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Trees

Definition: Tree = undirected graph without cyclestree T = (V ,E): V vertices, E edges

undirected
r

rooted
rooted tree often depicted as. . .leaves = degree one nodesinner nodes = degree ≥ 2 nodes
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Latent tree models

Graphical models on trees have many nice propertiesexponential families with explicit formulas for the MLEdynamic programming for efficient computation of variousprobabilistic quantitiesMaking some of the variables hidden gives greater flexibility
Definition∗: Tree-decomposable distribution = marginaldistribution of a tree distribution.hidden variables are marginalized outTree-decomposable distributions discussed by Judea Pearl as anatural extension of star-decomposable distributions (naiveBayes model, latent class model)

Judea Pearl, Fusion, Propagation, and Structuring in Belief Networks, Artificial Inteligence, 1986.
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Motivation

Applications in:linguistics and bioinformatics – to model evolutionary processeshierarchical clusteringimage processingImportant concept in causalityMany well known statistical models are special casesexamples: hidden Markov models, naive Bayes modelsgeneral results can be used for these special cases
Understand models with hidden datathe most tractable family of models with hidden variablesidentifiability, geometry of the likelihood function

Alan S. Willsky, Multiresolution Markov Models for Signal and Image Processing, 2002.Martin J. Wainwright, Michael I. Jordan, Graphical Models, Exponential Families, and Variational Inference, 2008.
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Short overview

Lecture 1: Trees, tree metrics and tree spaces

Lecture 2: Latent tree graphical models
Lecture 3: Tree inference and parameter estimation
Lecture 4: Likelihood geometry and model identifiability

Main theme: phylogenetic combinatorics and results on treemetrics give a greater insight into the class of latent treemodels
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Semi-labeled trees and phylogenetic trees

semi-labeled tree T = (T ,φ): φ : {1, . . . , m} → Vall degree ≤ 2 nodes need to be labeledmultiple labels at a node are allowedphylogenetic tree = semi-labeled tree such that:only leaves are labeled (there are no degree 2 nodes)no multiple labels allowed
1
2

3 4 5, 6
semi-labeled

1
2

3 4 5
6phylogenetic

this makes sense for both rooted and undirected trees
Charles Semple, Mike Steel, Phylogenetics, 2003.
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Binary phylogenetic trees are universal

Undirected binary tree = every inner node has degree threeRooted binary tree = every internal node has two children
Let e = u − v be an edge of a semi-labeled tree T .
T /e is the semi-labeled tree obtained from T by identifying uand v and removing e. The labeling sets of u, v are joined.this operation is called edge contraction
Remark: Every semi-labeled tree can be obtained from a binaryphylogenetic tree by edge contractions.
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Binary expansion

A binary expansion of a semi-labeled tree T is a binaryphylogenetic tree T ∗ such that T can be obtained from T ∗ byedge contractions. (typically not unique)
1
2

3
4 5, 6 =⇒ 1

2

3 4
5, 6 =⇒

1
2

3 4 5
6

=⇒ 1
2

3 4 5
6
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Tree metrics

T semi-labeled tree with labeling set [m] := {1, . . . , m}Attach a positive number de to each edge e of TFor every two labeled nodes i, j ∈ [m]
ij denotes the path between i and j in T
dij := ∑e∈ij de is the T -distance between i and j in T

1
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3
4

53.5
2 1
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Tree metrics (2)

T a semi-labeled tree with labeling set [m].
D = [dij ] ∈ Rm×m a symmetric matrix with zeros on the diagonal.
Definition: D is a T -metric if there exists a collection of edgelengths de of T such that dij = ∑e∈ij de for all i, j ∈ [m].
Definition: D is a tree metric if it is a T -metric for somesemi-labeled tree T .
Question: Given a symmetric matrix D with dii = 0 and dij > 0for i 6= j , can we say if it is a tree metric? If yes, can we identifythe underlying tree T and the edge lengths de?
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Tree metric theorem

Theorem[Buneman,1974]: A symmetric matrix D = [dij ] with
dii = 0 is a tree metric if and only if for any four (not necessarilydistinct) i, j, k, l ∈ [m]

dij + dkl ≤ max{ dik + djl
dil + djk .Moreover, a tree metric defines the defining T and the edgelengths de uniquely.

Every tree metric is a metric ≡ satisfies the triangle inequality.
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The space of tree metrics

SPACE OF PHYLOGENETIC TREES 15

this case is a well-known graph, called the Peterson graph. The Peterson
graph has no planar embedding, and the space T4 cannot be embedded in
3-dimensional space.

