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Trees

@ Definition: Tree = undirected graph without cycles

o tree T = (V,E): V vertices, E edges

undirected rooted

@ rooted tree often depicted as...
@ leaves = degree one nodes

@ inner nodes = degree > 2 nodes
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Latent tree models

Graphical models on trees have many nice properties

o exponential families with explicit formulas for the MLE
e dynamic programming for efficient computation of various
probabilistic quantities

Making some of the variables hidden gives greater flexibility

Definition*: Tree-decomposable distribution = marginal
distribution of a tree distribution.

e hidden variables are marginalized out

Tree-decomposable distributions discussed by Judea Pearl as a
natural extension of star-decomposable distributions (naive
Bayes model, latent class model)

Judea Pearl, Fusion, Propagation, and Structuring in Belief Networks, Artificial Inteligence, 1986.
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Motivation
@ Applications in:
e linguistics and bioinformatics — to model evolutionary processes
e hierarchical clustering
@ image processing
@ Important concept in causality
@ Many well known statistical models are special cases

o examples: hidden Markov models, naive Bayes models
e general results can be used for these special cases

Understand models with hidden data

o the most tractable family of models with hidden variables
o identifiability, geometry of the likelihood function

Alan S. Willsky, Multiresolution Markov Models for Signal and Image Processing, 2002.
Martin J. Wainwright, Michael I. Jordan, Graphical Models, Exponential Families, and Variational Inference, 2008.
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Short overview

Lecture 1: Trees, tree metrics and tree spaces

Lecture 2: Latent tree graphical models
@ Lecture 3: Tree inference and parameter estimation

@ Lecture 4: Likelihood geometry and model identifiability

Main theme: phylogenetic combinatorics and results on tree
metrics give a greater insight into the class of latent tree
models
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Semi-labeled trees and phylogenetic trees

o semi-labeled tree 7 = (T, ¢): ¢ :{1,...,m} -V

o all degree < 2 nodes need to be labeled
e multiple labels at a node are allowed

@ phylogenetic tree = semi-labeled tree such that:

e only leaves are labeled (there are no degree 2 nodes)
e no multiple labels allowed

3 3 4
1 4 1 * 5
— 5,6 >—$—$—<
2 2 6
semi-labeled phylogenetic

Further concepts

@ this makes sense for both rooted and undirected trees

Charles Semple, Mike Steel, Phylogenetics, 2003.
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Binary phylogenetic trees are universal

Undirected binary tree = every inner node has degree three

@ Rooted binary tree = every internal node has two children

Let e = u— v be an edge of a semi-labeled tree 7.

T e is the semi-labeled tree obtained from 7 by identifying u
and v and removing e. The labeling sets of u, v are joined.

o this operation is called edge contraction

@ Remark: Every semi-labeled tree can be obtained from a binary
phylogenetic tree by edge contractions.
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Binary expansion

@ A binary expansion of a semi-labeled tree 7 is a binary
phylogenetic tree 7* such that 7 can be obtained from 7% by
edge contractions. (typically not unique)

3 3 4

1 4 S 1 ® S
5,6 ® 56

2 2

3 4 3 4
1 : l l /o 5 1 5

—1

2 6 2 6
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Tree metrics

@ T semi-labeled tree with labeling set [m] := {1,..., m}
@ Attach a positive number d, to each edge e of 7
@ For every two labeled nodes i,j € [m]

e ij denotes the path between i and j in T

o dj:=} .jde is the T-distance between i and j in T

Further concepts

0 55 95 8
0 11 95

0 35

0
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Tree metrics (2)

T a semi-labeled tree with labeling set [m].
D = [djj] € R™™ a symmetric matrix with zeros on the diagonal.

Definition: D is a 7-metric if there exists a collection of edge
lengths d, of 7 such that dj =Y = d. for all i,j € [m].

ecij
Definition: D is a tree metric if it is a 7-metric for some
semi-labeled tree 7.

Question: Given a symmetric matrix D with d; = 0 and dj; > 0
for i # j, can we say if it is a tree metric? If yes, can we identify
the underlying tree 7 and the edge lengths d.?

10
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Tree metric theorem

@ Theorem[Buneman,1974]: A symmetric matrix D = [dj;] with
di = 0 is a tree metric if and only if for any four (not necessarily
distinct) i, j, k, [ € [m]

dix + dj
di +dqy < max { d + dy.
Moreover, a tree metric defines the defining 7 and the edge
lengths d. uniquely.

