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Series-Parallel Graph

Definition
A two-terminal series-parallel graph
(TTSPG) is a graph that may be con-
structed by a sequence of series and
parallel compositions starting from a
set of copies of a single-edge graph K2
with assigned terminals.

Definition
A graph G is called series-parallel if it
is a TTSPG when some two of its ver-
tices are regarded as source and sink.
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Series-Parallel Graph

Another definition
A graph G is called series-
parallel if it has no subgraph
homeomorphic to K4, the com-
plete graph on four vertices

Example

A cycle graph with p vertices.
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Cut Polytopes
Cut Polytopes

A cut of the graph G is a bipartition of the vertices, (U,Uc), and its associated
cutset is the collection of edges δ(U) ⊂ E with one endpoint in each block of
the bipartition. To each cutset we assign a (±1)-vector in RE with a −1 in
coordinate e if and only if e ∈ δ(U). The (±1)-cut polytope of G is the convex
hull in RE of all such vectors.

Max-Cut Problem

The polytope cut±1 (G) is affinely equivalent to the cut polytope of G
defined in the variables 0 and 1, which is the feasible region of the
max-cut problem in linear programming.

Maximizing over the polytope cut±1 (G) is equivalent to solving the
max-cut problem for G.

The max-cut problem is known to be NP-hard.

However, it is possible to optimize in polynomial time over a (often times
non-polyhedral) positive semidefinite relaxation of cut±1 (G), known as
an elliptope.
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Cut Polytope for the 4-cycle: an example

G := C4, identify RE(G) ' R4 by identifying edge {i , i + 1} with coordinate i for
i = 1,2,3,4. The cut polytope of G is the convex hull of (−1,1)-vectors in R4

containing precisely an even number of −1’s.

Facets

cut±1 (G) is the 4-cube [−1,1]4 with truncations at the eight vertices contain-
ing an odd number of −1’s with sixteen facets supported by the hyperplanes

±xi = 1, and 〈vT , x〉 = 2,

where T is an odd cardinality subset of [4], and vT is the corresponding vertex
of [−1,1]4 with an odd number of −1’s.
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Cut Polytope for the 4-cycle: an example
Cut Polytope

Schlegel diagram of the cut polytope for the 4-cycle.

Notes
It has 8 demicubes (tetrahedra) 8 tetrahedra as its facets.
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Elliptopes

Elliptopes

Let Sp denote the real vector space of all real p×p symmetric matrices, and let
Sp
�0 denote the cone of all positive semidefinite matrices in Sp. The p-elliptope

is the collection of all p × p correlation matrices, i.e.

Ep = {X ∈ Sp
�0|Xii = 1 for all i ∈ [p]}.

The elliptope EG is defined as the projection of Ep onto the edge set of G. That
is,

EG = {y ∈ RE| ∃Y ∈ Ep such that Ye = ye for every e ∈ E(G)}.

Notes
The elliptope EG is a positive semidefinite relaxation of the cut polytope

cut±1 (G), and thus maximizing over EG can provide an approximate solution
to the max-cut problem.
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C4-Elliptopes

Level curves of the rank 2 locus of EC4 . The value of x4 varies from 0 to 1 as
we view the figures from left-to-right and top-to-bottom.
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Cone of Concentration Matrices

Concentration Matrices

Consider the Graphical Gaussian model N(µ,Σ) where µ ∈ Rp is the mean
and Σ ∈ Rp×p is the correlation matrix for the model. The concentration matrix
of Σ is K = Σ−1.

Notes
A concentration matrix K is a p × p positive semidefinite matrices with zeros
in all entries corresponding to nonedges of G.

Cone of Concentration Matrices
Let KG is the set of all concentration matrices K corresponding to G. Then KG
is a convex cone in Sp called the cone of concentration matrices.
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Applications

Goal

Want to show that the facets of cut±1 (G) identify extremal rays of KG for any
series parallel graph G.

Why we care

Since the cone of concentration matrices is dual to the cone of
PD-completable matrices associated to G, understanding the extremal
rays of KG is useful for deciding PD-completability.

The PD-completability problem would become easier for G with smaller
sparsity order (i.e. where the max rank of an extremal ray is small).

Our computations of the facets of cut±1 (G) for G series-parallel together
with the proof of facet-ray identification tells us all these ranks are
encoded nicely in the supporting hyperplanes of cut±1 (G).
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cut±1 (G) and KG

Goal

Want to show that the facets of cut±1 (G) identify extremal rays of KG for any
series parallel graph G.

Show these identifications arises via the geometric relationship that exists
between the three convex bodies cut±1 (G), EG, and KG.

Theorem [Solus, Uhler, Y. 2015]

The dual body of the elliptope EG is

E∨G = {x ∈ RE | ∃X ∈ KG such that XE = x and tr(X ) = 2}.

Notes

An immediate consequence of this theorem is that the extreme points in E∨G
are projections of extreme matrices in KG.

Ruriko Yoshida (University of Kentucky) Alg Stat 2015 June 2015 13 / 20



cut±1 (G) and KG

Goal

Want to show that the facets of cut±1 (G) identify extremal rays of KG for any
series parallel graph G.

Show these identifications arises via the geometric relationship that exists
between the three convex bodies cut±1 (G), EG, and KG.

Theorem [Solus, Uhler, Y. 2015]

The dual body of the elliptope EG is

E∨G = {x ∈ RE | ∃X ∈ KG such that XE = x and tr(X ) = 2}.