Figure 13: Link of the origin in T4

One can visualize T 4 as being obtained from the space pictured in Figure
14 by gluing together edges with the same label. We note that the figure
does not look metrically correct, since each triangle should be a right trian-
gle with right angle at the origin; also, each triangle should extend forever
in the direction away from the origin.

a

b

c
b

a

c

Figure 14: T4

3. COMBINATORICS OF THE SPACE OF TREES

In this section we consider certain combinatorial aspects of the space of
trees, and in particular relations to combinatorial structures which have
been studied in other contexts. The combinatorial properties of the link of

Billera, L. J., Holmes, S. P., & Vogtmann, K. (2001). Geometry of the Space of Phylogenetic Trees. Advances in
Applied Mathematics, 27(4).
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Phylogenetic oranges

T a semi-labeled tree with labeling set [m] = {1, . . . , m}Attach a number ρe ∈ [0, 1] to each edge of T .For every two labeled nodes i, j ∈ [m], ρij := ∏e∈ij ρe .Write Σ = [ρij ] ∈ PO(T ), ρii = 1.That Σ is positive semidefinite will be shown later.
PO(m) := ⋃

T semi−labeled PO(T )
Moulton, Steel, Peeling phylogenetic oranges, 2004.Kim, Slicing hyperdimensional oranges: the geometry of phylogenetic estimation, 2000.Engström, Hersh, and Sturmfels, Toric cubes, 2012.
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Relation to tree metrics

Note: all ρe 6= 0 if and only if all ρij 6= 0
PO>(m) := PO(m) ∩ (0, 1](m2)

Proposition: Points in PO>(m) are in one-to-onecorrespondence with tree metrics over [m].define dij := − logρij , de := − logρe , then
dij , de ≥ 0 and dij = ∑e∈ij de (because ρij = ∏e∈ij ρe)

The space of phylogenetic oranges arises naturally for variousstatistical models on trees, which we will see later.Tree metrics are well studied and many authors exploit this linkto propose efficient learning algorithms.
14 / 23

Lecture 1: Trees, tree metric and tree spaces



Introduction Trees Tree metrics Phylogenetic oranges Tree correlations Further concepts

Semi-labeled forests

If some ρij = 0, then Σ does not map to a tree metric.if ρij → 0, then − logρij →∞

ρij = ∏e∈ij ρe and so ρij = 0 if and only if ρe = 0 for some e ∈ ij .
if ρij 6= 0 and ρjk 6= 0 then ρik 6= 0 and so

i ∼ j iff ρij 6= 0 defines an equivalence relationEvery equivalence relation on [m] gives apartition B1/ · · · /Br of [m] into equivalenceclasses (blocks).
A semi-labeled forest F with labeling set [m] is a collection ofsemi-labeled trees with labeling sets B1, . . . , Br that are disjointand ⋃Bi = [m].
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Tuffley poset

Consider all semi-labeled forests on [m].They form a partially ordered set, called the Tuffley poset.
If F is a semi-labeled forest then F/e is asemi-labeled forest obtained from F bycontracting eIf F is a semi-labeled forest then F \ e is asemi-labeled forest obtained from F byremoving e (some post-processing is needed)

We say that T ≤ T ′ in the Tuffley poset if T can be obtainedfrom T ′ by edge contractions and edge deletions
16 / 23
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Tuffley poset for m = 3
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Tuffley poset and the face structure

Contracting an edge corresponds to ρe = 1. Deleting an edgecorresponds to ρe = 0.The Tuffley poset describes the face structure of the boundary ofPO(m). Each element corresponds to a strata.
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Tree correlations

In many contexts it will be more natural to assume that theedge correlations can be negative, ρe ∈ [−1, 1].Call this space the space of tree correlations, T -correlationsNote that ρijρikρjk = ∏e∈ij ρe
∏

e∈ik ρe
∏

e∈jk ρe and so
ρijρikρjk = ∏e∈ri ρ2

e
∏

e∈rj ρ2
e
∏

e∈rk ρ2
e ≥ 0.

Proposition: A correlation matrix Σ = [ρij ] lies in the space oftree correlations if and only if:
(i) [|ρij |] lies in the space of phylogenetic oranges PO(m)
(ii) for all i, j, k we have ρijρikρjk ≥ 0
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Tree correlations for three leaves
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Alternative descriptions of semi-labeled trees
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Split systems

[m] = {1, . . . , m} = the labeling set of the semi-labeled tree TLet A/B be a split of [m], i.e. A ∪ B = [m], A ∩ B = ∅
We say that A/B is a T − split if A/B isinduced after removing an edge from Tand considering the two connectedcomponents of so obtained forest.

Let Π be the set of all T -splits. Then Π identifies T uniquely.
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Quartet systems

Let T be a semi-labeled tree and i, j, k, l any four distinctlabeled nodes.We say that ij/kl is a quartet of T if the paths ij and kl have novertex in common.