@ Every tree metric is a metric = satisfies the triangle inequality. J
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The space of tree metrics

Billera, L. J., Holmes, S. P, & Vogtmann, K. (2001). Geometry of the Space of Phylogenetic Trees. Advances in

Applied Mathematics, 27(4).
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Phylogenetic oranges

Further concepts

@ T a semi-labeled tree with labeling set [m] = {1,..., m}
@ Attach a number p. € [0, 1] to each edge of 7.
@ For every two labeled nodes i,j € [m], pj := [ ].cj pe-
@ Write L = [p;] € PO(T), p;i = 1.
e That X is positive semidefinite will be shown later. )
© PO(m) = Ur semitabeted PO(T)

Moulton, Steel, Peeling phylogenetic oranges, 2004.
Kim, Slicing hyperdimensional oranges: the geometry of phylogenetic estimation, 2000.
Engstrom, Hersh, and Sturmfels, Toric cubes, 2012.
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Relation to tree metrics

Note: all p. # 0 if and only if all p; # 0
o PO.(m) := PO(m) N (0,1](%)

Proposition: Points in POs (m) are in one-to-one
correspondence with tree metrics over [m].

o define d; := —log pj;, d. := —log p., then
o dj de >0and dj =3} 5d. (because p; = [].c7 pe)

The space of phylogenetic oranges arises naturally for various
statistical models on trees, which we will see later.

Tree metrics are well studied and many authors exploit this link
to propose efficient learning algorithms.

14/
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Semi-labeled forests

@ If some p; = 0, then ¥ does not map to a tree metric.

o if p; — 0, then —log p; — oo

° pj = |_|e€7jpe and so p; = 0 if and only if p. = 0 for some e € ij.

@ if pj # 0 and pj # 0 then py # 0 and so
e i~ jiff pj # 0 defines an equivalence relation
@ Every equivalence relation on [m] gives a

partition By/--- /B, of [m] into equivalence
classes (blocks).

@ A semi-labeled forest F with labeling set [m] is a collection of
semi-labeled trees with labeling sets By, ..., B, that are disjoint
and |J B; = [m].

15/
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Tuffley poset

@ Consider all semi-labeled forests on [m].

@ They form a partially ordered set, called the Tuffley poset.

@ If F is a semi-labeled forest then F/e is a

1 3
>—< semi-labeled forest obtained from F by
\[-2 4 contracting e
i 3 1 3

>< ’ o If F is a semi-labeled forest then F \ e is a
2 4 2

semi-labeled forest obtained from F by

4 q 5 9
removing e (some post-processing is needed)

@ We say that 7 < 7" in the Tuffley poset if 7 can be obtained
from 7' by edge contractions and edge deletions
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Tuffley poset for m = 3
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Tuffley poset and the face structure

@ Contracting an edge corresponds to p. = 1. Deleting an edge
corresponds to p. = 0.

@ The Tuffley poset describes the face structure of the boundary of
PO(m). Each element corresponds to a strata.
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Tree correlations

@ In many contexts it will be more natural to assume that the
edge correlations can be negative, p. € [-1,1].

Call this space the space of tree correlations, 7 -correlations

@ Note that p;pupix = |_|e€7j Pe [ loci pe |_|e€j7< Pe and so

pipikpk = Mecri P& [ecri P2 [ Neerz P& > 0.

Proposition: A correlation matrix £ = [p;] lies in the space of
tree correlations if and only if:

(i) [lpgl] lies in the space of phylogenetic oranges PO(m)
(i) for all i,/, k we have p;pupi >0
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Tree correlations for three leaves
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Alternative descriptions of semi-labeled trees

Basic
Phylogenetic

Combinatorics
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Split systems

e [m]={1,..., m} = the labeling set of the semi-labeled tree T

@ Let A/B be a split of [m], ie. AUB=[m, ANB =0

@ We say that A/Bis a T — split if A/B is
induced after removing an edge from 7
and considering the two connected
components of so obtained forest.

@ Let I1 be the set of all 7-splits. Then I identifies 7 uniquely. J
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Quartet systems

@ Let 7 be a semi-labeled tree and i, j, k, [ any four distinct
labeled nodes.

@ We say that ij/kl is a quartet of T if the paths ij and kI have no
vertex in common.

@ Let O be the set of quartets if 7. Then Q identifies 7 uniquely. J
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Short overview

@ Lecture 1: Trees, tree metrics and tree spaces

Lecture 2: Latent tree graphical models

Lecture 3: Tree inference and parameter estimation

Lecture 4: Likelthood geometry and model identifiability
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Graphical models formalism

@ graph G = (V, E); V vertex set, E edge set.

@ With each vertex v € V we associate a random variable Y, with
valuesin),, Y =Y)Y=[]cv -

@ Missing edges of G indicate some sort of independence.

