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Abstract

The sequences that occur as Hilbert functions of standard graded algebras A are well understood
by Macaulay’s theorem; those that occur for graded complete intersections are elementary and were
known classically. However, much less is known in the local case, once the dimension of A is greater
than zero, or the embedding dimension is three or more.

Using an extension to the power series ring R of Gröbner bases with respect to local degree
orderings, we characterize the Hilbert functionsH of one-dimensional quadratic complete intersections
A = R/I, I = (f, g), of type (2, 2) that is, that are quotients of the power series ring R in three
variables by a regular sequence f, g whose initial forms are linearly independent and of degree two. We
also give a structure theorem up to analytic isomorphism of A for the minimal system of generators
of I, given the Hilbert function.

More generally, when the type of I is (2, b) we are able to give some restrictions on the Hilbert
function. In this case we can also prove that the associated graded algebra of A is Cohen Macaulay
if and only if the Hilbert function of A is strictly increasing.

1 Introduction and preliminaries

Let G be a standard graded K-algebra; by this we mean G = P/I where P = K[x1, . . . xn] is a polynomial
ring over the field K and I a homogeneous ideal. It is clear that for every t ≥ 0 the set It of the forms of
degree t in P is a K-vector space of finite dimension. For every positive integer t the Hilbert function of
G is defined as follows:

HFG(t) = dimKGt = dimKPt − dimKIt =

(
n+ t− 1

t

)
− dimKIt.

Its generating function HSG(θ) =
∑
t∈NHFG(t)θt is the Hilbert Series of G.

The relevance of this notion comes from the fact that in the case I is the defining ideal of a projective
variety V, the dimension, the degree and the arithmetic genus of V can be immediately computed from
the Hilbert Series of P/I.

A fundamental theorem by Macaulay describes exactly those numerical functions which occur as
the Hilbert functions of a standard graded K-algebra. Macaulay’s Theorem says that for each t there
is an upper bound for HFG(t + 1) in terms of HFG(t), and this bound is sharp in the sense that any
numerical function satisfying it can be realized as the Hilbert function of a suitable homogeneous standard
K-algebra. These numerical functions are called “admissible” and will be described in the next section.

It is not surprising that additional properties yield further constraints on the Hilbert function. Thus,
for example, the Hilbert function of a Cohen-Macaulay standard graded algebra is completely described
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by another theorem of Macaulay which says that the Hilbert series admissible for a Cohen-Macaulay
standard graded algebra of dimension d, are of the type

1 + h1θ + . . . hsθ
s

(1− z)d

where 1 + h1θ + . . . hsθ
s is admissible.

The Hilbert function of a local ring A with maximal ideal m and residue field K is defined as follows:
for every t ≥ 0

HFA(t) = dimK

(
mt

mt+1

)
.

It is clear that HFA(t) is equal to the minimal number of generators of the ideal mt and we can see
that the Hilbert function of the local ring A is the Hilbert function of the following standard graded
algebra

grm(A) = ⊕t≥0 mt/mt+1.

This algebra is called the associated graded ring of the local ring (A,m) and corresponds to a relevant
geometric construction in the case A is the localization at the origin O of the coordinate ring of an affine
variety V passing through O. It turns out that grm(A) is the coordinate ring of the Tangent Cone of V
at O, which is the cone composed of all lines that are the limiting positions of secant lines to V in O.

Despite the fact that the Hilbert function of a standard graded K-algebra G is so well understood in
the case G is Cohen-Macaulay, very little is known in the local case. This is mainly because, in passing
from the local ring A to its associated graded ring, many of the properties of A can be lost. This is the
reason why we are very far from a description of the admissible Hilbert functions for a Cohen-Macaulay
local ring when grm(A) is not Cohen-Macaulay.

An example by Herzog and Waldi (see [12]) shows that the Hilbert function of a one dimensional
Cohen-Macaulay local ring can be decreasing, even the number of generators of the square of the maximal
ideal can be less than the number of generators of the maximal ideal itself. Further, without restrictions
on the embedding dimension, the Hilbert function of a one dimensional Cohen-Macaulay local ring can
present arbitrarily many ”valleys” (see [7]).

Even if we restrict ourselves to the case of a complete intersection, very little is known when dim(A) ≥
1 or when the embedding dimensions of A is at least three. In [19] it has been proved that the Hilbert
function of a positive dimensional codimension two complete intersection R/(f, g) is non decreasing, but
we have no answer to the question asked by Rossi (see [20]) whether the same is true for every one
dimensional Gorenstein local ring.

In the case that the embedding dimension of the local ring is at most three, the first author gave a
positive answer to a question stated by J. Sally, by proving that the Hilbert function of a one dimensional
Cohen-Macaulay local ring is increasing (see [6]). But examples show that this is not longer true if the
embedding dimension is bigger than three.

All this shows that without strong assumptions, the Hilbert function of a one-dimensional Cohen-
Macaulay local ring could be very wild. This is the reason why, in this paper, we restrict ourselves to the
case A = K[[x, y, z]]/I, where the ideal I ⊆ (x, y, z)2 is generated by a regular sequence {f, g} of elements
of R. We will see that even with this assumption, the problem of determining the admissible Hilbert
functions is not so easy, possibly because it is strictly related to the study of curve singularities in A3.

If we consider the corresponding Artinian problem, then we deal with a pair of plane curves. Several
papers have been written in which the Hilbert function of an Artinian complete intersection ring A =
K[[x, y]]/(f, g) has been studied in terms of the invariants of the curves f = g = 0 (see Iarrobino [14],
Goto, Heinzer, Kim [10], Kothari [15], ....).

It is a result of Macaulay [16] that the Hilbert function of such a ring A verifies for every positive
integer n the following inequalities, :

|HFA(n+ 1)−HFA(n)| ≤ 1, 0 ≤ HFA(n) ≤ n+ 1.

Given such a numerical function there exists a complete intersection I = (f, g) ⊆ K[[x, y]] with that Hilbert
function, [1], [10]. Hence the problem is solved in the Artinian case and when grm(A) is Cohen-Macaulay.
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Conditions on the Cohen-Macaulayness of grm(A) have been studied by Goto, Heinzer and Kim in [8],
[9].

Classical results concerning Cohen-Macaulay local rings of dimension one will be useful in this paper.
For example it is well known, see [17],[6], [22], that there exists an integer e ≥ 1, the multiplicity of A,
such that

(i) HFA(n) ≤ e for all n,

(ii) If HFA(j) = e for some j, then HFA(n) = e for all n ≥ j,

(iii) For every j ≥ 0 we have HFA(j) ≥ min{j + 1, e}. In particular HFA(e− 1) = e.

The least integer r such that HF (r) = e coincides with the reduction number of m, which is the least
integer r such that mr+1 = xmr for some (hence any) superficial element x ∈ m. We say that the Hilbert
function of A is increasing (resp. strictly increasing ) ifHF (n) ≤ HFA(n+1) (resp. HF (n) < HFA(n+1))
for all n = 0, · · · , r − 1.

Throughout the whole paper K denotes an algebraically closed field. Even if most of the results do
not need this assumption it is useful when we use Hensel Lemma, for instance in Theorem 3.4.

Let R = K[[x1, . . . xn]] be the ring of formal power series in the indeterminates {x1, · · · , xn} with
coefficients in K and maximal ideal M = (x1, · · · , xn). We denote by U(R) the group of units of R. Let
I be an ideal of R and consider the local ring A = R/I whose maximal ideal is m :=M/I.

We have seen that the Hilbert function of a local ring A is the same as that of the associated graded
ring grm(A). Hence it will be useful to recall the presentation of this standard graded algebra. For every
power series f ∈ R \ {0} we can write f = fv + fv+1 + · · · , where fv is not zero and fj is a homogeneous
polynomial of degree j in P for every j ≥ v. We say that v is the order of f , denote fv by f∗ and call it
the initial form of f. If f = 0 we agree that its order is ∞. It is well known that grm(A) = P/I∗, where
I∗ is the homogeneous ideal of the polynomial ring P generated by the initial forms of the elements of I.
A set of power series f1, · · · , fr ∈ I is a standard basis of I if I∗ = (f∗1 , · · · , f∗r ), (see [13]). It is clear that
every ideal I has a standard basis and that every standard basis is a basis. However not every basis is a
standard basis. To determine a standard basis of a given ideal of R is difficult, even in the very special
case we are involved with in this paper.

In order to determine the Hilbert function of such local complete intersections, we use an extension to
power series of the theory of Gröbner bases introduced by Buchberger for ideals in the polynomial ring.
Our paper focuses on this technique. Our strategy seems unusual in this context, although it has been
used in singularity theory.

We recall that the notion of Gröbner basis is defined by considering a term ordering on the terms of
P (i.e. a monomial ordering where all the terms are bigger than 1). Instead, we need here to consider
the so called local degree ordering, see [11], Chapter 6, a monomial ordering on the terms of P which is
not a term ordering.

We denote by Tn the set of terms or monomials of P ; let τ be a term ordering in Tn, and we assume
that x1 > · · · > xn. We define a new total order τ on Tn in the following way: given m1,m2 ∈ Tn we
let m1 >τ m2 if and only if deg(m1) < deg(m2) or deg(m1) = deg(m2) and m1 >τ m2. Given f ∈ R we

denote by Supp(f) the support of f , i.e. if f =
∑
i∈Nn aix

i then Supp(f) is the set of terms xi such that
ai 6= 0. We remark that, given f in R, there is a monomial which is the maximum of the monomials in
Supp(f) with respect to τ : namely, since the support of f∗ is a finite set, we can take the maximum with
respect to τ of the elements of this set. This monomial is called the leading monomial of f with respect
to τ and is denoted by Ltτ (f). By definition we have

Ltτ (f) = Ltτ (f∗).

