The facets of the cut polytope and the extreme rays of cone of concentration matrices of series-parallel graphs

Ruriko Yoshida

Department of Statistics
University of Kentucky

University of Genoa

Joint work with Liam Solus and Caroline Uhler

Outline

(1) Series-Parallel Graph

(2) Three Convex Bodies

3 Facet-Ray Identification Property

Series-Parallel Graph

Definition
 A two-terminal series-parallel graph (TTSPG) is a graph that may be constructed by a sequence of series and parallel compositions starting from a set of copies of a single-edge graph K2 with assigned terminals.

Series-Parallel Graph

Definition

A two-terminal series-parallel graph (TTSPG) is a graph that may be constructed by a sequence of series and parallel compositions starting from a set of copies of a single-edge graph K2 with assigned terminals.

Definition

A graph G is called series-parallel if it is a TTSPG when some two of its vertices are regarded as source and sink.

Series-Parallel Graph

Definition

A two-terminal series-parallel graph (TTSPG) is a graph that may be constructed by a sequence of series and parallel compositions starting from a set of copies of a single-edge graph K2 with assigned terminals.

Definition

A graph G is called series-parallel if it is a TTSPG when some two of its vertices are regarded as source and sink.

Series-Parallel Graph

> Another definition
> A graph G is called seriesparallel if it has no subgraph homeomorphic to K_{4}, the complete graph on four vertices

Series-Parallel Graph

> Another definition
> A graph G is called seriesparallel if it has no subgraph homeomorphic to K_{4}, the complete graph on four vertices

Example

A cycle graph with p vertices.

Series-Parallel Graph

Another definition

A graph G is called seriesparallel if it has no subgraph homeomorphic to K_{4}, the complete graph on four vertices

Example

A cycle graph with p vertices.

Outline

(1) Series-Parallel Graph

(2) Three Convex Bodies

3 Facet-Ray Identification Property

Cut Polytopes

Cut Polytopes

A cut of the graph G is a bipartition of the vertices, $\left(U, U^{C}\right)$, and its associated cutset is the collection of edges $\delta(U) \subset E$ with one endpoint in each block of the bipartition. To each cutset we assign a (± 1)-vector in \mathbb{R}^{E} with a -1 in coordinate e if and only if $e \in \delta(U)$. The (± 1)-cut polytope of G is the convex hull in \mathbb{R}^{E} of all such vectors.

Max-Cut Problem

Cut Polytopes

Cut Polytopes

A cut of the graph G is a bipartition of the vertices, $\left(U, U^{C}\right)$, and its associated cutset is the collection of edges $\delta(U) \subset E$ with one endpoint in each block of the bipartition. To each cutset we assign a (± 1)-vector in \mathbb{R}^{E} with a -1 in coordinate e if and only if $e \in \delta(U)$. The (± 1)-cut polytope of G is the convex hull in \mathbb{R}^{E} of all such vectors.

Max-Cut Problem

- The polytope $\operatorname{cut}^{ \pm 1}(\mathrm{G})$ is affinely equivalent to the cut polytope of G defined in the variables 0 and 1 , which is the feasible region of the max-cut problem in linear programming.

Cut Polytopes

Cut Polytopes

A cut of the graph G is a bipartition of the vertices, $\left(U, U^{C}\right)$, and its associated cutset is the collection of edges $\delta(U) \subset E$ with one endpoint in each block of the bipartition. To each cutset we assign a (± 1)-vector in \mathbb{R}^{E} with a -1 in coordinate e if and only if $e \in \delta(U)$. The (± 1)-cut polytope of G is the convex hull in \mathbb{R}^{E} of all such vectors.

Max-Cut Problem

- The polytope $\operatorname{cut}^{ \pm 1}(\mathrm{G})$ is affinely equivalent to the cut polytope of G defined in the variables 0 and 1 , which is the feasible region of the max-cut problem in linear programming.
- Maximizing over the polytope cut ${ }^{ \pm 1}(\mathrm{G})$ is equivalent to solving the max-cut problem for G.