Let Q be the set of quartets if T . Then Q identifies T uniquely.
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Short overview

Lecture 1: Trees, tree metrics and tree spaces
Lecture 2: Latent tree graphical models

Lecture 3: Tree inference and parameter estimation
Lecture 4: Likelihood geometry and model identifiability

2 / 22

Lecture 2: Latent tree graphical models



Fully observed model Model with hidden variables General Markov model Log-det distance

Graphical models formalism

graph G = (V ,E); V vertex set, E edge set.With each vertex v ∈ V we associate a random variable Yv withvalues in Yv , Y = (Yv ), Y = ∏v∈V Yv .Missing edges of G indicate some sort of independence.
for A ⊂ V denote YA = (Yv )v∈A and YA = ∏v∈A Yv

Two important classes of graphical models:undirected: f (y) = 1
Z
∏

C∈C ψC (yC ) for some nonnegativefunctions ψC

C = set of cliques, Z = normalizing constantdirected acyclic graphs: f (y) = ∏v∈V fv|pa(v )(yv |ypa(v )), y ∈ Y
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Graphical model on trees

Let T = (V ,E) be an undirected tree.We consider two situations:
Y = (Yv ) is multivariate Gaussian
Y = (Yv ) is a finite discrete vector with state space Y = ∏v∈V Yv

Fix Y and T . An undirected tree model N(T , Y) is the family ofdensities of the form
f (y) = 1

Z
∏
v∈V

ψv (yv ) ∏
u−v∈E

ψuv (yu, yv ) for all y ∈ Y

for some nonnegative functions ψv , ψuv .we write N(T ) in the Gaussian case
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Some alternative formulationsThe density f lies in N(T , Y) if and only if for disjoint
A,B, C ⊂ V

YA ⊥⊥ YB|YC [f ] whenever C separates A and B in Ti.e. when every path from A to B crosses C

Fix a vertex r ∈ V and consider the rooted version T r of T withroot r . Consider the Bayesian network (DAG model) on T r

f (y) = fr (yr ) ∏
v∈V\r

fv|pa(v )(yv |ypa(v )) for all y ∈ Y,

where pa(v ) is the unique parent of v .
Proposition: Every choice of r leads to the same family ofdensities. This family is equal to N(T , Y).

Steffen Lauritzen, Graphical models, 1996.
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Model parametrization: discrete case

We parametrize N(T , Y) by rooting T at r and specifying theroot distribution θr (yr ) together with conditional probabilities
θv|pa(v )(yv |ypa(v )) for all v ∈ V \ {r}.

f (y;θ) = θr (yr ) ∏
v∈V\{r}

θv|pa(v )(yv |ypa(v )).
probability simplex: ∆k = {x ∈ Rk : xi ≥ 0,∑i xi = 1}the root distribution lies in ∆|Yr |for u → v and every y ∈ Yu we have θv|u(·|y) ∈ ∆|Yv |the parameter space Θ = ∆|Yr | ×

∏
v∈V\r (∆|Yv |)|Ypa(v )|
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Markov process on T r

If all state spaces Yv are equal then N(T , Y) is called a Markovprocess on T r and denoted by N(T , d), where d := |Yv |.
In this case the conditional probabilities θv|pa(v ) ∈ Rd×d arecalled transition matrices .
We can think about this model as a generalization of a Markovchain.
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Example: tripod tree model

1 2
3

4
Y ∈ {0, 1}4, θ4 ∈ ∆2, θ1|4, θ2|4, θ3|4 ∈ (∆2)2dim Θ = 7
e.g. θ1|4 = [θ1|4(0|0) θ1|4(1|0)

θ1|4(0|1) θ1|4(1|1)]
p(y1, y2, y3, y4) = θ4(y4)θ1|4(y1|y4)θ2|4(y2|y4)θ3|4(y3|y4)for all (y1, y2, y3, y4) ∈ {0, 1}4

By the separation criterion 1 ⊥⊥ {2, 3}|4 and 2 ⊥⊥ 3|4 in N(T , 2)and thus 1 ⊥⊥ 2 ⊥⊥ 3|4.
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The Gaussian case: standard definitions

In the standard language of Gaussian graphical models: N(T ) isthe set of all concentration matrices K = Σ−1 such that Kuv = 0whenever u, v are not neighbors in T .The dimension of the model is |V |+ |E|.
Alternatively, we can describe the model using linear structuralequations.Let (εv )v∈V be independent εv ∼ N (0, σv )Let Yr = εr , and suppose that

Yv = λv Ypa(v ) + εv for all v ∈ V \ {r}

ans some (λv ), then the distribution of Y lies in N(T ).
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Alternative parametrization: edge correlations

Suppose Y is jointly Gaussian. We have Yu ⊥⊥ Yv |Yw if and onlyif ρuv = ρuwρwv , where ρuv = corr(Yu, Yv ).In N(T ) we have Yu ⊥⊥ Yv |Yw whenever w lies on the path uvUsing this recursively we get:
(∗) ρuv = ∏

e∈uv
ρe for all u, v ∈ V .

new parameters: edge correlations ρe ∈ [−1, 1] for e ∈ E andvariances σvv for v ∈ V
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Latent tree graphical model M(T , Y)
Let T be a semi-labeled tree with the underlying tree T andlabeling set [m]
Y = (X,H), Y = X ×Hobserved (labeled) subvector of Y : X ∈ Xhidden (unlabeled) subvector of Y : H ∈ H

Definition: Fix Y and T . The corresponding latent treegraphical model M(T , Y) is the set of margins of the densities in
N(T , Y) over the labeled nodes of T .