@ for AC V denote Y4 = (Y))vea and Ya =[1],cadv J

Two important classes of graphical models:

@ undirected: f(y) = %HCEC Yelyc) for some nonnegative
functions (¢

o C = set of cliques, Z = normalizing constant

@ directed acyclic graphs: f(y) = [1,cy fipaw)(Yv|Upaw), Y €Y
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Graphical model on trees

@ Let T =(V, E) be an undirected tree.
@ We consider two situations:

e Y = (Y,) is multivariate Gaussian
e Y =(Y,) is a finite discrete vector with state space ) = |‘|V€Vyv

@ Fix Y and T. An undirected tree model N(T,)) is the family of
densities of the form

1
=51 [ dwlywy) forallyey
veV u—vekE

for some nonnegative functions ¢, {1,

o we write N(T) in the Gaussian case

/22
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Some alternative formulations

The density f lies in N(T,)) if and only if for disjoint
A B CcV
@ Y, Ul Yg|Yc[f] whenever C separates Aand Bin T

@ ie. when every path from A to B crosses C

@ Fix a vertex r € V and consider the rooted version T" of T with
root r. Consider the Bayesian network (DAG model) on 7"

f(y) = f-(yr) |_| fvlpa(v)(gv|ypa(v)) forall y €Y,
veV\r

where pa(v) is the unique parent of v.

@ Proposition: Every choice of r leads to the same family of
densities. This family is equal to N(T, ).

Steffen Lauritzen, Graphical models, 1996.
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Model parametrization: discrete case

@ We parametrize N(T,)) by rooting T at r and specifying the
root distribution 6,(y,) together with conditional probabilities
Bypav)(Yv|Upa()) for all v e V\ {r}.

fly: 0) = 6:(ur) [ ] Oppar(UvlYpar)-
veV\{r}

@ probability simplex: Ay = {x e RF: x; >0, , x; =1}
@ the root distribution lies in Apy |

@ for u — v and every y € Y, we have 6,,(-|y) € Ay,

@ the parameter space © = Ay, | x Hvev\,»(Alyvl)ly’“‘”l

6 /22
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Markov process on "

o If all state spaces ), are equal then N(T,)) is called a Markov
process on T" and denoted by N(T, d), where d :=|),|.

@ In this case the conditional probabilities 0,pa) € R*4 are
called transition matrices .

@ We can think about this model as a generalization of a Markov
chain.

7/22
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Example: tripod tree model

Y e {0,1}4, 64 € Ny, 91|4, 92‘4, 93|4 E (Az)z
dim© =7

K

_ [6114(0]0)  6114(1]0)
e.g. bis = [91::(0|1) 61::(”1)]

w
(]

p(y1, Y2, Y3, ya) = 0a(ya)O114(y1]ya) 6214(y2|ya) 8314 (ys| ya)
for all (y1, Y2, y3, ys) € {0, 1}

@ By the separation criterion 11.{2,3}|4 and 21.3|4 in N(T, 2)
and thus 11211 3|4.

8/ 22



The Gaussian case: standard definitions

In the standard language of Gaussian graphical models: N(T) is
the set of all concentration matrices K = £~' such that K,, =0
whenever u, v are not neighbors in T.

The dimension of the model is |V| + |E|.

Alternatively, we can describe the model using linear structural
equations.

Let (e,),ev be independent e, ~ N(0, g,)

Let Y, = €., and suppose that
Y, =AYpa + & forallve V\{r}

ans some (A,), then the distribution of Y lies in N(T).

Fully observed model Model with hidden variables General Markov model Log-det distance
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Alternative parametrization: edge correlations

@ Suppose Y is jointly Gaussian. We have Y, 1L Y,|Y,, if and only
if Puv = PuwPwv, where Puv = COI”I'( Viwi Yv)

@ In N(T) we have Y, 1LY,|Y,, whenever w lies on the path Tv
@ Using this recursively we get:

(*) Puv = |_| pe foralluveV.

ecuv

@ new parameters: edge correlations p, € [—1,1] for e € E and
variances o,, for v e V

10 /22
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Latent tree graphical model M(7,Y)

@ Let 7 be a semi-labeled tree with the underlying tree T and
labeling set [m]

o Y=(X,H),Y=XxH

o observed (labeled) subvector of Y: X e X
o hidden (unlabeled) subvector of Y: HeH

@ Definition: Fix Y and 7. The corresponding latent tree
graphical model M(7,)) is the set of margins of the densities in
N(T,Y) over the labeled nodes of 7.

@ Consider a distribution p € N(T,)) over a
1 3 quartet tree (6 nodes).

@ Summing over all possible values of the two
2 4 inner nodes gives a distribution in M(T,)),
where 7T is the semi-labeled tree on the left.