Cut Polytopes

Cut Polytopes

A cut of the graph G is a bipartition of the vertices, $\left(U, U^{C}\right)$, and its associated cutset is the collection of edges $\delta(U) \subset E$ with one endpoint in each block of the bipartition. To each cutset we assign a (± 1)-vector in \mathbb{R}^{E} with a -1 in coordinate e if and only if $e \in \delta(U)$. The (± 1)-cut polytope of G is the convex hull in \mathbb{R}^{E} of all such vectors.

Max-Cut Problem

- The polytope $\operatorname{cut}^{ \pm 1}(\mathrm{G})$ is affinely equivalent to the cut polytope of G defined in the variables 0 and 1 , which is the feasible region of the max-cut problem in linear programming.
- Maximizing over the polytope cut ${ }^{ \pm 1}(\mathrm{G})$ is equivalent to solving the max-cut problem for G.
- The max-cut problem is known to be NP-hard.

Cut Polytopes

Cut Polytopes

A cut of the graph G is a bipartition of the vertices, $\left(U, U^{C}\right)$, and its associated cutset is the collection of edges $\delta(U) \subset E$ with one endpoint in each block of the bipartition. To each cutset we assign a (± 1)-vector in \mathbb{R}^{E} with a -1 in coordinate e if and only if $e \in \delta(U)$. The (± 1)-cut polytope of G is the convex hull in \mathbb{R}^{E} of all such vectors.

Max-Cut Problem

- The polytope cut ${ }^{ \pm 1}(\mathrm{G})$ is affinely equivalent to the cut polytope of G defined in the variables 0 and 1 , which is the feasible region of the max-cut problem in linear programming.
- Maximizing over the polytope cut ${ }^{ \pm 1}(\mathrm{G})$ is equivalent to solving the max-cut problem for G.
- The max-cut problem is known to be NP-hard.
- However, it is possible to optimize in polynomial time over a (often times non-polyhedral) positive semidefinite relaxation of cut ${ }^{ \pm 1}(\mathrm{G})$, known as an elliptope.

Cut Polytope for the 4-cycle: an example

$G:=C_{4}$, identify $\mathbb{R}^{E(G)} \simeq \mathbb{R}^{4}$ by identifying edge $\{i, i+1\}$ with coordinate i for $i=1,2,3,4$. The cut polytope of G is the convex hull of $(-1,1)$-vectors in \mathbb{R}^{4} containing precisely an even number of -1 's.

Cut Polytope for the 4-cycle: an example

$G:=C_{4}$, identify $\mathbb{R}^{E(G)} \simeq \mathbb{R}^{4}$ by identifying edge $\{i, i+1\}$ with coordinate i for $i=1,2,3,4$. The cut polytope of G is the convex hull of $(-1,1)$-vectors in \mathbb{R}^{4} containing precisely an even number of -1 's.

Facets

$\mathrm{cut}^{ \pm 1}(\mathrm{G})$ is the 4 -cube $[-1,1]^{4}$ with truncations at the eight vertices containing an odd number of -1 's with sixteen facets supported by the hyperplanes

$$
\pm x_{i}=1, \quad \text { and } \quad\left\langle v_{T}, x\right\rangle=2
$$

where T is an odd cardinality subset of [4], and v_{T} is the corresponding vertex of $[-1,1]^{4}$ with an odd number of -1 's.

Cut Polytope for the 4-cycle: an example

Cut Polytope

Schlegel diagram of the cut polytope for the 4-cycle.

Cut Polytope for the 4-cycle: an example

Cut Polytope

Schlegel diagram of the cut polytope for the 4-cycle.

Notes

It has 8 demicubes (tetrahedra) 8 tetrahedra as its facets.