1
2

3
4

Consider a distribution p ∈ N(T , Y) over aquartet tree (6 nodes).Summing over all possible values of the twoinner nodes gives a distribution in M(T , Y),where T is the semi-labeled tree on the left.
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Parametrization of M(T , Y)
In the discrete case the parametrization becomes:

p(x ;θ, T ) = ∑
v unlabeled

∑
hv∈Yv

p((x, h);θ, T ),
where y = (x, h) and

p(y;θ, T ) = θr (yr ) ∏
u→v

θv|u(yv |yu) for y = (yv )v∈V ∈ Y.

In the Gaussian case take simply the corresponding submatrixof the covariance matrix. If Y ∼ N|V |(0,Σ) then X ∼ Nm(0,ΣXX ).
ρij = ∏e∈ij ρe for all i, j ∈ [m], variances σii unconstrained
σvv for unlabeled v does not appear; assume σvv = 1
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On the definition of semi-labeled trees

In our definition of semi-labeled trees we assumed that allnodes of degree ≤ 2 are necessarily labeled.
If v is a degree one unlabeled node then the formula for
p(x ;θ, T ) contains: ∑hv

θv|pa(v )(hv |ypa(v )) = 1 so we can remove vfrom T without affecting the margin M(T , Y).If v is a degree two unlabeled node, then (w.l.o.g.) u → v → w isan induced subgraph of T , and the formula for p(x ;θ, T )contains: ∑hv
θv|u(hv |yu)θw|v (yw |hv ) = θ̃w|u(yw |yu) so we cansuppress v from T without affecting the margin M(T , Y).

There is a finite number of semi-labeled trees on [m].
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Latent forest models

Let F be a semi-labeled forest whose tree components are
T1, . . . , Tk with labeling sets B1, . . . , Bk , ⋃Bi = [m].The latent tree models can be extended to forests. Everydensity in M(F,Y) is of the form

p(x ;θ,F ) = k∏
i=1 p(xB;θ, Ti),

where p(xB;θ, Ti) is a density M(Ti, Yi).In particular XB1 ⊥⊥ · · · ⊥⊥ XBk
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General Markov model

We focus on two casesthe Gaussian casegeneral Markov model: where all Yv are equal.
Write M(T , d), where d = |Yv |.The matrix of the conditional distribution θv|u for the edge
e = u → v is denoted by θe and is called a transition matrix.
The case d = 4 is of some interest.
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Link to tree correlations

Theorem: The Gaussian latent tree model on a phylogenetictree T is equal to the space of tree correlations on T with
ρij ∈ (−1, 1).
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1 2
3

Consider the tripod treemodel.
Y = (X1, X2, X3, H)
Y ∼ N4(0,Σ), Σ ∈ N(T )

ρ12 = ρh1ρh2, ρ13 = ρh1ρh3, ρ23 = ρh2ρh3 and
ρh1, ρh2, ρh3 ∈ [−1, 1].
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Edge contraction and removal

Let T be a semi-labeled tree and M(T , d) the correspondinggeneral Markov model.
T /e = the semi-labeled tree with the edge e contracted.
T \ e = the semi-labeled forest with e removed.

Fix an edge e = u → v and consider the image of all parameterssatisfying θv|u = Id . This submodel is equal to M(T /e, d).Fix an edge e = u → v and consider the image of all parameterssatisfying rank(θv|u) = 1. This submodel is equal to M(T \ e, d).
In the Gaussian case the same is obtained by taking ρe = ±1(contraction) and ρe = 0 (deletion).
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Reduction to binary phylogenetic tree

Recall: a tree is called binary if every inner edge has degree 3
A binary expansion of T , is any binary phylogenetic tree T ∗such that T is obtained from T ∗ by contracting some edges.
Using the same argument as on the previous slide, we can showthe following result:
Proposition: If T ∗ is a binary expansion of a semi-labeled tree
T then M(T , Y) ⊆M(T ∗, Y).The same holds in the Gaussian case.
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Two-way margins

Let M(T , d) be a general Markov model on T parametrized bythe root distribution and the transition matrices θe .For any distribution in M(T , d) and any two labels i, j we have
diag(pi) = diag(ph) ∏

e∈hi

θe, and
pij = ∏

e∈hi

θT
e diag(ph) ∏

e∈hj

θe.

