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1. Introduction

Gorenstein rings were introduced by Grothendieck, who named them because of their 
relation to a duality property of singular plane curves studied by Gorenstein, [13,14]. 
The zero-dimensional case had previously been studied by Macaulay, [22]. Gorenstein 
rings are very common and significant in many areas of mathematics, as it can be seen 
in Bass’s paper [2], see also [16]. They have appeared as an important component in 
a significant number of problems and have proven useful in a wide variety of applica-
tions in commutative algebra, singularity theory, number theory and more recently in 
combinatorics, among other areas.

Gorenstein rings are a generalization of complete intersections, and indeed the two 
notions coincide in codimension two. Codimension three Gorenstein rings are completely 
described by Buchsbaum and Eisenbud’s structure theorem, [4]. More recently Reid in 
[25] studied the projective resolution of Gorenstein ideals of codimension 4, aiming to 
extend the result of Buchsbaum and Eisenbud. Kustin and Miller in a series of papers 
studied the structure of Gorenstein ideal of higher codimension, see [21] and the refer-
ences therein.

Notice that the lack of a general structure of homogeneous Gorenstein ideals of higher 
codimension is the main obstacle to extending the Gorenstein liaison theory in codi-
mension at least three; the codimension two Gorenstein liaision case is well understood, 
see [20]. See, for instance, [23,21] and [19] for some constructions of particular families 
of Gorenstein algebras.

Let k be a field and let I be an ideal (not necessarily homogeneous) of the power series 
ring R (or of the polynomial ring in the homogeneous case). As an effective consequence 
of Matlis duality, it is known that an Artinian ring R/I is a Gorenstein k-algebra if 
and only if I is the ideal of a system of polynomial differential operators with constant 
coefficients having a unique solution. This solution determines an R-submodule of the 
divided power ring Γ (or its completion) denoted by I⊥ and called the inverse system of I
which contains the same information as in the original ideal. Macaulay at the beginning of 
the 20th century proved that the Artinian Gorenstein k-algebras are in correspondence 
with the cyclic R-submodules of Γ where the elements of R act as derivatives on Γ, 
see [10,18]. In the last twenty years several authors have applied this device to several 
problems, among others: Warings’s problem, [12], n-factorial conjecture in combinatorics 
and geometry, [15], the cactus rank, [24], the geometry of the punctual Hilbert scheme of 
Gorenstein schemes, [18], Kaplansky–Serre’s problem, [26], classification up to analytic 
isomorphism of Artinian Gorenstein rings, [9].

The aim of this paper is to extend the well-known Macaulay’s correspondence charac-
terizing the submodules of Γ in one-to-one correspondence with Gorenstein d-dimensional 
k-algebras (Theorem 3.8). These submodules are called Gd-admissible (Definition 3.6) 
and in positive dimension they are not finitely generated. The Gd-admissible submodules 
of Γ can be described in some coherent manner and we discuss effective methods for con-
structing Gorenstein k-algebras with a particular emphasis to standard graded k-algebras 
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(Theorem 3.11). In Section 4 several examples are given, in particular we propose a finite 
procedure for constructing Gorenstein graded k-algebras of given multiplicity or given 
Castelnuovo–Mumford regularity (Proposition 4.2). We discuss possible obstructions in 
the local case corresponding to non-algebraic curves. Our hope is that our results will 
be successfully applied to give new insights in the above mentioned applications and 
problems.

The computations are performed in characteristic zero (k = Q) by using the computer 
program system Singular, [6], and the library [8].

2. Inverse system

Let V be a vector space of dimension n over a field k where, unless specifically stated 
otherwise, k is a field of any characteristic. Let R = Symk

· V = ⊕i≥0Symk
i V be the 

standard graded polynomial ring in n variables over k and Γ = Dk
· (V ∗) = ⊕i≥0Dk

i (V ∗) =
⊕i≥0Homk(Ri, k) be the graded R-module of graded k-linear homomorphisms from R
to k. Through the paper if V denotes the k-vector space ⟨z1, . . . , zn⟩, then we denote 
by V ∗ = ⟨Z1, . . . , Zn⟩ the dual base and Γ = Γ(V ∗) ≃ kDP [Z1, . . . , Zn] the divided 
power ring. In particular Γj = ⟨{Z [L] / |L| = j}⟩ is the span of the dual generators 
to zL = zl11 · · · zln where L denotes the multi-index L = (l1, . . . , ln) ∈ Nn of length 
|L| =

∑
i li. If L ∈ Zn then we set X [L] = 0 if any component of L is negative. The 

monomials Z [L] are called divided power monomials (DP-monomials) and the elements 
F =

∑
L bLZ [L] of Γ the divided power polynomials (DP-polynomials).