11/
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Parametrization of M(7,))

@ In the discrete case the parametrization becomes:

pi6.T)= 3 ) plxhse),

v unlabeled h, €Y,

where y = (x, h) and

p(y; 6. T) = 6,:(yr) [ | Ovjultlys) for y=(y,)vev € V.

u—v

@ In the Gaussian case take simply the corresponding submatrix
of the covariance matrix. If Y ~ MV\(O' ¥) then X ~ N,;(0, Exx).

o pij = [lecjpe for all i,j € [m], variances g; unconstrained
e 0, for unlabeled v does not appear; assume a,, = 1

12/ 22
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On the definition of semi-labeled trees

@ In our definition of semi-labeled trees we assumed that all
nodes of degree < 2 are necessarily labeled.

@ If v is a degree one unlabeled node then the formula for
p(x; 6,7T) contains: Zhv Oyjpa(v)(hv|Ypa(v)) = 1 so we can remove v
from T without affecting the margin M(T, ).

@ If v is a degree two unlabeled node, then (w.lo.g.) u - v - wis
an induced subgraph of T, and the formula for p(x; 6,7)
contains: Zhv Ou1u(hv]Yu) Bw)v (Yw|hy) = Buju(yw|yu) so we can
suppress v from T without affecting the margin M(7,)).

@ There is a finite number of semi-labeled trees on [m]. J

13/
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Latent forest models

@ Let F be a semi-labeled forest whose tree components are
Ty, ..., T with labeling sets By, ..., By, | B; = [m].

@ The latent tree models can be extended to forests. Every
density in M(F,)) is of the form

K
p(x; 6, F) = |_|P(XB; 0,7y,

i=1
where p(xg; 6,7;) is a density M(7;, V).
@ In particular Xp, AL - - - 1L Xp,

14 /22
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General Markov model

@ We focus on two cases

o the Gaussian case
o general Markov model: where all Y, are equal.

e Write M(T, d), where d = |),|.

@ The matrix of the conditional distribution 6,, for the edge
e = u — v is denoted by 6, and is called a transition matrix.

@ The case d = 4 is of some interest. J
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Link to tree correlations

@ Theorem: The Gaussian latent tree model on a phylogenetic
tree 7 is equal to the space of tree correlations on 7" with

pPij € (=1,1).

1 2 e Consider the tripod tree
model.

e Y= (X1,X2,X3, H)
3 e Y~MNy0,%), e N(T)

@ D12 = PP, P13 = Pr1PK3 P23 = Pr2Pm3 and
pm, Pr2, pr3 € [—1,1].
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Edge contraction and removal

@ Let 7 be a semi-labeled tree and M(T, d) the corresponding
general Markov model.

e T /e = the semi-labeled tree with the edge e contracted.
e T \ e = the semi-labeled forest with e removed.

o Fix an edge e = u — v and consider the image of all parameters
satisfying 6,, = I4. This submodel is equal to M(7 /e, d).

@ Fix an edge e = u — v and consider the image of all parameters
satisfying rank(6,|,) = 1. This submodel is equal to M(T \ e, d).

@ In the Gaussian case the same is obtained by taking p. = £1
(contraction) and p. = 0 (deletion).

17 /22
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Reduction to binary phylogenetic tree

Recall: a tree is called binary if every inner edge has degree 3 J

A binary expansion of 7, is any binary phylogenetic tree 7*
such that 7 is obtained from 7* by contracting some edges.

Using the same argument as on the previous slide, we can show
the following result:

Proposition: If 7* is a binary expansion of a semi-labeled tree
T then M(T,Y) C M(T*,)).

The same holds in the Gaussian case.

18/ 22
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Two-way margins

@ Let M(T, d) be a general Markov model on 7 parametrized by
the root distribution and the transition matrices 6,.

@ For any distribution in M(7, d) and any two labels i, j we have
i 7
:_/ ——  diag(p;) = diag(pn) |_| 6., and

h echi

pi = [ ] 6 diag(ps) [ ] Be-

echi echj

@ In particular detp; = [].c; det 6. |_|,C<I:1 pr(k)

19/ 22
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Link to phylogenetic oranges

det Pij _ Heefj det B,
V/det(diag(p)) det(diag(p)) /[T locy det Oc]

@ Then for p € M(T, d)

luj| = |_| V| det B,|.

ec€ij

@ Define u;

@ Since 6, is a stochastic matrix, det 6, € [-1,1].

@ Note /| det 6.| € [0,1] and so (|u;]) lies in the space of

phylogenetic oranges

20/ 22
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Link to tree correlations

@ check: ujuyuy >0 for all i,j, k € [m]

@ Proposition: The space of all possible u = (uy) is equal to the
space of all tree correlations.

o Proof: use a proposition from the previous lecture

@ 0. is a stochastic matrix, det 6, € [—1,1] and it is equal to +1 if
and only if it is a permutation matrix.