In particular det pij = ∏e∈ij detθe
∏d

k=1 ph(k )
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Link to phylogenetic oranges

Define uij := det pij√det(diag(pi )) det(diag(pj )) = ∏
e∈ij detθe√
|
∏

e∈ij detθe |Then for p ∈M(T , d)
|uij | = ∏

e∈ij

√
| detθe|.

Since θe is a stochastic matrix, detθe ∈ [−1, 1].Note √| detθe| ∈ [0, 1] and so (|uij |) lies in the space ofphylogenetic oranges
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Link to tree correlations

check: uijuikujk ≥ 0 for all i, j, k ∈ [m]
Proposition: The space of all possible u = (uij ) is equal to thespace of all tree correlations.Proof: use a proposition from the previous lecture
θe is a stochastic matrix, detθe ∈ [−1, 1] and it is equal to ±1 ifand only if it is a permutation matrix.It follows that |uij | ∈ [0, 1] and uij = ±1 only if Xi and Xj arefunctionally relatedIf d = 2 (binary variables), then uij = corr(Xi, Xj ), so
ρij = ∏e∈ij ρe like in the Gaussian case.
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Induced constraints

12 34 u13u24 = u14u23; 13 24 u12u34 = u14u23In general if ij/kl is a quartet of T then: uikujl = uilujk .
Corollary: We can identify the underlying tree from two-waymargins only.
More on tree inference in the next lecture.
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Three main inference problems

There are three main inference problem for M(T , Y):Learn the underlying tree T .Learn the underlying parameter θ.Given an estimator θ̂, compute various marginal probabilitiesfrom (the fully observed distribution) p(y; T , θ̂).Here we use the fact that N(T , Y) and M(T , Y) share parameters.
Depending on the application, some problems are irrelevant.
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Tree models as exponential families

the Gaussian tree model N(T ) forms an exponential familyIn the discrete case the set of strictly positive densities in
N(T , Y) forms a linear exponential familyin the factorization f = 1

Z
∏

u−v∈E ψuv all ψuv > 0.
there is a closed form formula for the density at θ̂:

f (y; θ̂) = ∏
u−v∈E p̂uv (yu, yv )∏
v∈V p̂v (yv )deg(v )−1 ,

where deg(v ) is the degree of v in the underlying tree T .
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Why is it useful?

By standard results on exponential families:the likelihood function is strictly concaveconjugate duality between the cumulant function and the entropyfor exponential familiesThis allows to unify various known learning algorithms.
If the sample sufficient statistic has no zeros then the MLE isguaranteed not to lie on the boundary and so we may maximizethe likelihood function over the corresponding exponentialfamily.

Wainwright, Jordan, Graphical Models, Exponential Families, and Variational Inference. 2007.
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Chow-Liu algorithm

Problem: Suppose that we want to find the MLE over the set ofall tree models N(T , Y) for all possible trees with a fixed set ofvertices.
Mutual information I(Yi, Yj ) as the Kullback-Leibler divergencebetween fij and the product fifj

I f (Yi, Yj ) = ∑
yi ,yj

fij (yi, yj ) log fij (yi, yj )
fi(yi)fj (yj ) .

I f (Yi, Yj ) ≥ 0 and is zero precisely when Yi and Yj areindependent.
6 / 20
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Chow-Liu algorithm (2)

For a fixed tree T :
f (y; θ̂) = ∏

v
p̂v (yv ) ∏

u−v∈E(T )
p̂uv (yu, yv )

p̂u(yu)p̂v (yv ) .
the log-likelihood at θ̂ (n∑y p̂(y) log f (y, θ̂)) can be rewritten as

n
∑

v

∑
yv

p̂v (yv ) log p̂v (yv ) + n
∑

u−v∈E(T ) I p̂(Yu, Yv ).
Theorem: The maximum likelihood tree is the maximum costspanning tree (use Kruskal’s theorem)
the same is true in the Gaussian casehere also: I f̂ (Yu, Yv ) = − 12 log(1− ρ̂2

uv ), ρ̂uv = sample correlation
7 / 20
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Example: Star tree

1 2

3
4

Fixing parameter values, θ4(1) = 0.6 and θi|4[0.7 0.30.4 0.6] , [0.8 0.20.5 0.5] , [0.6 0.40.4 0.6]
we obtain the data generating distribution.

a simulated matrix of observed mutual informations:
· 0.000 0.003 0.043
· · 0.004 0.027
· · · 0.045
· · · ·

 .
Algorithm: First add edges 3− 4 and 1− 4. Then, 2− 4. Sinceno more edges can be added without introducing cycles, westop.
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Structural EM: basic idea

We want to find the maximum likelihood estimator over theunion of latent tree models M(T , Y) for all semi-labeled trees.We can assume T are binary phylogenetic trees.If in our application we are interested in more generalphylogenetic trees, this can be further refined.
If we observed all vertices, the Chow-Liu algorithm gives anefficient way to proceed.We use the same idea as in the EM algorithm.
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Structural EM for Gaussian models

Initialize: Choose a starting binary tree topology T 0 and edgecorrelations ρ0 = (ρ0
e). Then, until a convergence criterion issatisfied, perform the two following steps for i = 0, 1, ....E-step: Compute expected sample covariance of (X,H) given theparameters T i , ρi and the observed vector X .M-step: Use the Chow-Liu algorithm to update both the treeand edge weights.