As usual we define the leading term ideal associated to an ideal I ⊂ R as the monomial ideal Ltτ (I)
generated in R by Ltτ (f) with f running in I.

In [1] a set {f1, . . . , fr} of elements of I is called an enhanced standard basis of I if the corresponding
leading terms generate Ltτ (I). Every enhanced standard basis is also a standard basis, but the converse
is not true: an example is given by the ideal I = (x2 + y2, xy + y3) in the power serie ring K[[x, y]].
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In [11] an enhanced standard basis of I is simply called a standard basis. We have Ltτ (I)P = Ltτ (I∗)
(see [1] Proposition 1.5.) so that

HFR/I = HFP/I∗ = HFR/Ltτ (I).

In the theory of enhanced standard basis a crucial result is the Grauert’s Division theorem, [11, Theorem
6.4.1]. It claims the following. Given a set of formal power series f, f1, · · · , fm ∈ R there exist power
series q1, . . . , qm, r ∈ R such that f =

∑m
j=1 qjfj + r and, for all j = 1, . . . ,m,

(1) No monomial of r is divisible by Ltτ (fj),

(2) Ltτ (qjfj) ≤ Ltτ (f) if qj 6= 0.

With the above result we can define

NF (f |{f1, . . . , fm}) := r

and obtain in this way a reduced normal form of any power series f with respect to a given finite subset
of R. Using the reduced normal form, we can obtain in the formal power series ring all the properties
of Gröbner bases analogous to those proves in the classical case for polynomial rings. In particular
Buchberger’s criterion holds for the power series ring K[[x1, . . . xn]], see [11, Theorem 1.7.3]. A similar
approach was introduced by Briançon (see [2]) for local artinian ideals in C{x, y}, and by Mora for ideals
in the localization of P at the maximal ideal (x1, . . . , xn) (see [18]). We notice that the work by Briançon
is someway related to the main ideas of this paper; in turn we can say that Briançon obtained his approach
by Hironaka.

We come now to describe the content of the paper. The main result is the description of all the
numerical functions which are the Hilbert functions of what we call a quadratic complete intersection of
codimension two in K[[x, y, z]]. By this we mean local rings of type K[[x, y, z]]/(f, g) where f and g are
power series of order two which form a regular sequence in K[[x, y, z]] with the property that g∗ /∈ (f∗).

We first prove in Proposition 2.2 that for the Hilbert function H of such local rings with multiplicity
e, there are only two possibilities:

(1) either H increases by one until reaching the multiplicity e,

i 0 1 2 3 4 5 . . . e-3 e-2 e-1 . . .
H(i) 1 3 4 5 6 7 . . . e-1 e e . . .

(2) or it is increasing by one until reaching e, except for a unique flat in degree n for some n. By this
we mean that for some integer n ≤ e− 3 the sequence H satisfies

i 0 1 2 3 4 . . . n-1 n n+1 n+2 . . . e-2 e-1 e . . .
H(i) 1 3 4 5 6 . . . n+1 n+2 n+2 n+3 . . . e-1 e e . . .

It turns out that if the Hilbert function is increasing by one, case (1), there is no restriction on the
multiplicity. However, if the Hilbert function has a flat, case (2), the multiplicity satisfies e ≤ 2n. This is
proved in Theorem 3.6 which is the main result of this paper. Examples 2.3 and 3.7 show that the above
Hilbert functions are realized.

We present also two more results on the Cohen-Macaulayness of the tangent cone of such complete
intersections. First, in Proposition 2.5, we prove that a quadratic complete intersection of codimension
two in K[[x, y, z]] with Hilbert function increasing by one has an associated graded ring which is Cohen-
Macaulay. Finally, as a second application of the methods we used in the proof of the main theorem,
we are able to prove in Proposition 3.8 that for a quadratic complete intersection A = K[[x, y, z]]/I, the
tangent cone is Cohen-Macaulay when the vector space I∗2 does not contain a square of a linear form.

In Section 4 we give structure theorems, modulo analytic isomorphisms, for the minimal system of
generators of quadratic complete intersection ideals I of codimension two in K[[x, y, z]]. Theorem 4.1 and
Theorem 4.2 take into account the two cases for the Hilbert function H.
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In the last section of the paper we give several examples to illustrate our results, as well as possible
extensions.

Most of the computations we made to support the stuff of this last section have been done with the
help of CoCoa, using an algorithm written by A.Conca concerning the Hilbert function of local algebra.
We would like to thank A. Conca for this support and for the many helpful conversations and suggestions
while preparing this paper. We are grateful to the referee for useful suggestions and a careful reading of
the paper.

2 Ideals of type (2, b)

From now on we assume that A = K[[x, y, z]]/I where I is a codimension two complete intersection ideal
of R = K[[x, y, z]]. Given the integers b ≥ a ≥ 2, we say that A is of type (a, b), or I is of type (a, b), if
I can be generated by a regular sequence {f, g} such that order(f)=a, order(g)=b and g∗ 6∈ (f∗). In the
language of [13, Chapter III, Section 1] we write ν∗(I) = (a, b) with the meaning that I is of type (a, b).

In this paper we will be mainly concerned with local rings of type (2, 2); however in this section
properties of local rings of type (2, b) will be considered.

A local ring A of type (2, b) is Cohen-Macaulay of embedding dimension three and dimension one
so that we know that the Hilbert function is not decreasing by [6]. We say that HFA admits a flat in
position n if

HFA(n) = HFA(n+ 1) < e.

For instance, the sequence {1, 3, 5, 5, 5, 6, ...} has a flat in position 2 and a flat in position 3; the sequence
{1, 3, 5, 6, 6, 7, 8, 9, 9, 10, 11, 11, 11, 11, 11, 12, 12, ...} has a flat in position 3, a flat in position 7, a flat in
position 10, a flat in position 11, a flat in position 12, a flat in position 13 and a flat in position 14. All
toghether it has 7 flats.

The first basic properties of the Hilbert function of a local ring of type (2, b) are collected in the
following proposition which is an easy consequence of the classical Macaulay Theorem, [3] Theorem
4.2.10.

We recall that given two positive integer n and c, the n-binomial expansion of c is

c =

(
cn
n

)
+

(
cn−1
n− 1

)
+ · · ·

(
cj
j

)
where cn > cn−1 > · · · cj ≥ j ≥ 1. We let

c<n> =

(
cn + 1

n+ 1

)
+

(
cn−1 + 1

n

)
+ · · ·

(
cj + 1

j + 1

)
.

The Theorem of Macaulay states that a numerical function {h0, h1, · · · , hi, · · · , } is the Hilbert function
of a standard graded algebra if and only if h0 = 1 and hi+1 ≤ h<i>i for every i ≥ 1. We remark that if
n+ 1 ≤ c ≤ 2n then the n-binomial expansion of c is

c =

(
n+ 1

n

)
+

(
n− 1

n− 1

)
+ · · ·

(
2n− c+ 1

2n− c+ 1

)
,

so that c<n> = c+ 1.
Further, if f1, . . . , fr are elements of order d1, . . . , dr in the regular local ring (R,M) and J the ideal

they generate, it is known that
J∗n = (J ∩Mn +Mn+1)/Mn+1

and

(f∗1 , . . . , f
∗
r )n = (

r∑
i=1

Mn−difi +Mn+1)/Mn+1

for every non negative integer n. With this notation we have the following basic lemma which is possibly
well known: we include it for completeness.
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Lemma 2.1. Let I = (f, g) be an ideal of (R,M) with order(f) = 2 ≤ order(g) = b. Then

(i) I∗j = (f∗)j for every integer 2 ≤ j < b.

(ii) I∗b = (f∗, g∗)b.

(iii) If g∗ /∈ (f∗) then I∗b+1 = (f∗, g∗)b+1.

Proof. Since j + 1 ≤ b we have g ∈Mb ⊆Mj+1 ⊆Mj , hence

(f, g) ∩Mj +Mj+1 = (g) + (f) ∩Mj +Mj+1 = fMj−2 +Mj+1.

The first assertion follows. We prove now (ii). We have:

(f, g) ∩Mb = (g) + (f) ∩Mb = (g) + fMb−2.

As for (iii) we need to prove that if g∗ /∈ (f∗) then (f, g) ∩Mb+1 = fMb−1 + gM. The inclusion ⊇
is clear, so let α = cf + dg ∈ Mb+1. If d ∈ M then cf ∈ Mb+1 and this implies c ∈ Mb−1 as required.
If d /∈M then g ∈ ((f) +Mb+1) ∩Mb =Mb+1 + fMb−2 which implies g∗ ∈ (f∗), a contradiction.

Proposition 2.2. Let A = R/I be a local ring of type (2, b) and I = (f, g) with order(f) = 2, order(g) = b
and g∗ 6∈ (f∗). Then the following properties hold.

(i) HFA(j) = 2j + 1 if j < b.

(ii) HFA(b) = 2b.

(iii) HFA(j − 1) ≤ HFA(j) ≤ HFA(j − 1) + 1 if j ≥ b.

(iv) HFA admits at most b− 1 flats.

Proof. By (i) of the above Lemma we have for every j < b

HFA(j) = HFP/I∗(j) = HFP/(f∗)(j) = 2j + 1.

We prove now the second assertion. By (ii) of the above Lemma we have

HFA(b) = HFP/I∗(b) = HFP/(f∗,g∗)(b).