@ It follows that |uy| € [0,1] and u; = %1 only if X; and X; are
functionally related

@ If d = 2 (binary variables), then u; = corr(Xj, Xj), so
pij = |_|E€7j Pe like in the Gaussian case.

21/ 22
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Induced constraints

2 4 — . 3 4 —
U134 = U14U23; U12U34 = U14U23

@ In general if ij/kl is a quartet of T then: uyuy = uyuj.

@ Corollary: We can identify the underlying tree from two-way
margins only.

@ More on tree inference in the next lecture.
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Short overview

@ Lecture 1: Trees, tree metrics and tree spaces

Lecture 2: Latent tree graphical models

Lecture 3: Tree inference and parameter estimation

Lecture 4: Likelthood geometry and model identifiability
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Three main inference problems

There are three main inference problem for M(T,)):
@ Learn the underlying tree 7.
@ Learn the underlying parameter 6.

@ Given an estimator 6, compute various marginal probabilities
from (the fully observed distribution) p(y; T, 6).

e Here we use the fact that N(T,Y) and M(T,)) share parameters.

@ Depending on the application, some problems are irrelevant. J

3720
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Tree models as exponential families

@ the Gaussian tree model N(T) forms an exponential family

@ In the discrete case the set of strictly positive densities in
N(T,Y) forms a linear exponential family

e in the factorization f = 2 [,_,cr Y all ¢, > 0.

o there is a closed form formula for the density at &:

|_|U*V€E ﬁ)uv(yu, yv)
[Toev Pulyy)dea=1

where deg(v) is the degree of v in the underlying tree T.

f(y; 0) =

4720
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Why is it useful?

@ By standard results on exponential families:

o the likelihood function is strictly concave
e conjugate duality between the cumulant function and the entropy
for exponential families

@ This allows to unify various known learning algorithms.

@ If the sample sufficient statistic has no zeros then the MLE is
guaranteed not to lie on the boundary and so we may maximize
the likelihood function over the corresponding exponential
family.

Wainwright, Jordan, Graphical Models, Exponential Families, and Variational Inference. 2007.

5/ 20
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Chow-Liu algorithm

@ Problem: Suppose that we want to find the MLE over the set of
all tree models N(T,Y) for all possible trees with a fixed set of
vertices.

@ Mutual information /(Y;, Y;) as the Kullback-Leibler divergence
between f; and the product ff;

_ fi(yi, yj)
I(Yi V) = Zﬂ/JuU/)logm

Yi Yj

@ /¢(Y;, Y;) > 0 and is zero precisely when Y; and Y; are
independent.

6/ 20
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Chow-Liu algorithm (2)
@ For a fixed tree T:

6 B Puv(Yu: Yv)
i 0) = [bly) [ e
v u—veE(T) Pu(Uu)Pv(Uv)

@ the log-likelihood at o (n Zy/ﬁ(g) log f(y, é)) can be rewritten as

nZZ/JV(yV ) log pv(yy) + nZ Ip(Yu, Vo).

u—veE(T

@ Theorem: The maximum likelihood tree is the maximum cost
spanning tree (use Kruskal's theorem)

@ the same is true in the Gaussian case

e here also: I3(Y,, Y,) = —% log(1 — p2,), puv = sample correlation

v

7720
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Example: Star tree

1 2 o Fixing parameter values, 04(1) = 0.6 and 64
4 0.7 03 08 0.2 06 0.4
04 06]" |05 05]" 0.4 0.6
3 we obtain the data generating distribution.

@ a simulated matrix of observed mutual informations:

0.000 0.003 0.043

0.004
0.045
@ Algorithm: First add edges 3 —4 and 1 — 4. Then, . Since
no more edges can be added without introducing cycles, we

stop.

/20
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Structural EM: basic idea

@ We want to find the maximum likelihood estimator over the
union of latent tree models M(7,Y) for all semi-labeled trees.

@ We can assume 7 are binary phylogenetic trees.

e If in our application we are interested in more general
phylogenetic trees, this can be further refined.

o If we observed all vertices, the Chow-Liu algorithm gives an
efficient way to proceed.

@ We use the same idea as in the EM algorithm.

9/ 20
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Structural EM for Gaussian models

@ Initialize: Choose a starting bhinary tree topology T° and edge
correlations p° = (p%). Then, until a convergence criterion is
satisfied, perform the two following steps for i =0, 1, ....

@ E-step: Compute expected sample covariance of (X, H) given the
parameters T, p' and the observed vector X.

@ M-step: Use the Chow-Liu algorithm to update both the tree
and edge weights.

@ This works subject to some technicalities. .. J

Friedman et al,, A Structural EM Algorithm for Phylogenetic Inference, Journal of Computational Biology, 2002.
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Exponential family formulation Chow-Liu Structural EM Tree metrics ideas Phylogenetic invariants

@ The E-step is standard. We work with data of length n
normalized to have mean zero.