This works subject to some technicalities. . .
Friedman et al., A Structural EM Algorithm for Phylogenetic Inference, Journal of Computational Biology, 2002.
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The E-step

The E-step is standard. We work with data of length nnormalized to have mean zero.Suppose that Σ represents the full covariance matrix estimatedat the previous step of the algorithm.Let S be the sample correlation matrix that we are trying toestimate: SXX = 1
n XT X , SHX = 1

n HT X , SHH = 1
n HT H ,Standard formulas: E[H|X ] = ΣHXΣ−1

XX X andvar(H|X ) = ΣHH − ΣHXΣ−1
XXΣXH .This gives E[SHX |X ] = ΣHXΣ−1

XX SXX and
E[SHH |X ] = ΣHH − ΣHXΣ−1

XXΣXH + ΣHXΣ−1
XX SXXΣ−1

XXΣXH .
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The M-step

Here we take the full sample covariance matrix estimated in the
E-step and use the Chow-Liu algorithm
Problem: the Chow-Liu algorithm does not distinguish hiddennodes from observed nodes so it can output a tree with hiddenleaves and inner nodes that are observed (in fact it often doesin practice).
Proposition: For every tree given as an output of the Chow-Liualgorithm, there exists a binary phylogenetic tree with exactlythe same (observed) likelihood.
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Example: equal likelihood tree

If we initialize with a binary phylogenetic tree, then the numberof hidden nodes is m − 2, S is a (2m − 2)× (2m − 2) matrix.
If m = 6, then 2m − 2 = 10.Suppose that the M-step reported thetree on the right. 2

1 4 5
63

2

1 4 5
63 ≡ 2

1 4 5
63 ≡

2
1 4 5

6

3

≡

1
2

3 4 5
6

here — is an edge whose transition matrix is the identity
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Equal likelihood tree

The tree obtained in the previous step is by no means unique.
1
2

3 4 5
6 ≡

1
2

4 3 5
6

we can decide between the two based on some otherdistance-based argument
Even a naive implementation works pretty well and very fast for
m ≤ 500.
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Tree identifiability

Suppose that p ∈M(T , d). Recall: for any two leaves i, j ∈ [m]
uij := det pij√det(diag(pi)) det(diag(pi))

|uij | = ∏e∈ij ρe , where ρe = √| detθe| ∈ [0, 1].
If all uij are nonzero, dij := − log |uij | > 0 forms a T -metricBuneman: (T , (de)) can be uniquely identified from (dij )
Given some data, the task is to find the best treeFrom sample proportions p̂ compute sample versions of uij and dij .Use standard algorithms (least squares, neighbor joining) to learnthe best underlying tree.
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Phylogenetic invariants

bc
bc

p̂

M

Another method is the method ofphylogenetic invariants that usessome geometric information tochoose the best tree modelexplaining the data.We introduce some basic ideasbehind this and discuss the method.
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Geometric viewpoint

X ∈ X := {1, . . . , k} with distribution P(X = i) = pi for i ∈ Xprobability simplex: ∆k = {p ∈ Rk : pi ≥ 0,∑k
i=1 pi = 1}

statistical model on X : a family of probability distributions on Xequivalently: a family M of points in ∆kparametric model given as an image of a map Θ→ ∆k

Example: Let X, Y ∈ {0, 1}. We have X ⊥⊥ Y ifand only if pij = pi+p+j for all i, j ∈ {0, 1}, orequivalently
p00p11 − p10p01 = 0.
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Phylogenetic invariants: basic idea

Example: Let X, Y ∈ {0, 1}. We have X ⊥⊥ Y ifand only if pij = pi+p+j for all i, j ∈ {0, 1}, orequivalently
p00p11 − p10p01 = 0.