Elliptopes

Elliptopes

Let \mathbb{S}^{p} denote the real vector space of all real $p \times p$ symmetric matrices, and let $\mathbb{S}_{\succeq 0}^{p}$ denote the cone of all positive semidefinite matrices in \mathbb{S}^{p}. The p-elliptope is the collection of all $p \times p$ correlation matrices, i.e.

$$
\mathcal{E}_{p}=\left\{X \in \mathbb{S}_{\succeq 0}^{p} \mid X_{i i}=1 \text { for all } i \in[p]\right\} .
$$

The elliptope \mathcal{E}_{G} is defined as the projection of \mathcal{E}_{p} onto the edge set of G. That is,

$$
\mathcal{E}_{G}=\left\{\mathbf{y} \in \mathbb{R}^{\mathbf{E}} \mid \exists Y \in \mathcal{E}_{p} \text { such that } Y_{e}=y_{e} \text { for every } e \in E(G)\right\} .
$$

Elliptopes

Elliptopes

Let \mathbb{S}^{p} denote the real vector space of all real $p \times p$ symmetric matrices, and let $\mathbb{S}_{\succ 0}^{p}$ denote the cone of all positive semidefinite matrices in \mathbb{S}^{p}. The p-elliptope is the collection of all $p \times p$ correlation matrices, i.e.

$$
\mathcal{E}_{p}=\left\{X \in \mathbb{S}_{\succeq 0}^{p} \mid X_{i i}=1 \text { for all } i \in[p]\right\} .
$$

The elliptope \mathcal{E}_{G} is defined as the projection of \mathcal{E}_{p} onto the edge set of G. That is,

$$
\mathcal{E}_{G}=\left\{\mathbf{y} \in \mathbb{R}^{\mathbf{E}} \mid \exists Y \in \mathcal{E}_{p} \text { such that } Y_{e}=y_{e} \text { for every } e \in E(G)\right\} .
$$

Notes

The elliptope \mathcal{E}_{G} is a positive semidefinite relaxation of the cut polytope cut $^{ \pm 1}(\mathrm{G})$, and thus maximizing over \mathcal{E}_{G} can provide an approximate solution to the max-cut problem.

C_{4}-Elliptopes

C_{4}-Elliptopes

Level curves of the rank 2 locus of $\mathcal{E}_{C_{4}}$. The value of x_{4} varies from 0 to 1 as we view the figures from left-to-right and top-to-bottom.

Cone of Concentration Matrices

Concentration Matrices

Consider the Graphical Gaussian model $N(\mu, \Sigma)$ where $\mu \in \mathbb{R}^{p}$ is the mean and $\Sigma \in \mathbb{R}^{p \times p}$ is the correlation matrix for the model. The concentration matrix of Σ is $K=\Sigma^{-1}$.

Cone of Concentration Matrices

Concentration Matrices

Consider the Graphical Gaussian model $N(\mu, \Sigma)$ where $\mu \in \mathbb{R}^{p}$ is the mean and $\Sigma \in \mathbb{R}^{p \times p}$ is the correlation matrix for the model. The concentration matrix of Σ is $K=\Sigma^{-1}$.

Notes

A concentration matrix K is a $p \times p$ positive semidefinite matrices with zeros in all entries corresponding to nonedges of G.

Cone of Concentration Matrices

Concentration Matrices

Consider the Graphical Gaussian model $N(\mu, \Sigma)$ where $\mu \in \mathbb{R}^{p}$ is the mean and $\Sigma \in \mathbb{R}^{p \times p}$ is the correlation matrix for the model. The concentration matrix of Σ is $K=\Sigma^{-1}$.

Notes

A concentration matrix K is a $p \times p$ positive semidefinite matrices with zeros in all entries corresponding to nonedges of G.

Cone of Concentration Matrices

Let \mathcal{K}_{G} is the set of all concentration matrices K corresponding to G. Then \mathcal{K}_{G} is a convex cone in \mathbb{S}^{p} called the cone of concentration matrices.

Applications

Goal

Want to show that the facets of cut ${ }^{ \pm 1}(\mathrm{G})$ identify extremal rays of \mathcal{K}_{G} for any series parallel graph G.