Notes

An immediate consequence of this theorem is that the extreme points in E∨G
are projections of extreme matrices in KG.

Ruriko Yoshida (University of Kentucky) Alg Stat 2015 June 2015 13 / 20



cut±1 (G) and KG

Goal

Want to show that the facets of cut±1 (G) identify extremal rays of KG for any
series parallel graph G.

Show these identifications arises via the geometric relationship that exists
between the three convex bodies cut±1 (G), EG, and KG.

Theorem [Solus, Uhler, Y. 2015]

The dual body of the elliptope EG is

E∨G = {x ∈ RE | ∃X ∈ KG such that XE = x and tr(X ) = 2}.

Notes

An immediate consequence of this theorem is that the extreme points in E∨G
are projections of extreme matrices in KG.

Ruriko Yoshida (University of Kentucky) Alg Stat 2015 June 2015 13 / 20



cut±1 (G) and KG

Goal

Want to show that the facets of cut±1 (G) identify extremal rays of KG for any
series parallel graph G.

Show these identifications arises via the geometric relationship that exists
between the three convex bodies cut±1 (G), EG, and KG.

Theorem [Solus, Uhler, Y. 2015]

The dual body of the elliptope EG is

E∨G = {x ∈ RE | ∃X ∈ KG such that XE = x and tr(X ) = 2}.

Notes

An immediate consequence of this theorem is that the extreme points in E∨G
are projections of extreme matrices in KG.

Ruriko Yoshida (University of Kentucky) Alg Stat 2015 June 2015 13 / 20



Outline

1 Series-Parallel Graph

2 Three Convex Bodies

3 Facet-Ray Identification Property

Ruriko Yoshida (University of Kentucky) Alg Stat 2015 June 2015 14 / 20



Outline of the idea

Since EG is a positive semidefinite relaxation of cut±1 (G) then
cut±1 (G) ⊂ EG.

If all singular points on the boundary of EG are also singular points on
the boundary of cut±1 (G) then the supporting hyperplanes of facets of
cut±1 (G) will be translations of facets of EG, i.e. extreme sets of EG with
positive Lebesgue measure in a codimension one affine subspace of the
ambient space.

It follows that the outward normal vectors to the facets of cut±1 (G)
generate the normal cones to these regular points and facets of EG.

Dually, the normal vectors to the facets of cut±1 (G) are then extreme
points of E∨G , and consequently projections of extreme matrices of KG.

Thus, we can expect to find extremal matrices in KG whose off-diagonal
entries are given by the normal vectors to the facets of cut±1 (G).
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Example: 3-cycle

(a) CUT±1(G) (b) EG (c) EV
G

CUT±1(G) = conv((1,1,1), (−1,−1,1), (−1,1,−1), (1,−1,−1))

EG =


 1 x1 x3

x1 1 x2
x3 x2 1

 � 0

 EV
G =


y1

y2
y3

 :

 a y1 y3
y1 b y2
y3 y2 2− a− b

 � 0
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Facet-Ray Identification Property
Definition

Let G be a graph. For each facet F of cut±1 (G) let αF ∈ RE denote the
normal vector to the supporting hyperplane of F . We say that G has the facet-
ray identification property (or FRIP) if for every facet F of cut±1 (G) there
exists an extremal matrix M = [mij ] in KG for which either mij = αF

ij for every
{i , j} ∈ E(G) or mij = −αF

ij for every {i , j} ∈ E(G).

Theorem [Solus, Uhler, Y. 2015]

Let p ≥ 3. The cycle Cp on p vertices has the facet-ray identification property.
Moreover, the cut polytope cut±1 (Cp) is the p-halfcube which has two types
of facets, halfcubical and simplicial. If the extremal matrix M is identified by a
halfcubical facet then it is rank 1, and if it is identified by a simplicial facet it is
rank p − 2.

Theorem [Solus, Uhler, Y. 2015]

Every series-parallel graph has the facet-ray identification property. Moreover,
the rank of the extremal ray is given by the constant term of the supporting
hyperplane of the facet.
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4-cycle: an example
The facets supported by the hyperplanes ±x1 = 1 correspond to the rank 1

extremal matrices

Y =


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 and Y =


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 .

The facets 〈vT , x〉 = 2 for vT = (1,−1,1,1) and vT = (1,−1,−1,−1) respec-
tively correspond to the rank 2 extremal matrices

Y = 1
3


1 −1 0 −1
−1 2 1 0
0 1 1 −1
−1 0 −1 2

 and Y = 1
3


1 −1 0 1
−1 2 1 0
0 1 1 1
1 0 1 2

 .
These four matrices respectively project to the four extreme points in E∨G

(1,0,0,0), (−1,0,0,0),
1
3

(−1,1,−1,−1), and
1
3
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Advertisement

Conference

I SIAM Conference on Applied Algebraic Geometry from August 3rd
to 7th 2014 at NIMS Daejeon South Korea. http://open.nims.
re.kr/new/event/event.php?workType=home&Idx=170

Journal

I Journal of Algebraic Statistics http://jalgstat.com/
I Special issue of J of Algebraic Statistics http:
//www.dima.unige.it/~rogantin/AS2015/SJAS.html

R package

I R package algstat is available via CRAN or at Github
https://github.com/dkahle/algstat
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Questions?
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