Since g∗ 6∈ (f∗) we get HFA(b) = HFP/(f∗)(b)− 1 = 2b+ 1− 1 = 2b as required.
As for (iii) we need only to prove that HFA(j) ≤ HFA(j − 1) + 1 if j ≥ b. We have HFA(b) = 2b,

HFA(b − 1) = 2b − 1, hence we can argue by induction on j. Let j ≥ b and assuming HFA(j) ≤
HFA(j − 1) + 1 we need to prove that HFA(j + 1) ≤ HFA(j) + 1.

We have j + 1 ≤ HFA(j) < HFP/(f∗)(j) = 2j + 1, hence, by the remark before the Lemma, we get

HFA(j + 1) ≤ HFA(j)<j> = HFA(j) + 1

as claimed.
Finally we prove (iv). We have HFA(b) = 2b and at each step HFA goes up at most by one. Hence,

if there are p flats between b and j, we have HFA(j) = 2b + j − b − p. But HFA(j) ≥ j + 1, so that
p ≤ b− 1.

From the above proposition it follows that the Hilbert function of a local ring of type (2, b) either
is strictly increasing or it has one or more flats (no more than b − 1); if the first is the case, it has the
following shape
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HFA(j) =


2j + 1 j = 0, . . . , b− 1,

j + b b ≤ j ≤ e− b,
e j ≥ e− b+ 1.

(1)

where e and b are integers, b ≥ 2 and e ≥ 2b.
We show with the following example that given a numerical function H as in (1) we can find a local

ring of type (2, b) with multiplicity e whose Hilbert function is H.

Example 2.3. Let b ≥ 2 and e ≥ 2b. We claim that the above numerical function is the Hilbert function
of the following local ring of type (2, b) and multiplicity e.

Let I = (x2+ye−2b+2, xyb−1) and A = K[[x, y, z]]/I. We fix an ordering on the monomials of P with the
property that x > y. We let f := x2 + ye−2b+2, g := xyb−1 and claim that Ltτ (I) = (x2, xyb−1, ye−b+1).

Since e ≥ 2b and x > y it is clear that Ltτ (f) = x2. We have

S(f, g) = yb−1f − xg = yb−1(x2 + ye−2b+2)− xxyb−1 = ye−b+1.

Let h := S(f, g) = ye−b+1, then

S(f, h) = ye−b+1f − x2h = ye−b+1(x2 + ye−2b+2)− x2ye−b+1 = y2e−3b+3 = ye−2b+2h

and S(g, h) = 0. It follows that

NF(S(f, g) |{h}) = NF(h |{h}) = 0,

NF(S(f, h) |{h}) = NF(ye−2b+2h |{h}) = 0,

NF(S(g, h) |{h}) = NF(0 |{h}) = 0.

By the Buchberger criterion we get that Ltτ (I) = (x2, xyb−1, ye−b+1) as claimed. By a simple computation
we can prove that K[x, y, z]/(x2, xyb−1, ye−b+1) has the above Hilbert function; clearly the same is true
for the local ring K[[x, y, z]]/(x2 + ye−2b+2, xyb−1).

We end this section by proving that for a local ring of type (2, b) the condition that the Hilbert
function is strictly increasing is equivalent to the Cohen-Macaulayness of the tangent cone. First we need
to prove that the property of having type (a, b) is preserved by passing to the quotient modulo a suitable
superficial element. We recall that an element ` ∈ M is superficial for M/I if ` does not belong to any
of the associated primes of I∗ different from the homogeneous maximal ideal. Since the residual field is
infinite the existence of superficial elements is guaranteed. Moreover, it is easy to prove:

Proposition 2.4. Let I be an ideal of R of type (a, b) with 2 ≤ a ≤ b. There exists ` ∈ M \M2 such
that

(i) the coset of ` in R/I is superficial for M/I,

(ii) Ī = I + (`)/(`) is an ideal of R/(`) of type (a, b).

Proof. It is well known that ` verifies (i) if `∗ does not belong to any of the associated prime ideals of I∗

(different from the homogeneous maximal ideal). Let I = (f, g) be with order(f) = a ≤ order(g) = b.
Then it is easy to see that Ī satisfies (ii) provided:

a) `∗ does not divide f∗

b) g∗ 6∈ (f∗, `∗).
Namely Ī = (f̄ , ḡ) in R/` and order(f̄) = a by condition a) while ḡ ∗ 6∈ (f̄ ∗) by condition b) Since
depth K[x, y, z]/(f∗, g∗) ≥ 1, it is easy to see that for having a) and b) it is enough to choose ` ∈M\M2

such that `∗ is regular in P/(f∗, g∗). Clearly, if this is the case, `∗ does not divide f∗ and if g∗ ∈ (f∗, `∗),
then g∗ = αf∗ + β`∗ with α, β ∈ P. Since `∗ is P/(f∗, g∗)-regular, then β ∈ (f∗, g∗). Hence g∗ =
αf∗ + `∗(β1g

∗ + β2`
∗), so g∗(1− `β1) ∈ (f∗), a contradiction because g∗ 6∈ (f∗). Since the residue field is

infinite, an element ` ∈ M \M2 verifying the conditions of the proposition can be selected by avoiding
the associated prime ideals to I∗ and to (f∗, g∗).
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It is well known that if the associated graded ring grm(A) is Cohen-Macaulay, then the Hilbert function
of A is strictly increasing. However the converse is in general very rare. In the following result we will
show a special case where this implication holds true.

Proposition 2.5. Let A = R/I be a local ring of type (2, b). Then grm(A) is Cohen-Macaulay if and
only if HFA is strictly increasing.

Proof. Let I = (f, g) with order(f) = 2, order(g) = b and g∗ 6∈ (f∗). If the associated graded ring is
Cohen-Macaulay, then its Hilbert function is strictly increasing and thus the Hilbert function of A is
strictly increasing as well. By using (1) a simple computation gives

∆HFA(n) := HFA(n+ 1)−HFA(n) =


1 n = 0,

2 n = 1, . . . , b− 1,

1 n = b, . . . , r − 1,

0 n ≥ r

with r = e− b+ 1.
From Proposition 2.4 there exists a superficial element x ∈ A such that

HFA/xA(n) =


1 n = 0,

2 n = 1, . . . , b− 1,

1 n = b.

From Macaulay’s characterization of Hilbert functions and the fact that e(A/xA) = e(A), we get ∆HFA =
HFA/xA. Hence grm(A) is Cohen-Macaulay, [23].

Notice that the above proposition cannot be extended to local rings of type (a, b) with a > 2, as the
following example shows. Consider the local ring A = R/I where I = (x4, x2y + z4) ⊆ R = K[[x, y, z]]; A
is a one-dimensional Gorenstein local ring and

HFA = {1, 3, 6, 9, 11, 13, 14, 15, 16, 16, . . . , }

is strictly increasing. Now it is clear that x4, x2y ∈ I∗ and since x2(x2y + z4)− yx4 ∈ I, also x2z4 ∈ I∗.
This implies that x3z3(x, y, z) ⊆ I∗; since x3z3 /∈ I∗ grm(A) is not Cohen-Macaulay.

A natural and general problem would be to characterize the Hilbert functions of all the ideals I of
type (2, b). If the Hilbert function has one or more flat, the behavior is difficult to control. However if
we denote by p the number of flats, by Proposition 2.2 we know that p ≤ b − 1. With the aid of huge
computations made with CoCoa, we ask the following question.

Question 2.6. Let A = R/I be a local ring of type (2, b) with b ≥ 2 and multiplicity e. Let n := min{j :
HFR/I(j) = HFR/I(j + 1) < e} and let p be the number of flats. Then

e ≤ (p+ 1)n (≤ bn).

The main result of the paper answer the question in the case a = b = 2.

3 The main result

In this section we present a complete characterization of the numerical functions which are the Hilbert
functions of local rings of type (2, 2). In particular we prove that certain monomial ideals cannot be the
initial ideals of a complete intersection, a relevant result even in the graded setting (see for example [5]).

By the definition we gave in the above section, a local ring A = K[[x, y, z]]/I of type (2, 2) is of
dimension one and has HFA(1) = 3 and HFA(2) = 4. In particular I can be generated by a regular
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sequence, say I = (f, g), where f and g are power series of order two such that f∗ and g∗ are linearly
independent in the vector space K[x, y, z]2. We recall that by Lemma 2.1 we have I∗2 = (f∗, g∗)2 and
I∗3 = (f∗, g∗)3.

Now it is clear that f∗, g∗ form a regular sequence if and only if the Hilbert Series of K[x, y, z]/(f∗, g∗)
is 1 + 3z + 4z + 4z2 + 4z3 + . . .

Since HFA(2) = 4, we know that

4 = HFA(2) ≤ HFA(3) ≤ HFA(2) + 1 = 5.

If HFA(3) = 4, then HFK[x,y,z]/(f∗,g∗)(3) = 4 and this implies that f∗ and g∗ form a regular sequence in
K[x, y, z]. As a consequence I∗ = (f∗, g∗) and the Hilbert function of A is {1, 3, 4, 4, 4, ....} which is as in
(1) with b = 2, e = 4.

We want to study the REMAINING CASE when A = R/I IS A LOCAL RING OF TYPE (2, 2)
WITH HFA(0) = 1, HFA(1) = 3, HFA(2) = 4, HFA(3) = 5.

We first remark that in this case f∗ and g∗ share a common factor, say L, which must be linear
because f∗ and g∗ are linearly independent. Hence we can write

f∗ = LM, g∗ = LN

where M,N are linear forms linearly independent in K[x, y, z]. In particular I∗2 =< LM,LN > .
We have two possibilities, either L,M,N are linearly independent or they are linearly dependent. We

remark that this property depends on the ideal I and not on the generators of I. Namely, if we say that
I∗2 is square free with the meaning that it does not contain a square of a linear form, we can prove the
following easy result:

Lemma 3.1. With the above notation the vectors L,M,N are linearly independent if and only if I∗2 is
square-free.