Why we care

Applications

Goal

Want to show that the facets of cut ${ }^{ \pm 1}(\mathrm{G})$ identify extremal rays of \mathcal{K}_{G} for any series parallel graph G.

Why we care

- Since the cone of concentration matrices is dual to the cone of PD-completable matrices associated to G, understanding the extremal rays of \mathcal{K}_{G} is useful for deciding PD-completability.

Applications

Goal

Want to show that the facets of cut ${ }^{ \pm 1}(\mathrm{G})$ identify extremal rays of \mathcal{K}_{G} for any series parallel graph G.

Why we care

- Since the cone of concentration matrices is dual to the cone of PD-completable matrices associated to G, understanding the extremal rays of \mathcal{K}_{G} is useful for deciding PD-completability.
- The PD-completability problem would become easier for G with smaller sparsity order (i.e. where the max rank of an extremal ray is small).

Applications

Goal

Want to show that the facets of cut ${ }^{ \pm 1}(\mathrm{G})$ identify extremal rays of \mathcal{K}_{G} for any series parallel graph G.

Why we care

- Since the cone of concentration matrices is dual to the cone of PD-completable matrices associated to G, understanding the extremal rays of \mathcal{K}_{G} is useful for deciding PD-completability.
- The PD-completability problem would become easier for G with smaller sparsity order (i.e. where the max rank of an extremal ray is small).
- Our computations of the facets of cut ${ }^{ \pm 1}(G)$ for G series-parallel together with the proof of facet-ray identification tells us all these ranks are encoded nicely in the supporting hyperplanes of cut ${ }^{ \pm 1}(\mathrm{G})$.

$\operatorname{cut}^{ \pm 1}(G)$ and \mathcal{K}_{G}

Goal

Want to show that the facets of cut ${ }^{ \pm 1}(\mathrm{G})$ identify extremal rays of \mathcal{K}_{G} for any series parallel graph G.

cut $^{ \pm 1}(\mathrm{G})$ and \mathcal{K}_{G}

Goal

Want to show that the facets of cut ${ }^{ \pm 1}(\mathrm{G})$ identify extremal rays of \mathcal{K}_{G} for any series parallel graph G.

Show these identifications arises via the geometric relationship that exists between the three convex bodies $\mathrm{cut}^{ \pm 1}(\mathrm{G}), \mathcal{E}_{G}$, and \mathcal{K}_{G}.

cut $^{ \pm 1}(\mathrm{G})$ and \mathcal{K}_{G}

Goal

Want to show that the facets of cut ${ }^{ \pm 1}(\mathrm{G})$ identify extremal rays of \mathcal{K}_{G} for any series parallel graph G.

Show these identifications arises via the geometric relationship that exists between the three convex bodies cut ${ }^{ \pm 1}(\mathrm{G}), \mathcal{E}_{G}$, and \mathcal{K}_{G}.

Theorem [Solus, Uhler, Y. 2015]

The dual body of the elliptope \mathcal{E}_{G} is

$$
\mathcal{E}_{G}^{\vee}=\left\{x \in \mathbb{R}^{E} \mid \exists X \in \mathcal{K}_{G} \text { such that } X_{E}=x \text { and } \operatorname{tr}(X)=2\right\} .
$$

$\operatorname{cut}^{ \pm 1}(\mathrm{G})$ and \mathcal{K}_{G}

Goal

Want to show that the facets of cut ${ }^{ \pm 1}(\mathrm{G})$ identify extremal rays of \mathcal{K}_{G} for any series parallel graph G.

Show these identifications arises via the geometric relationship that exists between the three convex bodies $\mathrm{cut}^{ \pm 1}(\mathrm{G}), \mathcal{E}_{G}$, and \mathcal{K}_{G}.

Theorem [Solus, Uhler, Y. 2015]

The dual body of the elliptope \mathcal{E}_{G} is

$$
\mathcal{E}_{G}^{\vee}=\left\{x \in \mathbb{R}^{E} \mid \exists X \in \mathcal{K}_{G} \text { such that } X_{E}=x \text { and } \operatorname{tr}(X)=2\right\} .
$$

Notes

An immediate consequence of this theorem is that the extreme points in \mathcal{E}_{G}^{\vee} are projections of extreme matrices in \mathcal{K}_{G}.