We extend the above setting to the local case considering R as the power series ring 
on V . If V denotes the k-vector space ⟨z1, . . . , zn⟩, then R = k[[z1, . . . , zn] ] will denote 
the formal power series ring and m = (z1, . . . , zn) denotes the maximal ideal of R. The 
injective hull ER(k) of R is isomorphic to the divided power ring (see [11]). For detailed 
information see [7,10,18], Appendix A.

We recall that Γ is a R-module acting R on Γ by contraction as it follows.

Definition 2.1. If h =
∑

M aMzM ∈ R and F =
∑

L bLZ [L] ∈ Γ, then the contraction of 
F by h is defined as

h ◦ F =
∑

M,L

aMbLZ
[L−M ]

The contraction is Gln(k)-equivariant. If the characteristic of the field k is zero, then 
there is a natural isomorphism of R-algebras between (Γ, ◦) equipped with an internal 
product and the usual polynomial ring P replacing the contraction with the partial 
derivatives. In this paper we do not consider the ring structure of Γ, but we always 
consider Γ as R-module by contraction and k will be a field of any characteristic.

The contraction ◦ induces a exact pairing:

⟨ , ⟩ : R× Γ −→ k

(f, g) → (f ◦ g)(0)
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If I ⊂ R is an ideal of R then (R/I)∨ = HomR(R/I, Γ) is the R-submodule of Γ

I⊥ = {g ∈ Γ | I ◦ g = 0 } = {g ∈ Γ | ⟨f, g⟩ = 0 ∀f ∈ I}.

This submodule of Γ is called Macaulay’s inverse system of I. If I is a homogeneous 
ideal of a polynomial ring R, then I⊥ is homogenous (generated by forms in Γ in the 
standard meaning) and I⊥ = ⊕I⊥j where I⊥j = {F ∈ Γj | h ◦ F = 0 for all h ∈ Ij}.

Given a R-submodule W of Γ, then the dual W∨ = HomR(W, Γ) is the ring 
R/ AnnR(W ) where

AnnR(W ) = {f ∈ R | f ◦ g = 0 for all g ∈ W}.

Notice that AnnR(W ) is an ideal of R. Matlis duality assures that

AnnR(W )⊥ = W, AnnR(I⊥) = I.

If W is generated by homogeneous DP-polynomials, then AnnR(W ) is a homogeneous 
ideal of R.

Macaulay in [22, IV] proved a particular case of Matlis duality, called Macaulay’s 
correspondence, between the ideals I ⊆ R such that R/I is an Artinian local ring and 
R-submodules W = I⊥ of Γ which are finitely generated. Macaulay’s correspondence is 
an effective method for computing Artinian rings, see [5], Section 1, [17,12] and [18].

If (A, n) is an Artinian local ring, we denote by Soc(A) = 0 :A n the socle of A. 
Throughout this paper we denote by s the socle degree of A (also called Löwey length), 
that is the maximum integer j such that nj ̸= 0. The type of A is t(A) := dimk Soc(A); 
A is an Artinian Gorenstein ring if t(A) = 1. If R/I is an Artinian local algebra of 
socle-degree s then I⊥ is generated by DP-polynomials of degree ≤ s and dimk(A)(=
multiplicity of A) = dimk I⊥.

From Macaulay’s correspondence, Artinian Gorenstein k-algebras A = R/I of socle 
degree s correspond to cyclic R-submodules of Γ generated by a divided power polynomial 
F ̸= 0 of degree s.

We will denote by ⟨F ⟩R the cyclic R-submodule of Γ generated by the divided power 
polynomial F .