Proof. Let us first assume that L,M,N are linearly dependent. Since M,N are linearly independent we
have L = αM + βN so that L2 = αLM + βLN ∈< I∗2 > . Hence I∗2 is not square-free.

We prove now that if L,M,N are linearly independent then I∗2 is square-free. Let P be a linear form
such that P 2 ∈ I∗2 =< LM,LN >; then P ∈ (L) so that P = λL. We have λ2L2 = αLM + βLN hence
λ2L = αM + βN ; since L,M,N are linearly independent this implies λ = 0 and finally P = 0.

For completeness, we need now to recall the notion of k-algebra isomorphism. Given a set of minimal
generators y = {y1, y2, ..., yn} of the maximal ideal of R = K[[x1, . . . xn]], we let φy be the automorphism

of R which is the result of substituting yi for xi in a power series f(x1, x2, ..., xn) ∈ R. Given two ideals
I and J in R it is well known that there exist a K-algebra isomorphism α : R/I → R/J if and only if for
some generators y1, y2, ..., yn of the maximal ideal of R, we have I = φy(J).

We start now by deforming, up to isomorphism, the generators f and g of the given ideal I.

Lemma 3.2. Let A = R/I be a local ring of type (2, 2) such that HFA(3) = 5.

(i) If I∗2 is not square-free we may assume, up to isomorphism, that I = (f, g) with f∗ = x2 and g∗ = xy.

(ii) If I∗2 is square-free we may assume, up to isomorphism, that I = (f, g) with f∗ = xy and g∗ = xz,

Proof. Let us first assume that I∗2 is not square-free; then f∗ = LM, g∗ = LN with L,M,N linearly
dependent; since M and N are linearly independent, we must have L = λM + ρN for suitable λ and
ρ in K with (λ, ρ) 6= (0, 0). By symmetry we may assume λ 6= 0. Then it is easy to see that L and N
are linearly independent so that we can consider an automorphism φ sending x → L, y → N. We have
f = LM + a and g = LN + b for suitable a, b ∈M3, and further

L2 = λLM + ρLN = λf + ρg − λa− ρb.
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We get
I = (f, g) = (λf, g) = (L2 − ρg + λa+ ρb, g) = (L2 + λa+ ρb, g) =

= (L2 + λa+ ρb, LN + b) = φ((x2 + φ−1(ρb+ λa), xy + φ−1(b)).

The conclusion follows.
Now we assume that I∗2 is square-free. Then f∗ = LM and g∗ = LN where L,M,N are linear forms

in K[x, y, z] which are linearly independent. As before we have f = LM + a and g = LN + b for suitable
a, b ∈M3,

Let us consider the automorphism φ sending x→ L, y →M, z → N. We have

I = (f, g) = (LM + a, LN + b) = φ((xy + φ−1(a), xz + φ−1(b)))

and the conclusion follows.

Using Grauert division theorem, we can prove a first useful preparation result in the case x2 = Ltτ (f)
and xy = Ltτ (g).

Lemma 3.3. Let A = R/I be a local ring of type (2, 2) such that I = (f, g), Ltτ (f) = x2, Ltτ (g) = xy.
Then we can write

I = (x2 + axzp + F (y, z), xy + bxzq +G(y, z))

where p, q ≥ 1, a = 0 or a ∈ U(K[[z]]), b = 0 or b ∈ U(K[[z]]), F,G ∈ K[[y, z]]≥2.

Proof. By the assumption we have f = x2 + F with Ltτ (F ) <τ x
2 and g = xy + G with Ltτ (G) <τ xy.

Using Grauert’s division theorem for the power series F, f, g we get

F = αf + βg + r

where α, β, r ∈ R, no monomial of Supp(r) is divisible by x2 or xy, and

Ltτ (αf),Ltτ (βg) ≤τ Ltτ (F ) <τ Ltτ (f) = x2.

We can write α =
∑
i≥0 αi, where, for every i, αi is a degree i form in K[[x, y, z]]. It is clear that the initial

form of αf = α(x2 + F ) is α0x
2 + α0F2 so that α0 = 0, otherwise Ltτ (αf) = x2. In particular 1− α is a

unit. Since

(1− α)f = f − αf = x2 + F − αf = x2 + r + βg

we get
I = (f, g) = (x2 + r, g).

We apply now Grauert’s Division Theorem to the power series G, x2 + r, f where G = g − xy and
Ltτ (G) <τ xy. We get

g − xy = G = t(x2 + r) + sg + r′

where no monomial of Supp(r′) is divisible by Ltτ (x2+r) = Ltτ (x2+F−αf−βg) = x2 or by Ltτ (g) = xy.
Since g = xy + t(x2 + r) + sg + r′, we get

g(1− s) = t(x2 + r) + r′ + xy

and we claim that 1− s is a unit. Namely, Ltτ (sg) ≤ Ltτ (G) < xy and, as before,

sg = s(xy +G) = s0(xy +G) + s1(xy +G) + ....

This implies s0 = 0, otherwise Ltτ (sg) = xy. This proves the claim.
Now we have

I = (x2 + r, g) = (x2 + r, (1− s)g) = (x2 + r, t(x2 + r) + r′ + xy) = (x2 + r, xy + r′),

10



where no monomial of Supp(r) and Supp(r′) is divisible by x2 or xy.
It is easy to see that this implies

r = axzp + F (y, z)

r′ = bxzq +G(y, z)

with p, q ≥ 1, F,G ∈ K[[y, z]]≥2, a = 0 or a ∈ U(K[[z]]), and b = 0 or b ∈ U(K[[z]]).

We can prove now the main preparation result.

Theorem 3.4. Let A = R/I be a local ring of type (2, 2) such that HFA(3) = 5.

a) If I∗2 is not square-free then, up to isomorphism, we can write

I = (x2 + axzp + F (y, z), xy +G(y, z))

where p ≥ 2, a ∈ {0, 1}, and F,G ∈ K[[y, z]]≥3.

b) If I∗2 is square-free then, up to isomorphism, we can write

I = (x2 + xz + F (y, z), xy + dyz + αyr + βzs)

where F ∈ K[[y, z]]≥3, d ∈ K[[y, z]], d(0, 0) = 1, r, s ≥ 3, α = 0 or α ∈ U(K[[y]]), β = 0 or β ∈ U(K[[z]]).

Proof. By Lemma 3.2, up to isomorphism, we can find generators f and g of I such that either f∗ = x2

and g∗ = xy or f∗ = xy and g∗ = xz.
Let us first assume that f∗ = x2 and g∗ = xy; then

Ltτ (f) = Ltτ (f∗) = Ltτ (x2) = x2

Ltτ (g) = Ltτ (g∗) = Ltτ (xy) = xy,

so that, as remarked at the end of the proof of Lemma 3.3, we have I = (x2 + r, xy + r′) where no
monomial of Supp(r) and Supp(r′) is divisible by x2 or xy.

Since f∗ = x2 and g∗ = xy, we also have f = x2 + h, g = xy + s where order(h), order(s) ≥ 3. This
implies I = (x2 + r, xy + r′) = (x2 + h, xy + s) and I∗2 =< x2, xy >, the vector space spanned by x2 and
xy.. Since the degree 2 component of r is a linear combination of the monomials xz, y2, yz, z2, it must
be zero, otherwise the leading form of x2 + r cannot be in I∗2 =< x2, xy > . This proves that the order
of r is at least 3. Exactly in the same way we can prove that this holds true also for r′.

It is easy to see that this implies

r = axzp +D(y, z), r′ = bxzq + E(y, z)

where p, q ≥ 2, a = 0 or a ∈ U(K[[z]]), b = 0 or b ∈ U(K[[z]]), and D,E ∈ K[[y, z]]≥3.
Now let φ be the automorphism of K[[x, y, z]] defined by

x→ x, y → y − bzq, z → z

and let S := φ(D) and T := φ(E). Then S, T ∈ K[[y, z]]≥3 and we have

φ(f) = φ(x2 + r) = φ(x2 + axzp +D(y, z)) = x2 + axzp + S(y, z))

and

φ(g) = φ(xy + r′) = φ(xy + bxzq + E(y, z)) = x(y − bzq) + bxzq + φ(E(y, z)) = xy + T (y, z)).

This implies that, up to isomorphism, we may assume

I = (x2 + axzp + S(y, z), xy + T (y, z))
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with p ≥ 2, a = 0 or a ∈ U(K[[z]]), b = 0 or b ∈ U(K[[z]]), and S, T ∈ K[[y, z]]≥3.
Now if a = 0 we are done, otherwise let a 6= 0. Since the ground field K is algebraically closed and a

is invertible in K[[z]], a straightforward application of the Hensel Lemma enables us to find an element
c ∈ R such that cp = a.

Let us consider the automorphism φ : K[[x, y, z]]→ K[[x, y, z]] defined by

x→ x, y → y, z → cz.

If F and G are power series in K[[z]] such φ(F ) = S and φ(G) = T, then

φ(x2 + xzp + F ) = x2 + xcpzp + S = x2 + axzp + S, φ(xy +G) = xy + T.

The conclusion easily follows.
We need now to consider the other case when f∗ = xy, g∗ = xz. As before we choose a monomial

order τ such that x >τ z and let φ be the automorphism of K[[x, y, z]] defined by

x→ x+ z, y → x, z → y.

We have f = xy + d, g = xz + e where d and e have order at least 3. Hence

φ(f) = (x+ z)x+ φ(d) = x2 + xz + h, φ(g) = (x+ z)y + φ(e) = xy + yz + s

where h := φ(d) and s := φ(e) have order ≥ 3. Thus, up to isomorphism, we may assume that I is
generated by the power series x2 + xz + h and xy + yz + s; this implies that I∗2 =< x2 + xz, xy + yz > .