@ Suppose that X represents the full covariance matrix estimated
at the previous step of the algorithm.

@ Let S be the sample correlation matrix that we are trying to
estimate: Sxx = 1X'X, Spyx=1H'X, Syy=1H'H,

n

e Standard formulas: E[H|X] = EIuxIy X and
var(H|X) =Yy — ZHXZ;(;(ZXH-

@ This gives E[Spx|X] = ZIpxIxySxx and

]E[SHH|X] =Yyy — ZH)(Z)_(;(ZXH + Zsz;;(SXXz)_(;(ZXH.

11/ 20
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@ Here we take the full sample covariance matrix estimated in the
E-step and use the Chow-Liu algorithm

@ Problem: the Chow-Liu algorithm does not distinguish hidden
nodes from observed nodes so it can output a tree with hidden
leaves and inner nodes that are observed (in fact it often does
in practice).

@ Proposition: For every tree given as an output of the Chow-Liu
algorithm, there exists a binary phylogenetic tree with exactly
the same (observed) likelihood.

12/ 20
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Example: equal likelihood tree

o If we initialize with a binary phylogenetic tree, then the number
of hidden nodes is m—2, S is a (2m — 2) x (2m — 2) matrix.

@ If m=6, then 2m—2 =10. ; 4
5
@ Suppose that the M-step reported the
tree on the right. 2 3 6
1 4 4
® 5 1 5
2 3 6 2 : 3 6

3 4
1 ® 5 1 ® l C<:5
2 6 — 2: 6

@ here — is an edge whose transition matrix is the identity

137/
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Equal likelihood tree

@ The tree obtained in the previous step is by no means unique.

o

@ we can decide between the two based on some other
distance-based argument

@ Even a naive implementation works pretty well and very fast for
m < 500.

14 /20
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Tree identifiability

@ Suppose that p € M(T, d). Recall: for any two leaves i,j € [m]

det p;

= \/clet(cliag(pi))cIet(cI'Lag(pi))

u ij

o |uj| =[].c5pe; where pe = /| det 6| € [0, 1]

o If all vy are nonzero, djj :== —log |u;| > 0 forms a 7-metric

@ Buneman: (7, (de)) can be uniquely identified from (d;)

@ Given some data, the task is to find the best tree

e From sample proportions p compute sample versions of u; and dj.
@ Use standard algorithms (least squares, neighbor joining) to learn
the best underlying tree.

15 / 20
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Phylogenetic invariants

@ Another method is the method of
phylogenetic invariants that uses
some geometric information to
choose the best tree model
explaining the data.

@ We introduce some basic ideas
behind this and discuss the method.

16 / 20
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Geometric viewpoint

e X e X:={1,..., k} with distribution P(X = i) = p; fori € X

@ probability simplex: Ay = {p € RF: p; >0, ZL pi=1}

o statistical model on X: a family of probability distributions on X
o equivalently: a family M of points in Ag

@ parametric model given as an image of a map © — A

o Example: Let X,Y € {0,1}. We have X 1LY if
and only if pj = piypyj for all i,j € {0,1}, or
equivalently

PooP11 — Propor = 0.

17/ 20
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Phylogenetic invariants: basic idea

@ Example: Let X, Y € {0,1}. We have X 1LY if
and only if p; = pipyj for all i,j € {0,1}, or
equivalently

0,10
Poop11 — propor = 0.

@ Given a random sample of size n let p be the sample proportions.

@ If the true data generating distribution g satisfies X 1L Y[g] then
for large n we have p11Poo — po1p1o = 0.

@ We can use this fact to test whether X 1LY

18 /20
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Semialgebraic sets

@ A simple semialgebraic set is a subset of R? described by
polynomial equations and inequalities.

@ A semialgebraic set is a subset of R? given as a finite union of
simple semialgebraic sets.

@ Theorem [Tarski, Seidenberg]: The image of a semialgebraic
set under a polynomial map is semialgebraic.

@ M(T,)) is given as the image of a polynomial parametrization.
The parameter space is a product of simplices and so
semialgebraic. It follows that M(T,)) C Ajx|—1 is semialgebraic.

19 /20
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Phylogenetic invariants: application

@ The study of defining equations (phylogenetic invariants) was
proposed independently by Joseph Felsenstein, James Cavender,
and James Lake in 1980’s.

. @ Suppose we have a collection of competing
latent tree models.