Outline

(1) Series-Parallel Graph

(2) Three Convex Bodies

(3) Facet-Ray Identification Property

Outline of the idea

- Since \mathcal{E}_{G} is a positive semidefinite relaxation of cut ${ }^{ \pm 1}(\mathrm{G})$ then cut $^{ \pm 1}(\mathrm{G}) \subset \mathcal{E}_{G}$.

Outline of the idea

- Since \mathcal{E}_{G} is a positive semidefinite relaxation of cut ${ }^{ \pm 1}(\mathrm{G})$ then cut $^{ \pm 1}(\mathrm{G}) \subset \mathcal{E}_{G}$.
- If all singular points on the boundary of \mathcal{E}_{G} are also singular points on the boundary of cut ${ }^{ \pm 1}(\mathrm{G})$ then the supporting hyperplanes of facets of cut $^{ \pm 1}(\mathrm{G})$ will be translations of facets of \mathcal{E}_{G}, i.e. extreme sets of \mathcal{E}_{G} with positive Lebesgue measure in a codimension one affine subspace of the ambient space.

Outline of the idea

- Since \mathcal{E}_{G} is a positive semidefinite relaxation of cut ${ }^{ \pm 1}(\mathrm{G})$ then cut $^{ \pm 1}(G) \subset \mathcal{E}_{G}$.
- If all singular points on the boundary of \mathcal{E}_{G} are also singular points on the boundary of cut ${ }^{ \pm 1}(\mathrm{G})$ then the supporting hyperplanes of facets of cut $^{ \pm 1}(\mathrm{G})$ will be translations of facets of \mathcal{E}_{G}, i.e. extreme sets of \mathcal{E}_{G} with positive Lebesgue measure in a codimension one affine subspace of the ambient space.
- It follows that the outward normal vectors to the facets of cut ${ }^{ \pm 1}(\mathrm{G})$ generate the normal cones to these regular points and facets of \mathcal{E}_{G}.

Outline of the idea

- Since \mathcal{E}_{G} is a positive semidefinite relaxation of cut ${ }^{ \pm 1}(\mathrm{G})$ then cut $^{ \pm 1}(G) \subset \mathcal{E}_{G}$.
- If all singular points on the boundary of \mathcal{E}_{G} are also singular points on the boundary of cut ${ }^{ \pm 1}(\mathrm{G})$ then the supporting hyperplanes of facets of cut $^{ \pm 1}(\mathrm{G})$ will be translations of facets of \mathcal{E}_{G}, i.e. extreme sets of \mathcal{E}_{G} with positive Lebesgue measure in a codimension one affine subspace of the ambient space.
- It follows that the outward normal vectors to the facets of cut ${ }^{ \pm 1}(\mathrm{G})$ generate the normal cones to these regular points and facets of \mathcal{E}_{G}.
- Dually, the normal vectors to the facets of cut ${ }^{ \pm 1}(\mathrm{G})$ are then extreme points of \mathcal{E}_{G}^{\vee}, and consequently projections of extreme matrices of \mathcal{K}_{G}.

Outline of the idea

- Since \mathcal{E}_{G} is a positive semidefinite relaxation of cut ${ }^{ \pm 1}(\mathrm{G})$ then cut $^{ \pm 1}(\mathrm{G}) \subset \mathcal{E}_{G}$.
- If all singular points on the boundary of \mathcal{E}_{G} are also singular points on the boundary of cut ${ }^{ \pm 1}(\mathrm{G})$ then the supporting hyperplanes of facets of cut $^{ \pm 1}(\mathrm{G})$ will be translations of facets of \mathcal{E}_{G}, i.e. extreme sets of \mathcal{E}_{G} with positive Lebesgue measure in a codimension one affine subspace of the ambient space.
- It follows that the outward normal vectors to the facets of cut ${ }^{ \pm 1}(\mathrm{G})$ generate the normal cones to these regular points and facets of \mathcal{E}_{G}.
- Dually, the normal vectors to the facets of cut ${ }^{ \pm 1}(\mathrm{G})$ are then extreme points of \mathcal{E}_{G}^{\vee}, and consequently projections of extreme matrices of \mathcal{K}_{G}.
- Thus, we can expect to find extremal matrices in \mathcal{K}_{G} whose off-diagonal entries are given by the normal vectors to the facets of cut ${ }^{ \pm 1}(\mathrm{G})$.