Since x2 >τ xz and xy >τ yz, we get

Ltτ (x2 + xz + h) = Ltτ ((x2 + xz + h)∗) = Ltτ (x2 + xz) = x2

Ltτ (xy + yz + s) = Ltτ ((xy + yz + s)∗) = Ltτ (xy + yz) = xy

and we may use Lemma 3.3 to get

I = (x2 + axzp + S(y, z), xy + bxzq +M(y, z))

where p, q ≥ 1, a = 0 or a ∈ U(K[[z]]), b = 0 or b ∈ U(K[[z]]), S,M ∈ K[[y, z]]≥2.

Now let α := x2 + axzp + S(y, z); if p ≥ 2 then α∗ = x2 + S(y, z)2 is an element of the vector space
I∗2 =< x2 + xz, xy + yz >, a contradiction. Hence p = 1 and thus we get α∗ = x2 + a0xz + S(y, z)2 ∈<
x2 +xz, xy+ yz > . This clearly implies a0 = 1 and S(y, z)2 = 0, so that the order of S(y, z) is at least 3.

Now let β := xy + bxzq +M(y, z); if b 6= 0 and q = 1 then b0 6= 0 and we have

β∗ = xy + b0xz +M(y, z)2 ∈ I∗2 =< x2 + xz, xy + yz >,

a contradiction. Hence it must be either b = 0 or q ≥ 2; in both cases we have

β∗ = xy +M(y, z)2 ∈< x2 + xz, xy + yz >

which implies M(y, z) = yz +H(y, z) where H(y, z) is a power series in K[[y, z]] with order at least 3.
At this point we have I = (x2 + axz + S(y, z), xy + bxzq + yz + H(y, z)) with a0 = 1, S and H

∈ K[[y, z]]≥3 and either b = 0 or q ≥ 2 .
Let us consider the automorphism φ given by

x→ x, y → y − bzq, z → z.

We get
φ(x2 + axz + S(y, z)) = x2 + axz +B(y, z),

and

φ(xy + bxzq + yz +H(y, z)) = x(y − bzq) + bxzq + (y − bzq)z + φ(H) = xy + yz + L(y, z)
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where B(y, z) := φ(S) and L(y, z) := −bzq+1 + φ(H) ∈ K[[y, z]]≥3.
Hence, up to isomorphism, we may assume I = (x2 + axz + B(y, z), xy + yz + L(y, z)) with a0 = 1

and B,L ∈ K[[y, z]]≥3. Now it is clear that since L(y, z) has order at least 3, we can write L(y, z) =
cyz + αyr + βzs with c ∈ K[y, z]≥1, r, s ≥ 3, α = 0 or α ∈ U(K[[y]]), and β = 0 or β ∈ U(K[[z]]). Hence
we get I = (x2 + axz + B(y, z), xy + yz + cyz + αyr + βzs). We let d := 1 + c so that d ∈ K[[y, z]],
d(0, 0) = 1 + c(0, 0) = 1 and

I = (x2 + axz +B(y, z), xy + dyz + αyr + βzs).

Finally let us consider the automorphism φ given by

x→ x, y → y, z → az.

Let F (y, z) := φ−1(B(y, z)) and

f := x2 + xz + F (y, z) g := xy + φ−1(d/a)yz + αyr + φ−1(β/as)zs.

Then we get
φ(f) = x2 + axz +B(y, z)

φ(g) = xy + (d/a)yaz + αyr + (β/as)(aszs) = xy + dyz + αyr + βzs.

We remark that the constant term of the power series d/a is 1 and the power series β/as is invertible if
not zero. Hence the same holds for φ−1(d/a) and φ−1(β/as). The conclusion follows.

We recall that in this section we are assuming that A = K[[x, y, z]]/I is a local ring of type (2,2) such
that HFA(1) = 3, HFA(2) = 4 and HFA(3) = 5. This implies that if we let n be the least integer
such that HFA(n) = HFA(n + 1), then n ≥ 3. Also it is easy to see that n ≤ r, the reduction number
of A. The integer n plays a relevant work in this paper. As consequence of Proposition 2.2, the Hilbert
function of a local ring A of type (2,2) and multiplicity e has the following shape:

HFA(t) =


1 t = 0,

t+ 2 t = 1, · · · , n,
t+ 1 t = n+ 1, · · · , e− 1,

e t ≥ e.

(2)

for some integer n ≤ e− 2. We say that HFA has a flat in position n.
It is clear that we have two possibilities, either e = n + 2 or e ≥ n + 3. In the first case the Hilbert

function increases by one up to the multiplicity, while in the second case the Hilbert function has a unique
flat at n, and otherwise increases by one up to the multiplicity.

We are ready to prove the main result of this paper. It says that, quite unexpectedly, if the Hilbert
function of a local ring of type (2, 2) has a flat in position n then the multiplicity satisfies e ≤ 2n.

First we need this easy Lemma.

Lemma 3.5. Let J ⊂ P = k[x, y, z] be a monomial ideal such that x2, xy ∈ J. If for some n ≥ 2 we have
HFP/J(n+ 1) = n+ 2 and HFP/J(n + 2) = n+ 3, then xzn is the unique monomial of degree n+ 1
which is in J and not in (x2, xy).

If we have also HFP/J(n) = n+ 2, then Jd = (x2, xy)d for all 2 ≤ d ≤ n.

Proof. Since HFP/J(n+ 1) = n+ 2 < HFP/(x2,xy)(n+ 1) = n+ 3 there is a monomial m of degree n+1
which is in J and not in (x2, xy). If m 6= xzn it should be m = yn+1−jzj for some j = 0, ..., n + 1. But
then the monomials of the vector space (x2, xy)n+2 and my,mz would be linearly independent. This
implies that

n+ 3 = HFP/J(n+ 2) ≤ HFP/(x2,xy,my,mz)(n+ 2) = HFP/(x2,xy)(n+ 2)− 2 = n+ 2,
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a contradiction. Hence m = xzn.
Let us assume that also HFP/J(n) = n+ 2; if for some t ≤ n− 1 we have HFP/J(t) ≤ t+ 1, then

HFP/J(t+ 1) ≤ HFP/J(t)<t> ≤ (t+ 1)<t> = t+ 2

and going on in this way we would have HFP/J(n) ≤ n + 1, a contradiction. It follows that for all
2 ≤ d ≤ n we have HFP/J(d) = HFP/(x2,xy)(d) and, as a consequence, Jd = (x2, xy)d for the same
d’s.

Theorem 3.6. Let A be a local ring of type (2,2) and multiplicity e. If the Hilbert function of A has a
flat in position n, then e ≤ 2n.

Proof. As usual, we consider a monomial ordering τ on the terms of K[x, y, z] such that x >τ z. In order
to cover both case a) and b) in Theorem 3.4, we may assume I = (f, g) where

f := x2 + axzp + F (y, z) g := xy +G(y, z)

are power series such that p ≥ 1 and a = 0 or a ∈ U(K[[z]]).
Since it is clear that (x2, xy) * Ltτ (I), the elements f and g are not a standard basis for I; thus, by

Buchberger’s criterion, we should have

h := NF(S(f, g), {f, g}) 6= 0.

It is clear that h ∈ I and if we let m := Ltτ (h) = Ltτ (h∗), then m ∈ Ltτ (I) and by 1.6.4 in [23]
m /∈ (x2, xy). We claim that m is a monomial of degree n+ 1.

Namely, by the second statement of Lemma 3.5 applied to the monomial ideal Ltτ (I), it is clear that
m has degree at least n + 1. Let us assume that m has degree ≥ n + 2, so that order(h) ≥ n + 2. Since
for every s and G one can easily prove that order(s) ≤ order(NF(s |G)), we get

order(NF(S(f, h)|{f, g, h})) ≥ order(S(f, h)) ≥ max{order(f), order(h)} ≥ n+ 2.

In the same way we can also prove that order(NF(S(g, h)|{f, g, h})) ≥ n+2. Now recall that, accordingly
to the Buchberger algorithm, in order to determine a standard basis of Ltτ (I), one has to compute
NF(S(f, h)|{f, g, h}), NF(S(g, h)|{f, g, h}), to add those of them which are not zero to the list and go on
in this way up to the end. At each step of this procedure the order of the elements can only increase;
hence if m has degree ≥ n + 2 then NF(S(f, h)|{f, g, h}) and NF(S(g, h)|{f, g, h}) have degree at least
n + 2 and we cannot obtain, as Lemma 3.5 requires, the monomial xzn which has degree n + 1. This
proves the claim. By Lemma 3.5 the claim implies that m = Ltτ (h) = Ltτ (h∗) = xzn.

We want now to compute NF(S(f, g) | {f, g}). First it is clear that we can write G(y, z) = yH(y, z)+
αzc with α = 0 or invertible in K[[z]] and c ≥ 0. Hence I = (f, g) where

f = x2 + axzp + F (y, z), g = xy + yH(y, z) + αzc

with c ≥ 0, p ≥ 1 and a and α either zero or invertible in K[[z]]. We have

S(f, g) = yf − xg = axyzp + yF (y, z)− xyH(y, z)− αxzc = g(azp −H(y, z))− αxzc +M(y, z)

where M(y, z) = yF (y, z)− (yH(y, z) + αzc)(azp −H(y, z)) ∈ K[[y, z]].