@ We use (some) algebraic constraints defining
these models to select the best model.
' @ no parameter estimation is needed

o the method is consistent

@ There are several problems with this procedure:

o there are many invariants and some are very sensitive
@ by ignoring inequalities we lose some information
o the statistical theory is underdeveloped

20/ 20
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Short overview

@ Lecture 1: Trees, tree metrics and tree spaces
@ Lecture 2: Latent tree graphical models
@ Lecture 3: Tree inference and estimation

@ Lecture 4: Likelihood geometry and model identifiability

2720
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The model identifiability

@ We say that a parametric model (Pp)geco is identifiable if
Pg = Py implies 6 = &

e otherwise, even with infinite data, we cannot learn the parameter
w

@ This definition is too restrictive in general for models with
hidden variables

o label swapping problem
e special parameter values correspond to degenerate cases

3720
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Geometry of the likelihood function

Generic model identifiability

@ A parametric model is given by a parametrization 6 — pp.

@ Such a model is identifiable if the parametrization is one-to-one.

4

@ Definition: We say that a parametric model (Pg)oco is

generically identifiable if the parametrization is finite-to-one for
almost all distributions in the model.

47720



Geometry of the likelihood function
Simple examples

1 H 2 .
@ Model: e«—o—e, where Xj, X5, H binary

@ the parameter space has dimension 5, the model dimension is
< 3 so there is no identifiability

© Model: X; 1L X5 1L X3|H, where X, X5, X3 any discrete
and H binary

° e © This model is generically identifiable; the
parametrization is generically two-to-one.

e switch rows of 6, 6yjn, G2, O3

@ There is an infinite number of parameter vectors that
map to any distribution in the model satisfying
X1AL X5 AL X5.

w e

/20
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Example: the Gaussian tripod

T the tripod tree. Suppose that & € M(T) with p; > 0.
@ First note that precisely one zero correlation is impossible.

We have three cases:
g _—- i AR o P12P13 f— P12pP23
(i) Correlations non-zero: p; : oo P2 = [ EEE,
P3 = /%, then p;p; = p;j and p; € [0, 1].

(i) Two correlations are zero: say p12 # 0 then p3 := 0 and p1, P2
any such that p1p2 = p12.

(iii) All are zero: three cases, e.q. p; = p2 = 0 and p3 arbitrary.

/20
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Kruskal's theorem

@ Suppose X1, Xo, X3, H discrete with di, db, d3, r values.

@ Using Kruskal's theorem for 3-way contingency tables the
following sufficient condition for generic identifiability can be
given:

e Theorem: The tripod model is generically identifiable, provided

min(r, di) + min(r, db) + min(r, d3) > 2r + 2.

7720



Parameter |dentifiability Geometry of the likelihood function

|dentifiability for star trees

@ The basic idea is to realize a more general model as a submodel
of the tripod tree model.

@ Theorem(Allman,Matias,Rhodes): Consider the star tree model
M(T,Y) where |X;| = d; and [H| = r. Suppose that there exists
a tripartition of the labeling set [m] into three sets Ay, Ay, A3
such that if k; = [];c4, d; then

min(r, k1) + min(r, k2) + min(r, k3) > 2r + 2.

Then the model is generically identifiable up to label swapping.

Allman, Matias, Rhodes, Identifiability of Parameters in Latent Structure Models with Many Observed Variables,

Annals of Statistics, 2009.
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Identifiability for general Markov models

@ Theorem (Chang): Let T be a semi-labeled tree. The
corresponding general Markov model M(7, d) is generically
identifiable up to label swapping of the latent variables.

o If d =2, we have explicit formulas for the parameters and we
understand all special fibers of the parametrization.

@ Theorem: The Gaussian latent tree model on a semi-labeled
tree 7 is generically identifiable up to sign of the latent
variables.

@ In this case can explicitly give the inverse map from the model
to the parameter space.

Chang, Full Reconstruction of Markov Models on Evolutionary Trees: Identifiability and Consistency, 1996.

Zwiernik, Smith, Tree-cumulants and the geometry of binary tree models, 2012.

/20



Geometry of the likelihood function
Formulas for parameters: Gaussian case

Check that:

1 3 ° pZ — P3P _ P14p23
0 P12P34 P12P34
2 4 P12P13 P12P14

2 __ —
°P1— P23 - P24

@ Suppose p2 = 1/6, p13 = 1/60, p14 = 1/90, pr3 = 1/40,
P24 = 1/60, P34 = 1/24.

o Then (o2, p2, p3, p2, p2) = (1/25,1/9,1/4,1/16,1/36).

@ We have four possible solutions s - (1/5,1/3,1/2,1/4,1/6), where

s is one of:
e e A e e I e S el
o ldentical formulas can be derived for general M(T). J

10 /20
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(Geometry of the likelihood function)

Constrained multinomial likelihood

Let O +— pg be a parametric model M over X, M C Ay.