Given a random sample of size n let p̂ be the sample proportions.If the true data generating distribution q satisfies X ⊥⊥ Y [q] thenfor large n we have p̂11p̂00 − p̂01p̂10 ≈ 0.We can use this fact to test whether X ⊥⊥ Y
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Semialgebraic sets

A simple semialgebraic set is a subset of Rd described bypolynomial equations and inequalities.A semialgebraic set is a subset of Rd given as a finite union ofsimple semialgebraic sets.
Theorem [Tarski, Seidenberg]: The image of a semialgebraicset under a polynomial map is semialgebraic.
M(T , Y) is given as the image of a polynomial parametrization.The parameter space is a product of simplices and sosemialgebraic. It follows that M(T , Y) ⊆ ∆|X|−1 is semialgebraic.
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Phylogenetic invariants: application

The study of defining equations (phylogenetic invariants) wasproposed independently by Joseph Felsenstein, James Cavender,and James Lake in 1980’s.
Suppose we have a collection of competinglatent tree models.We use (some) algebraic constraints definingthese models to select the best model.no parameter estimation is neededthe method is consistent

There are several problems with this procedure:there are many invariants and some are very sensitiveby ignoring inequalities we lose some informationthe statistical theory is underdeveloped
20 / 20
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The model identifiability

We say that a parametric model (Pθ)θ∈Θ is identifiable if
Pθ = Pθ′ implies θ = θ′otherwise, even with infinite data, we cannot learn the parameter
This definition is too restrictive in general for models withhidden variableslabel swapping problemspecial parameter values correspond to degenerate cases
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Generic model identifiability

A parametric model is given by a parametrization θ 7→ pθ .Such a model is identifiable if the parametrization is one-to-one.
Definition: We say that a parametric model (Pθ)θ∈Θ isgenerically identifiable if the parametrization is finite-to-one foralmost all distributions in the model.
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Simple examples

Model: 1•←H◦→2•, where X1, X2, H binarythe parameter space has dimension 5, the model dimension is
≤ 3 so there is no identifiability

1 2
3

Model: X1 ⊥⊥ X2 ⊥⊥ X3|H , where X1, X2, X3 any discreteand H binaryThis model is generically identifiable; theparametrization is generically two-to-one.switch rows of θh , θ1|h , θ2|h , θ3|h .There is an infinite number of parameter vectors thatmap to any distribution in the model satisfying
X1 ⊥⊥ X2 ⊥⊥ X3.
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Example: the Gaussian tripod

T the tripod tree. Suppose that Σ ∈M(T ) with ρij ≥ 0.First note that precisely one zero correlation is impossible.We have three cases:
(i) Correlations non-zero: ρ1 := √ρ12ρ13

ρ23 , ρ2 := √ρ12ρ23
ρ13 ,

ρ3 := √ρ13ρ23
ρ12 , then ρiρj = ρij and ρi ∈ [0, 1].

(ii) Two correlations are zero: say ρ12 6= 0 then ρ3 := 0 and ρ1, ρ2any such that ρ1ρ2 = ρ12.
(iii) All are zero: three cases, e.g. ρ1 = ρ2 = 0 and ρ3 arbitrary.
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Kruskal’s theorem

Suppose X1, X2, X3, H discrete with d1, d2, d3, r values.Using Kruskal’s theorem for 3-way contingency tables thefollowing sufficient condition for generic identifiability can begiven:
Theorem: The tripod model is generically identifiable, provided

min(r, d1) + min(r, d2) + min(r, d3) ≥ 2r + 2.

7 / 20

Lecture 4: Likelihood geometry and model identifiability



Parameter Identifiability Geometry of the likelihood function

Identifiability for star trees

The basic idea is to realize a more general model as a submodelof the tripod tree model.
Theorem(Allman,Matias,Rhodes): Consider the star tree model
M(T , Y) where |Xi| = di and |H| = r . Suppose that there existsa tripartition of the labeling set [m] into three sets A1, A2, A3such that if κi = ∏j∈Ai

dj then
min(r, κ1) + min(r, κ2) + min(r, κ3) ≥ 2r + 2.

Then the model is generically identifiable up to label swapping.
Allman, Matias, Rhodes, Identifiability of Parameters in Latent Structure Models with Many Observed Variables,
Annals of Statistics, 2009.
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Identifiability for general Markov models

Theorem (Chang): Let T be a semi-labeled tree. Thecorresponding general Markov model M(T , d) is genericallyidentifiable up to label swapping of the latent variables.If d = 2, we have explicit formulas for the parameters and weunderstand all special fibers of the parametrization.
Theorem: The Gaussian latent tree model on a semi-labeledtree T is generically identifiable up to sign of the latentvariables.In this case can explicitly give the inverse map from the modelto the parameter space.

Chang, Full Reconstruction of Markov Models on Evolutionary Trees: Identifiability and Consistency, 1996.
Zwiernik, Smith, Tree-cumulants and the geometry of binary tree models, 2012.
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Formulas for parameters: Gaussian case

1
2

3
4

Check that:
ρ20 = ρ13ρ24

ρ12ρ34 = ρ14ρ23
ρ12ρ34

ρ21 = ρ12ρ13
ρ23 = ρ12ρ14

ρ24

Suppose ρ12 = 1/6, ρ13 = 1/60, ρ14 = 1/90, ρ23 = 1/40,
ρ24 = 1/60, ρ34 = 1/24.Then (ρ20, ρ21, ρ22, ρ23, ρ24) = (1/25, 1/9, 1/4, 1/16, 1/36).We have four possible solutions s · (1/5, 1/3, 1/2, 1/4, 1/6), where
s is one of:
{(+,+,+,+,+), (−,−,−,+,+), (−,+,+, −,−), (+, −,−,−,−, )}
Identical formulas can be derived for general M(T ).
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Constrained multinomial likelihood

Let θ 7→ pθ be a parametric model M over X , M ⊂ ∆X .Fix data u = (u(x))x∈X ; the likelihood function
L(u;θ) = ∏

x∈X
pθ(x)u(x).