Example: 3-cycle

(a) $C U T^{ \pm 1}(G)$

(b) \mathcal{E}_{G}

(c) \mathcal{E}_{G}^{V}
$\operatorname{CUT}^{ \pm 1}(G)=\operatorname{conv}((1,1,1),(-1,-1,1),(-1,1,-1),(1,-1,-1))$
$\mathcal{E}_{G}=\left\{\left(\begin{array}{ccc}1 & x_{1} & x_{3} \\ x_{1} & 1 & x_{2} \\ x_{3} & x_{2} & 1\end{array}\right) \succeq 0\right\} \quad \mathcal{E}_{G}^{V}=\left\{\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right):\left(\begin{array}{ccc}a & y_{1} & y_{3} \\ y_{1} & b & y_{2} \\ y_{3} & y_{2} & 2-a-b\end{array}\right) \succeq 0\right\}$

Facet-Ray Identification Property

Definition

Let G be a graph. For each facet F of $\operatorname{cut}^{ \pm 1}(\mathrm{G})$ let $\alpha^{F} \in \mathbb{R}^{E}$ denote the normal vector to the supporting hyperplane of F. We say that G has the facetray identification property (or FRIP) if for every facet F of cut ${ }^{ \pm 1}(\mathrm{G})$ there exists an extremal matrix $M=\left[m_{i j}\right]$ in \mathcal{K}_{G} for which either $m_{i j}=\alpha_{i j}^{F}$ for every $\{i, j\} \in E(G)$ or $m_{i j}=-\alpha_{i j}^{F}$ for every $\{i, j\} \in E(G)$.

Facet-Ray Identification Property

Definition

Let G be a graph. For each facet F of $\operatorname{cut}^{ \pm 1}(\mathrm{G})$ let $\alpha^{F} \in \mathbb{R}^{E}$ denote the normal vector to the supporting hyperplane of F. We say that G has the facetray identification property (or FRIP) if for every facet F of cut ${ }^{ \pm 1}(\mathrm{G})$ there exists an extremal matrix $M=\left[m_{i j}\right]$ in \mathcal{K}_{G} for which either $m_{i j}=\alpha_{i j}^{F}$ for every $\{i, j\} \in E(G)$ or $m_{i j}=-\alpha_{i j}^{F}$ for every $\{i, j\} \in E(G)$.

Theorem [Solus, Uhler, Y. 2015]

Let $p \geq 3$. The cycle C_{p} on p vertices has the facet-ray identification property. Moreover, the cut polytope cut ${ }^{ \pm 1}\left(\mathrm{C}_{p}\right)$ is the p-halfcube which has two types of facets, halfcubical and simplicial. If the extremal matrix M is identified by a halfcubical facet then it is rank 1, and if it is identified by a simplicial facet it is rank $p-2$.

Facet-Ray Identification Property

Definition

Let G be a graph. For each facet F of $\operatorname{cut}^{ \pm 1}(\mathrm{G})$ let $\alpha^{F} \in \mathbb{R}^{E}$ denote the normal vector to the supporting hyperplane of F. We say that G has the facetray identification property (or FRIP) if for every facet F of cut ${ }^{ \pm 1}(\mathrm{G})$ there exists an extremal matrix $M=\left[m_{i j}\right]$ in \mathcal{K}_{G} for which either $m_{i j}=\alpha_{i j}^{F}$ for every $\{i, j\} \in E(G)$ or $m_{i j}=-\alpha_{i j}^{F}$ for every $\{i, j\} \in E(G)$.