We claim that NF(S(f, g) | {f, g}) = M(y, z)− αxzc. Namely we have

S(f, g) = 0 · f + (azp −H(y, z))g +M(y, z)− αxzc

and we need to prove:

a) no monomial in the support of M(y, z)− αxzc is divisible by x2 or xy

b) Ltτ (g(azp −H(y, z))) ≤ Ltτ (S(f, g)).
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Now a) is true because α is zero or invertible in K[[z]]. As for b) it is clear that we have Ltτ (g(azp −
H(y, z))) = xy · Ltτ (azp −H(y, z)). This monomial is not in the support of M(y, z) − αxzc, hence it is
in the support of S(f, g). This implies b) and the claim

h = NF(S(f, g) | {f, g}) = M(y, z)− αxzc (3)

is proved.
Since Ltτ (h) = xzn it follows α ∈ U(K[[z]]), c = n, and order(M) ≥ n+ 1. In particular we deduce

g = xy + αzn + yH(y, z). (4)

Let J := I + (y) = (x2 + axzp + F (0, z), zn, y); it is clear that Ltτ (J) ⊇ (x2, zn, y). Since R/J is
Artinian, y is a parameter in A = R/I; hence

e = e(R/I) ≤ length(R/J) = length(R/Ltτ (J) ≤ length(R/(x2, zn, y)) = 2n.

The conclusion follows.

In example 2.3, we have seen that however we fix an integer e ≥ 4, there is a local ring of type (2, 2)
with multiplicity e and strictly increasing Hilbert function. For each pair of integers (n, e) such that
n ≥ 3 and n + 3 ≤ e ≤ 2n, we exhibit now local rings of type (2, 2) and multiplicity e whose Hilbert
function has a flat in position n.

Example 3.7. Given the integers n and e such that n ≥ 3, n+ 3 ≤ e ≤ 2n, the ideal

I = (x2 − ye−2, xy − zn)

is a complete intersection ideal of R = K[[x, y, z]] of type (2, 2) with multiplicity e, whose Hilbert function
has a flat in position n.

Proof. Let us consider a monomial ordering τ such that x > y > z; we are going to prove that

{f = x2 − ye−2, g = xy − zn, h = −ye−1 + xzn, k = ye − z2n}

is a standard basis for I. Namely, if this is the case, we get Ltτ (I) = (x2, xy, xzn, ye) and from this an
easy computation shows that the local ring K[x, y, z]]/(x2 − ye−2, xy− zn)has multiplicity e and Hilbert
function with a flat in position n.

We have:
S(f, g) = yf − xg = y(x2 − ye−2)− x(xy − zn) = xzn − ye−1

and since e ≥ n+ 3 implies e− 1 ≥ n+ 2 > n+ 1, we get Ltτ (S(f, g)) = xzn.
We let

h := S(f, g) = xzn − ye−1.

Now

S(f, h) = znf − xh = zn(x2 − ye−2)− x(xzn − ye−1) = xye−1 − znye−2 = ye−2g

so that Ltτ (S(f, h)) = ye−2Ltτ (g) = xye−1.
Further

S(g, h) = zng − yh = zn(xy − zn)− y(xzn − ye−1) = ye − z2n

and since e ≤ 2n and y > z, we have Ltτ (S(g, h)) = ye.
We let

k := S(g, h) = ye − z2n

with Ltτ (S(g, h)) = Ltτ (k) = ye.
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Now

S(f, k) = yef − x2k = ye(x2 − ye−2)− x2(y2 − z2n) = x2z2n − y2e−2 = z2nf − ye−2k

and since 2e− 2 ≥ 2(n+ 3)− 2 = 2n+ 4 > 2n+ 2, we have Ltτ (S(f, k)) = x2z2n.
Also

S(g, k) = ye−1g − xk = ye−1(xy − zn)− x(y2 − z2n) = xz2n − ye−1zn = znh

so that Ltτ (S(g, k)) = znLtτ (h) = xz2n.
Finally

S(h, k) = y2h− xznk = ye(xzn − ye−1)− xzn(ye − z2n) = xz3n − y2e−1 = z2nh− ye−1k.

Here we can only remark that Ltτ (S(h, k)) = max{xz3n, y2e−1}.
From these computations we get

NF(S(f, g) | {h}) = NF(h | {h}) = 0

NF(S(f, h) | {g}) = NF(ye−2g | {g}) = 0

NF(S(g, h) | {k}) = NF(k | {k}) = 0

NF(S(f, k) | {f, k}) = NF(z2nf − ye−2k | {f, k}) = 0

because Ltτ (z2nf − ye−2k) = x2z2n ≥ Ltτ (z2nf) = x2z2n,Ltτ (ye−2k) = y2e−2.

NF(S(g, k) | {h}) = NF(znh | {h}) = 0

NF(S(h, k) | {h, k}) = NF(z2nh− ye−1k | {h, k}) = 0

because Ltτ (z2nh− ye−1k) = max{xz3n, y2e−1} ≥ Ltτ (z2nh) = xz3n,Ltτ (ye−1k) = y2e−1.
By Buchberger’s criterion the conclusion follows.

We prove now that if I∗2 is square-free then the Hilbert function is strictly increasing, so that the
associated graded ring is Cohen-Macaulay.

Proposition 3.8. Let A = R/I be a local ring of type (2, 2). If I∗2 is square-free, then the Hilbert function
of A is strictly increasing and thus the associated graded ring grm(A) is Cohen-Macaulay.

Proof. From Proposition 3.4 (ii) we may assume, up to isomorphism of R, that

I = (x2 + xz + F (y, z), xy + byz + αyr + βzs)

where F ∈ K[[y, z]]≥3, b ∈ K[[y, z]] with b(0, 0) = 1, r, s ≥ 3, α = 0 or α ∈ U(K[[y]]), and β = 0 or
β ∈ U(K[[z]]).

If HFR/I(n+2) = n+2, then e = n+2 and we conclude by Proposition 2.5. Assume that HFR/I(n+
2) = n + 3, then by Lemma 3.5 we have that xzn ∈ Ltτ (I). By Burchberger’s criterion we should have
xzn = Ltτ (NF(S(f, g), {f, g})). The S-polynomial of the pair f, g is

h := S(f, g) = z(b− 1)A+ αyr−1A+ yF − βxzs,

A = byz + αyr + βzs. We write L = z(b− 1)A+ αyr−1A+ yF ; notice that L ∈ K[[y, z]] and β ∈ K[[z]] so
h = NF(h, {f, g}). Since Ltτ (h) = xzn we deduce β ∈ U(K[[z]]), s = n, and order(L) ≥ n+ 1.
Let now consider

S(h, g) = W = βzng + yh

= βbyzn+1 + αβyrzn + β2z2n + yL.
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Notice that since b, β 6= 0

order(αβyrzn), order(β2z2n) ≥ n+ 3 > n+ 2 = order(βbyzn+1)

and Ltτ (βbyzn+1) = yzn+1.
Recall that order(L) ≥ n + 1, so in order to prove that Ltτ (W ) = yzn+1 we should prove that in

Supp(yL) there is not the monomial yzn+1. This is equivalent to prove that in Supp(L) there is not the
monomial zn+1. To this end we set y = 0 in L and we get

L(0, z) = (b(0, z)− 1)βzn+1.

recall that b(0, 0) = 1 so order(L(0, z)) ≥ n+ 2. Hence we have that Ltτ (k) = yzn+1.
Let us consider now the monomial ideal J = (x2, xy, xzn, yzn+1) ⊂ Ltτ (I). We have

HFR/I(n+ 2) ≤ HFR/J(n+ 2) = n+ 2,

a contradiction.

Notice that if I∗2 is square-free then by Lemma 3.2 (ii) we may assume, up to isomorphisms, that
f∗ = xy, g∗ = xz. Hence Proposition 3.8 is only a very special case of [9, Corollary 4.6] where the same
result is proved for every codimension two complete intersecton in K[[x1, . . . , xn]].

The following example shows that the converse of the above theorem does not hold. Let I = (x2 −
y2z, xy − y3) ⊆ K[[x, y, z]]. It is clear that x2 ∈ I∗2 so that I∗2 is not square-free. It is easy to see
that the Hilbert function of A = K[[x, y, z]]/I is strictly increasing, namely is {1, 3, 4, 5, 5, 5, 5, .......}. By
Proposition 2.5 the associated graded ring of A is Cohen-Macaulay.

We close this section by describing the possible minimal free resolutions of the associated graded ring
of a local ring of type (2, 2).

We have seen in (2) that the Hilbert function of a local ring A of type (2, 2) has the following shape

HFA(t) =


1 t = 0,

t+ 2 t = 1, · · · , n,
t+ 1 t = n+ 1, · · · , e− 1,

e t ≥ e.

(5)

where n is the least integer such that HFA(n) = HFA(n+ 1). We have 3 ≤ n ≤ e− 2 and it is easy to see
that the lex-segment ideal with the above Hilbert function is the following ideal L := (x2, xy, xzn, ye).
We can compute the minimal free resolution of P/L by using the well known formula of Eliaouh and
Kervaire. We get

0→ P (−n− 3)→ P (−3)⊕ P (−n− 2)2 ⊕ P (−e− 1)→

→ P (−2)2 ⊕ P (−n− 1)⊕ P (−e)→ P → P/L→ 0.

Now we recall that,
• The graded Betti numbers of every homogeneous ideal in the polynomial ring can be obtained from

those of the corresponding lex-segment ideal by a sequence of consecutive cancellations.
•• If a given homogeneous ideal and its corresponding lex-segment share the same first Betti numbers

(which means that the ideal and the lex-segment are minimally generated in the same degrees) then they
share all the Betti numbers.