Multinomial likelihood Lm(u; p) = ∏x∈X p(x)u(x), p ∈ ∆X .
Instead of maximizing L(u;θ) we can maximize the multinomiallikelihood constrained to p ∈M .
This gives a good insight into the likelihood geometry for latenttree models because Lm(u; p) is strictly concave with a uniquemaximizer p̂(x) = u(x)/n as long as u has only positive entries.
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Some examples

Consider the model Bin(2, θ) and its mixture.

In general the situation is much more complicated
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The Gaussian tripod tree model

Proposition: A covariance matrix Σ lies in the Gaussian tripodtree model if and only if K = Σ−1 satisfies k12k13k23 ≤ 0.The Gaussian likelihood function is strictly concave whenexpressed in K .
Recall: the boundary corresponds to i• −

j
• − k•Maximizing the likelihood function over the boundary isstraightforward. For example, over 1• − 2• − 3• we have

ρ∗12 = ρ̂12, ρ∗23 = ρ̂23, ρ∗13 = ρ̂12ρ̂23.
Maximizing over the interior is also easyΣ∗ exists if and only if the sample covariance matrix S lies in themodel (Σ∗ = S).
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Binary tripod model

Theorem: Let T be the tripod phylogenetic tree. A distribution
p lies in M(T , 2) if and only if (up to the action of Z2 × Z2 × Z2)
p000p111 ≥ p001p110 p000p111 ≥ p010p101 p000p111 ≥ p100p011
p001p111 ≥ p011p101 p010p111 ≥ p011p110 p100p111 ≥ p101p110
p000p011 ≥ p001p010 p000p101 ≥ p001p100 p000p110 ≥ p010p100
In particular, there are no equations and the model hasdimension 7.
The boundary is described by points where some of theseinequalities become equalities. However p•p• = p•p• is a linearequation in log p• and so the boundary consists of log-linearmodels.

Allman, Rhodes, Sturmfels, Zwiernik, Tensors of nonnegative rank two, 2015.
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Closed form MLE procedure

Theorem: There is a procedure to get the exact maximumlikelihood estimator over the model M(T , 2), where T is thephylogenetic tripod tree.
The maximum over the interior of the model exists if and only ifthe sample proportions p̂ lie in the interior. In this case, thelikelihood maximized precisely at p̂. Otherwise the maximumlies on the boundary.To optimize the likelihood we check smaller dimensional strata.In fact, almost all these boundary strata admit a closed formformula for the maximum. The remaining ones require solving aquadratic equations.
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Sources of multimodality in the likelihood

The dimension of the model is 7. Means of the observed nodesare unconstrained, fix all of them to be 1/2.We draw three slices of the remaining 4-dimensional set.
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Sources of multimodality in the likelihood (2)

Three sources of multimodality:Label switching (easy fix).each blob can get at least onemodeblobs are concave, so theremay be several modes withina blob
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A simple numerical example

Suppose that a sample of size 10000 has been observed[
u000 u001 u100 u101
u010 u011 u110 u111

] = [ 2069 16 2242 3312678 863 442 1359 ] .
Use the EM-algortihtm 100 times starting from randomparameter values.
The algorithm found 6 different local maxima

θ(r )1 θ(1)1|0 θ(1)1|1 θ(2)1|0 θ(2)1|1 θ(3)1|0 θ(3)1|11 0.466 0.337 0.552 1.000 0.000 0.416 0.0742 0.534 0.552 0.337 0.000 1.000 0.074 0.4163 0.257 0.361 0.658 0.420 0.865 0.000 1.0004 0.743 0.658 0.361 0.865 0.420 1.000 0.0005 0.437 0.000 1.000 0.629 0.412 0.156 0.3866 0.563 1.000 0.000 0.412 0.629 0.386 0.156
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Why this is important

There may be distant local maxima found by the EM-algorithmwith similar value of the likelihood function. This should be partof the whole output of the EM-algorithm.Maxima often lie on the boundary of the parameter spaceHere the usual interpretation of the hidden variable breaks down.This will be a common problem unless variables in the system arehighly correlated.Points on the boundary do not correspond to critical points of thelikelihood function.A similar problem occurs in the Bayesian framework.
Wang, Zhang, (2006). Severity of Local Maxima for the EM Algorithm.
Zwiernik, Smith, (2011) Implicit inequality constraints in a binary tree model.
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Thank you!
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