Theorem [Solus, Uhler, Y. 2015]

Let $p \geq 3$. The cycle C_{p} on p vertices has the facet-ray identification property. Moreover, the cut polytope cut ${ }^{ \pm 1}\left(\mathrm{C}_{p}\right)$ is the p-halfcube which has two types of facets, halfcubical and simplicial. If the extremal matrix M is identified by a halfcubical facet then it is rank 1, and if it is identified by a simplicial facet it is rank $p-2$.

Theorem [Solus, Uhler, Y. 2015]

Every series-parallel graph has the facet-ray identification property. Moreover, the rank of the extremal ray is given by the constant term of the supporting hyperplane of the facet.

4-cycle: an example

The facets supported by the hyperplanes $\pm x_{1}=1$ correspond to the rank 1 extremal matrices

$$
Y=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { and } \quad Y=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

4-cycle: an example

The facets supported by the hyperplanes $\pm x_{1}=1$ correspond to the rank 1 extremal matrices

$$
Y=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { and } \quad Y=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The facets $\left\langle v_{T}, x\right\rangle=2$ for $v_{T}=(1,-1,1,1)$ and $v_{T}=(1,-1,-1,-1)$ respectively correspond to the rank 2 extremal matrices

$$
Y=\frac{1}{3}\left[\begin{array}{cccc}
1 & -1 & 0 & -1 \\
-1 & 2 & 1 & 0 \\
0 & 1 & 1 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right] \quad \text { and } \quad Y=\frac{1}{3}\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
-1 & 2 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 2
\end{array}\right] .
$$

4-cycle: an example

The facets supported by the hyperplanes $\pm x_{1}=1$ correspond to the rank 1 extremal matrices

$$
Y=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { and } \quad Y=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

The facets $\left\langle v_{T}, x\right\rangle=2$ for $v_{T}=(1,-1,1,1)$ and $v_{T}=(1,-1,-1,-1)$ respectively correspond to the rank 2 extremal matrices

$$
Y=\frac{1}{3}\left[\begin{array}{cccc}
1 & -1 & 0 & -1 \\
-1 & 2 & 1 & 0 \\
0 & 1 & 1 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right] \quad \text { and } \quad Y=\frac{1}{3}\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
-1 & 2 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 2
\end{array}\right] .
$$

These four matrices respectively project to the four extreme points in \mathcal{E}_{G}^{\vee}

$$
(1,0,0,0), \quad(-1,0,0,0), \quad \frac{1}{3}(-1,1,-1,-1), \quad \text { and } \quad \frac{1}{3}(-1,1,1,1)
$$

Advertisement

- Conference
- SIAM Conference on Applied Algebraic Geometry from August 3rd to 7th 2014 at NIMS Daejeon South Korea. http: / /open.nims. re.kr/new/event/event.php?workType=home\&Idx=170

Advertisement

- Conference
- SIAM Conference on Applied Algebraic Geometry from August 3rd to 7th 2014 at NIMS Daejeon South Korea. http: / /open. nims. re.kr/new/event/event.php?workType=home $\& I d x=170$
- Journal
- Journal of Algebraic Statistics http://jalgstat.com/
- Special issue of J of Algebraic Statistics http:
//www.dima.unige.it/~rogantin/AS2015/SJAS.html

Advertisement

- Conference
- SIAM Conference on Applied Algebraic Geometry from August 3rd to 7th 2014 at NIMS Daejeon South Korea. http: / /open. nims . re.kr/new/event/event.php?workType=home\&Idx=170
- Journal
- Journal of Algebraic Statistics http://jalgstat.com/
- Special issue of J of Algebraic Statistics http:
//www.dima.unige.it/~rogantin/AS2015/SJAS.html
- R package
- R package algstat is available via CRAN or at Github https://github.com/dkahle/algstat

THANK YOU FOR YOUR ATTENTION!

Questions?