As a consequence it is easy to see that, in the case e ≥ n + 3, the resolution of a homogeneous ideal
J ⊆ P = K[x, y, z] with the above Hilbert Function is the following:

0→ P (−n− 3)→ P (−3)⊕ P (−n− 2)2 ⊕ P (−e− 1)→

→ P (−2)2 ⊕ P (−n− 1)⊕ P (−e)→ P → P/J → 0
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In the case e = n+ 2 we have instead two possibilities:
either

0→ P (−n− 3)→ P (−3)⊕ P (−n− 2)⊕ P (−n− 3)→ P (−2)2 ⊕ P (−n− 1)→ P → P/J → 0

or

0→ P (−3)⊕ P (−n− 2)→ P (−2)2 ⊕ P (−n− 1)→ P → P/J → 0.

It is clear that if P/J is Cohen-Macaulay only the last shorter resolution is available.

We apply this to the associated graded ring of a local ring of type (2,2) and we get the following
result.

Proposition 3.9. Let A be a local ring of type (2,2), e the multiplicity of A and let n be an integer such
that n ≤ e− 2. If e = n+ 2, then grm(A) is Cohen-Macaulay with minimal free resolution

0→ P (−3)⊕ P (−n− 2)→ P (−2)2 ⊕ P (−n− 1)→ P → grm(A)→ 0.

If e ≥ n + 3, then e ≤ 2n and the associated graded ring grm(A) is not Cohen-Macaulay with minimal
free resolution

0→ P (−n− 3)→ P (−3)⊕ P (−n− 2)2 ⊕ P (−e− 1)→
→ P (−2)2 ⊕ P (−n− 1)⊕ P (−e)→ P → grm(A)→ 0.

Proof. It is enough to remark that by Proposition 2.5 the associated graded ring of a local ring of type
(2,2) is Cohen-Macaulay when e = n+ 2.

4 A structure theorem for quadratic complete intersections of
codimension two

The aim of this section is to give a structure, up to analytic isomorphism, of complete intersection ideals
I of type (2, 2) such that A = K[[x, y, z]]/I is of multiplicity e. This is a first step towards the problem
of the analytic classification of the ideals of type (2, 2). In this direction we exhibit in Example ?? two
ideals of type (2, 2) with the same Hilbert function that are not analytically isomorphic. According to
Proposition 2.2, Example 2.3, and Example 3.7 the Hilbert function of A takes one of the following shapes

H(e)(t) :=


1 t = 0,

t+ 2 t = 1, · · · , e− 3,

e t ≥ e− 2

(6)

or

H(n, e)(t) :=


1 t = 0,

t+ 2 t = 1, · · · , n,
t+ 1 t = n+ 1, · · · , e− 2,

e t ≥ e− 1.

(7)

Theorem 4.1. Let A be a local ring of type (2, 2) and multiplicity e. The following conditions are
equivalent:
(i) HFA = H(n, e) for some integer n ≥ 3.
(ii) Up to analytic isomorphism, I is generated in R = K[[x, y, z]] by:

f = x2 + azp(x+W )−W 2 + L

g = xy + αzn + yW

where
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• a ∈ {0, 1}, p ≥ 2, α ∈ U(K[[z]]),

• W,L ∈ K[[y, z]] with order(L) ≥ n+ 1 , order(W ) ≥ 2,

• n+ 3 ≤ e ≤ 2n,

• order(2αznW − aαzn+p + yL) ≥ e− 1 and there is equality when e < 2n.

Proof. The proof uses Proposition 3.4 and the computation of Ltτ (I) according to the Buchberger crite-
rion. As usual assume x > y, x > z.
First we prove (i) implies (ii). Since HFA = H(n, e), then by Proposition 2.5 grm(A) is not Cohen-
Macaulay and, by Theorem 3.6, n+3 ≤ e ≤ 2n. By Proposition 3.8, I∗2 contains a square of a linear form.
Hence we may assume that f∗ = x2 and g∗ = xy. Notice that x2, xy ∈ Ltτ (I), hence by the assumption
(i) and Lemma 3.5, we have Ltτ (I) ⊇ (x2, xy, xzn). From the particular shape of the Hilbert function
it is easy to see that Ltτ (I) = (x2, xy, xzn,m) where m is a monomial in K[y, z]e. From Lemma 3.4 we
may also assume that

f = x2 + axzp + F (y, z),

g = xy +G(y, z),

where a ∈ {0, 1}, p ≥ 2, F,G ∈ K[[y, z]] with both order(F ), order(G) ≥ 3. Moreover, from the equation
(4) of the proof of Theorem 3.6, (4), we get

G(y, z) = yH(y, z) + αzn

where W ∈ K[[y, z]]≥2 and α ∈ U(K[[z]]). We recall that S(f, g) = yf − xg = axyzp + yF − αxzn − xyW.
In particular a standard computation gives

h := NF(S(f, g), {f, g}) = −αxzn + yL+ αzn(W − azp)

where L = F − azpW +W 2. Notice that order(αzn(W − azp)) ≥ n+ 2. Notice that xzn = Ltτ (h).
A simple calculation shows that NF(S(h, f), {h, f, g}) = 0. On the other hand

S(h, g) = NF(S(h, g), {h, f, g}) = α2z2n + y(2αznW − aαzn+p + yL) 6= 0

because α 6= 0 and z2n do not appear in the support of the remaining part. As a consequence m =
Ltτ (S(h, g)), and hence order(S(h, g)) = e. It follows that order(2αznW − aαzn+p + yL) ≥ e − 1. In
particular order(L) ≥ n+ 1, and order(2αznW − aαzn+p + yL) = e− 1 if e < 2n,.

Conversely, assuming (ii), it is enough to apply Buchberger’s criterion for computing Ltτ (I). By
following the previous computations we get Ltτ (I) = (x2, xy, xzn,m) where m = Ltτ (α2z2n+y(2αznW−
aαzn+p + yL)) and (i) follows.

If the Hilbert function is increasing, i.e. of type H(e), we present a structure’s theorem under the
assumption that I∗ does not contain the square of a linear form.

Theorem 4.2. Let A be a local ring of type (2, 2) and multiplicity e. The following conditions are
equivalent:
(i) HFA = H(e) and I∗ does not contain the square of a linear form
(ii) Up to analytic isomorphism, I is generated in R = K[[x, y, z]] by:

f = x2 + xz + F

g = xy + dyz + αyr + βzs

where

• r ≥ 3,
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• F ∈ K[[y, z]] and order(F ) ≥ 3,

• d ∈ U(K[[y, z]]), with d(0, 0) = 1,

• α = 0 or α ∈ U(K[[y]]), β = 0 or β ∈ U(K[[z]]) and s ≥ e− 1 ≥ 3,

• order(F + d(d− 1)z2 + α(2d− 1)zyr−1 + α2y2(r−1)) = e− 2.

Proof. As usual, consider a monomial ordering τ with x > y, x > z. We prove (i) implies (ii). By Theorem
3.4 (ii), we may assume that

I = (x2 + xz + F (y, z), xy + dyz + αyr + βzs)

F ∈ K[[y, z]]≥3, d ∈ K[[y, z]] with d(0, 0) = 1, r, s ≥ 3, α = 0 or α ∈ U(K[[y]]), and β = 0 or β ∈ U(K[[z]]).
Since the Hilbert function is increasing up to n = e − 2 ≥ 2 and HFR/I(t) = e for all t ≥ e − 2, then
Ltτ (I) = (x2, xy,m) where m ∈ K[y, z] is a monomial of degree e− 1.

By Buchberger’s criterion m = Ltτ (NF(S(f, g), {f, g})). Now

S(f, g) = −βxzs + yF (y, z) + xy[(1− d)z − αyr−1]

After a computation we get

NF(S(f, g), {f, g}) = −βxzs + yW + αβyr−1zs + β(d− 1)zs+1

where W = F + d(d − 1)z2 + α(2d − 1)zyr−1 + α2y2(r−1). Since yW ∈ K[[y, z]], r ≥ 3 and 1 −
d ∈ (y, z)K[[y, z]] we get that if β 6= 0, then xzs appears in the support of NF(S(f, g), {f, g}). Since
Ltτ (NF(S(f, g), {f, g})) ∈ K[y, z]e−1, it follows that order(W ) = e− 2 and, if β 6= 0, then s ≥ e− 1.

Conversely if we assume (ii), then it is easy to see that I∗ does not contain the square of a linear
form because I∗2 = (x2 + xz, xy + yz) which is reduced. Moreover by repeating Buchberger’s algorithm
and imitating the previous computation on S(f, g), we get

Ltτ (I) = (x2, xy, yLtτ (W )),

hence HFA = H(e).

5 Examples

The aim of this section is to present examples supporting the results of the previous sections or with
the goal of detecting the possible extensions to the non quadratic case. All computations are performed
by using the CoCoA system ([4]). Here HSA(θ) denotes the Hilbert series of A, that is HSA(θ) =∑
t≥0HFA(t)θt.

We have seen in Proposition 3.9 that the minimal free resolution of the tangent cone of a local ring of
type (2, 2) cannot have any cancellation, both in the case the Hilbert function is strictly increasing and
in the case of a flat. One can ask if this is the case also for local rings of type (a, b) with 3 ≤ a ≤ b.

The first two examples that we propose show that the answer is negative.

Example 5.1. Let A = R/I where I = (x3, z5 + xz3 + x2y). The local ring A has type (3, 3) and
I∗ = (x3, x2y, x2z3,−xyz5 + xz6,−xz7, z10). The resolution of P/I∗ is the following

0→ P (−7)⊕ P (−10)→ P (−4)⊕ P 2(−6)⊕ P (−8)⊕ P 2(−9)⊕ P (−11)→

→ P 2(−3)⊕ P (−5)⊕ P (−7)⊕ P (−8)⊕ P (−10)→ P → P/I∗ → 0.

hence we can cancel the shift −8 to get the resolution

0→ P (−7)⊕ P (−10)→ P (−4)⊕ P 2(−6)⊕ P 2(−9)⊕ P (−11)→
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→ P 2(−3)⊕ P (−5)⊕ P (−7)⊕ P (−10)→ P → P/I∗ → 0.

