d−3t2+· · ·+α2st

d−2+α1t
d−1.

The leading coefficient αd is the gradient degree of f .

Example: If f = θ1θ2θ3 + θ1θ2θ4 + θ1θ3θ4 + θ2θ3θ4
then [Xf ] = 4s3 + 4s2t + 2st2 + 1t3.
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Degrees

Fix a subspace L ⊂ Rd of dimension c . Let πL : Pd−1 99K Pc−1

be the projection with center L⊥. We define

MLdegree(L∇f ) := degree
(
L∇f 99K Pc−1).

The ML degree is the algebraic complexity of the function that
maps sufficient statistics in KL to the MLE in the model L∇f�0 .

Theorem
The following inequalities hold for all exponential varieties:

MLdegree(L∇f ) ≤ degree(L∇f ) ≤ the coefficient αc in [Xf ].

Right inequality is an equality for generic subspaces L.
Left inequality is an equality if and only if L∇f ∩ L⊥ = ∅.

We conjecture that L∇f ∩ L⊥ = ∅ holds for generic L.

All four sign combinations occur even for Gaussian graphical models.
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Elementary Symmetric Polynomials
We study the hyperbolic exponential family given

Em(θ) =
∑

1≤i1<···<im≤d
θi1θi2 · · · θim

An explicit formula is given for the gradient multidegree [XEm ]
in terms of mixed Eulerian numbers; for instance, for d = 7:

[XE2 ] = 1s6 + 1s5t + 1s4t2 + 1s3t3 + 1s2t4 + 1st5 + 1t6

[XE3 ] = 57s6 + 32s5t + 16s4t2 + 8s3t3 + 4s2t4 + 2st5 + 1t6

[XE4 ] = 302s6 + 222s5t + 81s4t2 + 27s3t3 + 9s2t4 + 3st5 + 1t6

[XE5 ] = 302s6 + 422s5t + 221s4t2 + 64s3t3 + 16s2t4 + 4st5 + t6

[XE6 ] = 57s6 + 157s5t + 170s4t2 + 90s3t3 + 25s2t4 + 5st5 + 1t6

[XE7 ] = 1s6 + 6s5t + 15s4t2 + 20s3t3 + 15s2t4 + 6st5 + 1t6

Given any L, this bounds the degree – and hence the ML degree –
of the exponential variety L∇Em . These models are not Gaussian.
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Hankel Matrices
Fix the Gaussian family f = det(θ). Let L be the space
of m×m Hankel matrices, so d =

(m+1
2

)
, c = 2m − 1.

CL is the cone of positive definite Hankel matrices.(
θ1 θ2 θ3 θ4
θ2 θ3 θ4 θ5
θ3 θ4 θ5 θ6
θ4 θ5 θ6 θ7

)
m = 4, c = 7

Identify Pc−1 with
{

polynomials of degree 2m−2 in x
}

.

The map πL : Pd−1 99K Pc−1 is

σ 7→ (1, x , x2, . . . , xm−1) · σ · (1, x , x2, . . . , xm−1)T

The image KL -10 -5 0 5
-10

-5

0

5

of the PSD cone K = C∨

under πL is the cone of nonnegative polynomials.

Q: Who is the middleman
  

in these bijections:

{psd Hankel} = CL
∇f−→ L∇f�0

πL−→ KL = {nonnegative polynomials} ?
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The Other Positive Grassmannian

Theorem
After a linear change of coordinates, the exponential variety L−1
of inverse Hankel matrices equals the Grassmannian Gr(2,m + 1)
in its Plücker embedding in Pd−1. The ML degree of L−1 equals
the degree of L−1, which is the Catalan number 1

m

(2m−2
m−1

)
.

[
θ1 θ2 θ3 θ4
θ2 θ3 θ4 θ5
θ3 θ4 θ5 θ6
θ4 θ5 θ6 θ7

]−1
=

[
p12 p13 p14 p15
p13 p14 + p23 p15 + p24 p25
p14 p15 + p24 p25 + p34 p35
p15 p25 p35 p45

]
pijpkl−pikpjl+pilpjk = 0

The positive Grassmannian Gr(2,m + 1)�0 consists of positive
definite Bézout matrices. These represent pairs of polynomials
in x of degree m − 1 whose roots are all real and interlace.

Open Problems: What about higher Grassmannians?
... generalized Hankel matrices (catalecticants)?

... sum of square polynomials in more variables?
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Invitation to Read

Abstract. Exponential varieties arise from exponential families in
statistics. These real algebraic varieties have strong positivity and
convexity properties, generalizing those of toric varieties and their
moment maps. Another special class, including Gaussian graphical
models, are varieties of inverses of symmetric matrices satisfying linear
constraints. We develop a general theory of exponential varieties, with
focus on those defined by hyperbolic polynomials and their integral
representations on the hyperbolicity cone. We compare multidegrees
and ML degrees of the gradient map for such polynomials.
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