Fix data u = (u(x))xex; the likelthood function

L(u; 8) = |_| po(x)™)

xeX

Multinomial likelihood Ly(u; p) = [,cx P(x)"™, p € Ax.

Instead of maximizing L(u; 6) we can maximize the multinomial
likelihood constrained to p € M.

This gives a good insight into the likelihood geometry for latent
tree models because L, (u; p) is strictly concave with a unique
maximizer p(x) = u(x)/n as long as u has only positive entries.

11
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Some examples

@ Consider the model Bin(2, 8) and its mixture. J

@ In general the situation is much more complicated J

Lecture 4: Likelihood geometry and model identifiability
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The Gaussian tripod tree model

@ Proposition: A covariance matrix L lies in the Gaussian tripod
tree model if and only if K = £~ satisfies kioki3kaz < 0.

@ The Gaussian likelthood function is strictly concave when
expressed in K.

i j ok
@ Recall: the boundary corresponds to e —e — e

@ Maximizing the likelihood function over the boundary is

. 1 2 3
straightforward. For example, over ¢ — ¢ — @ we have
x A x A *x A n
P12 = P12, P23 = P23, P13 = P12P23-

@ Maximizing over the interior is also easy

e X* exists if and only if the sample covariance matrix S lies in the
model (X* = 9S).

137/
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(Geometry of the likelihood function)

Binary tripod model

@ Theorem: Let 7T be the tripod phylogenetic tree. A distribution
p lies in M(T,2) if and only if (up to the action of £, x 2, x 2)

Po002111 = P01 P110
0012111 = P01 101
0002011 = P001P010

P0002111 = P010101 P0002111 = P1002011
Po10P111 = Po11P110 P100P111 = P101P110
0002101 = 0012100 PoooP110 = P0102100

@ In particular, there are no equations and the model has

dimension 7.

@ The boundary is described by points where some of these
inequalities become equalities. However pepe = pepe is a linear
equation in log p, and so the boundary consists of log-linear

models.

Allman, Rhodes, Sturmfels, Zwiernik, Tensors of nonnegative rank two, 2015.

14/
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(Geometry of the likelihood function)

Closed form MLE procedure

Theorem: There is a procedure to get the exact maximum
likelihood estimator over the model M(7, 2), where 7 is the
phylogenetic tripod tree.

The maximum over the interior of the model exists if and only if
the sample proportions p lie in the interior. In this case, the
likelihood maximized precisely at p. Otherwise the maximum
lies on the boundary.

To optimize the likelihood we check smaller dimensional strata.

In fact, almost all these boundary strata admit a closed form
formula for the maximum. The remaining ones require solving a
quadratic equations.

15/

20



Parameter Identifiability (Geometry of the likelihood function)

Sources of multimodality in the likelihood

@ The dimension of the model is 7. Means of the observed nodes
are unconstrained, fix all of them to be 1/2.

@ We draw three slices of the remaining 4-dimensional set.

Lecture 4: Likelihood geometry and model identifiability
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Parameter Identifiability (Geometry of the likelihood function)

Sources of multimodality in the likelihood (2)

Three sources of multimodality:
@ Label switching (easy fix).

@ each blob can get at least one
mode

@ blobs are concave, so there
may be several modes within
a blob

17/ 20
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A simple numerical example

@ Suppose that a sample of size 10000 has been observed

Upoo  Uoo1
Up1o  Uo11

thoo U101 _ 2069 16 2242 331
110 U111 - 2678 863 442 1359

@ Use the EM-algortihtm 100 times starting from random
parameter values.

|

@ The algorithm found 6 different local maxima

m T T 7 3 3
G S A N S
1 0.466 0.337 0.552 1.000 0.000 0.416 0.074
2 0.534 0.552 0.337 0.000 1.000 0.074 0.416
3 0.257 0.361 0.658 0.420 0.865 0.000 1.000
é 0.743 0.658 0.361 0.865 0.420 1.000 0.000
5 0.437 0.000 1.000 0.629 0.412 0.156 0.386
6 0.563 1.000 0.000 0.412 0.629 0.386 0.156

18/
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Why this is important

@ There may be distant local maxima found by the EM-algorithm
with similar value of the likelihood function. This should be part
of the whole output of the EM-algorithm.

@ Maxima often lie on the boundary of the parameter space

o Here the usual interpretation of the hidden variable breaks down.

@ This will be a common problem unless variables in the system are
highly correlated.

e Points on the boundary do not correspond to critical points of the
likelihood function.

o A similar problem occurs in the Bayesian framework.

Wang, Zhang, (2006). Severity of Local Maxima for the EM Algorithm.

Zwiernik, Smith, (2011) Implicit inequality constraints in a binary tree model.

19/
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Thank you! |

Lecture 4: Likelihood geometry and model identifiability
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