The Hilbert function
{1, 3, 6, 8, 10, 11, 13, 14, 14, 15, 15, .......}

has a flat in degre 7.

Example 5.2. Let A = R/I where I = (x4, z4 + x2y). The local ring A has type (3, 4) and I∗ =
(x2y, x4, x2z4, z8). The resolution of P/I∗ is the following

0→ P (−9)→ P (−5)⊕ P (−7)⊕ P (−8)⊕ P (−10)→

→ P (−3)⊕ P (−4)⊕ P (−6)⊕ P (−8)→ P → P/I∗ → 0.

It is clear that we can cancel the shift −8 to get the resolution

0→ P (−9)→ P (−5)⊕ P (−7)⊕ P (−10)→

→ P (−3)⊕ P (−4)⊕ P (−6)→ P → P/I∗ → 0.

The Hilbert function
{1, 3, 6, 9, 11, 13, 14, 15, 16, 16, 16, ........}

is strictly increasing.

The following example shows that Proposition 2.5 cannot be extended to local rings of type (a, b)
with a > 2.

Example 5.3. Let us consider the ideal I = (x4, x2y + z4) ⊆ R = k[[x, y, z]]. The Hilbert series is:

HSA(θ) = (1 + 2θ + 3θ2 + 3θ3 + 2θ4 + 2θ5 + θ6 + θ7 + θ8)/(1− θ).

Hence A = R/I has strictly increasing Hilbert function. Nevertheless I∗ = (x2y, x4, x2z4, z8), so that
grm(A) is not Cohen-Macaulay.

The following example, due to T. Shibuta, shows that the Hilbert function of a one-dimensional local
domain of type (2, b) can have b− 1 flats, the maximum number according to Proposition 1.

Example 5.4. (see [9], example 5.5) Let b ≥ 2 be an integer. Consider the family of semigroup rings

A = k[[t3b, t3b+1, t6b+3]].

It is easy to see that A = k[[x, y, z]]/Ib where Ib = (xz − y3, zb − x2b+1). Thus A is a one-dimensional
local domain of type (2, b). For every b ≥ 2 the Hilbert function of A has b− 1 flats. Namely

HFA(t) =



1 t = 0,

2t+ 2 t = 1, · · · , b− 1,

2b t = b,

2b+ 1 t = b+ 1,

2b+ k t = b+ 2k, k = 1, · · · , b− 1,

2b+ k + 1 t = b+ 2k + 1, k = 1, · · · , b− 1,

3b t ≥ 3b− 1.

(8)

In the above example the Hilbert function of the local ring of type (2, b) presents b − 1 flats which
are not consecutive. The following example shows that we can also have b− 1 consecutive flats, that is a
strip like this: HF (n) = HF (n+ 1) = · · · = HF (n+ b− 1) < e.
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Example 5.5. Let us consider the ideal I = (x2, xy2 + z5 + xy3z2) ⊆ R = k[[x, y, z]]. Then A = R/I
is of type (2, 3) and its Hilbert function presents 2 = b − 1 flats which are consecutive: namely we have
HF (5) = HF (6) = HF (7) = 8 < e = 10. In particular the Hilbert series is:

HSA(θ) = (1 + 2θ + 2θ2 + θ3 + θ4 + θ5 + θ8 + θ9)/(1− θ).

We are far from being able to determine the Hilbert functions sequences possible for a one dimensional
local ring which is a complete intersection of type (a, b), with 3 ≤ a ≤ b,. In order to illustrate the
difficulties, we give two more examples, the first of type (3, 3) with one very large platform consisting of
13 consecutive flats, the second of type (4, 4) with nine flats and three platforms.

Example 5.6. Let I = (x3 − zy14, x2y+ xz7) ⊆ R = k[[x, y, z]]. The local ring A = R/I is of type (3, 3)
and

HFA(15) = HFA(16) = . . . · · · = HFA(29) = 31 < e = 32.

In particular the Hilbert series is:

HSA(θ) = (1 + 2θ + 3θ2 + 2θ3 + 2θ4 + 2θ5 + 2θ6 + 2θ7 + 2θ8 + θ9 + 2θ10 + 2θ11 + 2θ12+

+2θ13 + 2θ14 + θ15 + θ16 + θ30 + θ31)/(1− θ)

and I∗ = (x3, x2y, x2z7, xz14, xy15z, y31z).

Example 5.7. Let I = (x4, xy3 − z6) ⊆ R = k[[x, y, z]]. The local ring A = R/I is of type (4, 4) and

HFA(8) = HFA(9) = HFA(10) = HFA(11) = 18;

HFA(13) = HFA(14) = HFA(15) = HFA(16) = 20;

HFA(18) = HFA(19) = HFA(20) = HFA(21) = 22 < e = 24;

In particular the Hilbert series is:

HSA(θ) = (1 + 2θ + 3θ2 + 4θ3 + 3θ4 + 2θ5 + θ6 + θ7 + θ8 + θ12 + θ13 + θ17 + θ18 + θ22 + θ23)/(1− θ)

and I∗ = (xy3, x4, x3z6, x2z12, xz18, z24).

It would be very interesting to describe the isomorphism classes of local rings of type (2, 2) which
have the same given Hilbert function. But this is a difficult task, as the following examples show.

First we are given the Hilbert function {1, 3, 4, 5, 5, 6, 6, ...} which has a flat in position 3 and mul-
tiplicity 6. The two ideals which we are going to prove that are not isomorphic are obtained one from
the other with very little modifications, namely by adding a monomial to one of the two generators. Let
us consider the Hilbert Function {1, 3, 4, 5, 5, 6, 6, ...} which has a flat in position 3 and multiplicity 6.
The two ideals which are not isomorphic but share the above Hilbert Function are obtained one from the
other with very little modifications, namely by adding a monomial to one of the two generators.

Example 5.8. Let us consider the ideals

I = (x2 − y4, xy + z3), J = (x2 + xz2 − y4, xy + z3)

in R = K[[x, y, z]].
They are of type (2, 2), they have the same Hilbert Function {1, 3, 4, 5, 5, 6, 6, ...} and the same leading

ideal Ltτ (I) = Ltτ (J) = (x2, xy, xz3, y6). On the other hand the ideals of initial forms differ in degree 6:

I∗ = (x2, xy, xz3, y6 − z6), J∗ = (x2, xy, xz3, y6 + yz5 − z6).

We prove that K[[x, y, z]]/I and K[[x, y, z]]/J are not isomorphic.
If there exists an analytic isomorphism φ such that φ(I) = J then we can find power series f, g, h of

order 1 such thatM = (f, g, h) and φ is the result of substituting f for x, g for y and h for z in any power
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series of R. We have f = L1 + F g = L1 +G h = L3 +H where L1, L2, L3 are linearly independent
linear forms in K[x, y, z] and F,G,H are power series of order ≥ 2.

We let for i = 1, 2, 3
Li = λi1x+ λi2y + λi3z

with λij ∈ K.
Since x2 − y4 ∈ I we have φ(x2 − y4) = f2 − g4 ∈ J , hence L2

1 ∈ J∗. Since I∗2 is the K-vector space
I∗2 =< x2, xy >, we have

(λ11x+ λ12y + λ13z)
2 = px2 + qxy

with p, q ∈ K; this clearly implies λ12 = λ13 = 0.
In the same way, since xy+ z3 ∈ I, we have φ(xy+ z3) = fg+h3 ∈ J , hence L1L2 ∈ J∗. Thus we get

(λ11x)(λ21x+ λ22y + λ23z) = rx2 + sxy

with r, s ∈ K. This implies λ23 = 0 because λ11 6= 0.
Finally we have

y6 − z6 = −y2(x2 − y4) + (xy + z3)(xy − z3) ∈ I

so that φ(y6 − z6) = g6 − h6 ∈ J, and, as before, L6
2 − L6

3 ∈ J∗. Looking at the generators of the vector
space J∗6 we get as a consequence

(λ21x+ λ22y)6 − (λ31x+ λ32y + λ33z)
6 = Ax2 +Bxy + Cxz3 +D(y6 + yz5 − z6)

where A,B,C,D are forms of degree 4, 4, 2, 0 respectively in the polynomial ring K[x, y, z].
Since L1, L2, L3 are linearly independent, we must have λ33 6= 0. Hence, looking at the coefficient

of the monomial y5z in the above formula, we get λ32 = 0. But then, looking at the coefficient of the
monomial yz5, we certainly get D = 0 and finally, looking at the coefficient of the monomial z6, we get
λ33 = 0. This is a contradiction, so that the algebras R/I and R/J are not in the same isomorphism
class.

The case when the Hilbert function is strictly increasing is not more easy to handle. Here we con-
sider the Hilbert function {1, 3, 4, 5, 6, 6, 6, ....} which is strictly increasing and we look at the possible
isomorphism classes of local rings with that Hilbert function.

Example 5.9. Let us consider the two ideals

I := (x2 + y4, xy), J := (x2 + y4 + z4, xy).

They have the same Hilbert function {1, 3, 4, 5, 6, 6, 6, ....} and

I∗ = (x2, xy, y5) J∗ = (x2, xy, y5 + yz4).

Here the tangent cones are not isomorphic, because in I∗ there is the pure power y5 while there are
not pure powers of degree 5 in J∗. The calculation in itself shows that the original algebras cannot be
isomorphic.
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