We can compute the Hilbert function of a graded or local k-algebra A = R/I (not 
necessarily Artinian) in terms of its inverse system. The Hilbert function of A = R/I is 
by definition

HFA(i) = dimk

(
ni

ni+1

)

where n = m/I is the maximal ideal of A.
We denote by Γ≤i (resp. Γ<i, resp. Γi), i ∈ N, the k-vector space of DP-polynomials 

of Γ of degree less or equal (resp. less, resp. equal) to i, and we consider the following 
k-vector space
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(I⊥)i := I⊥ ∩ Γ≤i + Γ<i

Γ<i
.

Notice that if I is an homogeneous ideal of the polynomial ring R, then (I⊥)i = (Ii)⊥.

Proposition 2.2. With the previous notation and for all i ≥ 0

HFA(i) = dimk(I⊥)i.

Proof. Let’s consider the following natural exact sequence of R-modules

0 −→ ni

ni+1 −→ A

ni+1 −→ A

ni
−→ 0.

Dualizing this sequence we obtain

0 −→ (I + mi)⊥ −→ (I + mi+1)⊥ −→
(

ni

ni+1

)∨

−→ 0

so we get the following sequence of k-vector spaces:
(

ni

ni+1

)∨
∼= (I + mi+1)⊥

(I + mi)⊥ = I⊥ ∩ Γ≤i

I⊥ ∩ Γ≤i−1
∼= I⊥ ∩ Γ≤i + Γ<i

Γ<i
.

Then the result follows since dimk

(
ni

ni+1

)∨
= dimk

ni

ni+1 = H FA(i). ✷

Example 2.3. Let I = (xy, y2 − x3) ⊆ R = k[[x, y]] and let Γ = kDP [X, Y ]. It is easy to 
see that

I⊥ = ⟨X [3] + Y [2]⟩R

and ⟨X [3]+Y [2]⟩R = ⟨X [3]+Y [2], X [2], X, Y, 1⟩k as k-vector space. Hence by using Propo-
sition 2.2, one can compute the Hilbert series of A = R/I

HSA(z) =
∑

i≥1
HFA(i)zi = 1 + 2z + z2 + z3.

3. Structure of the inverse system

In this section R denotes the power series ring and m the maximal ideal. Let I be 
an ideal of R such that I ⊂ m2 and A = R/I is Gorenstein of dimension d ≥ 1. Where 
specified A = R/I will be a standard graded algebra and in this case R will be the 
polynomial ring and m the homogeneous maximal ideal.

We assume that the ground field k is infinite. If A is a standard graded k-algebra 
it is well known that we can pick z := z1, . . . , zd which are part of a basis of R1 and 
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they represent a linear system of parameters for R/I. If A = R/I is a local k-algebra 
we can pick z := z1, . . . , zd ∈ m \ m2 which are part of a minimal set of generators 
of m and their cosets represent a system of parameters for R/I. In both cases we will 
say that z := z1, . . . , zd is a regular linear sequence for R/I. We remark that z1, . . . , zd
can be extended to a minimal system of generators of m, say z1, . . . , zd, . . . , zn where 
n = dimR. If z1, . . . zn is a minimal set of generators of m, we denote by Z1, . . . , Zn the 
corresponding dual basis such that zi ◦ Zj = δij , hence Γ = kDP [Z1, . . . , Zn].

Assume z := z1, . . . , zd a regular linear sequence for A. For every L = (l1, . . . , ld) ∈ Nd

we denote by zL the sequence of pure powers zl11 , . . . , zldd ∈ R. Consider L = (l1, . . . , ld) ∈
Nd

+, we denote by

ΓzL = (zL)⊥

the R-submodule of Γ orthogonal to zL. Let W = I⊥ be the inverse system of I in Γ
and let

WzL = W ∩ ΓzL = (I + (zL))⊥. (1)

Since A/(zL)A is an Artinian Gorenstein local ring for all L ∈ Nd
+, see for instance [3]

Proposition 3.1.19(b), then WzL is a non-zero cyclic R-submodule of Γ for all L ∈ Nd
+. 

We are interested in special generators of WzL strictly related to a given generator of Wz.
We consider in Nd, d ≤ n, the componentwise ordering, i.e. given two multi-indexes 

L = (l1 . . . , ld) and M = (m1, . . . , md) ∈ Nd then L ≤d M if and only if li ≤ mi for all 
i = 1, . . . , d. We recall that |L| = l1 + · · · + ld is the total degree of L. If L ∈ Nd, we 
denote by Γ≤L, resp. Γ<L, the set of elements of Γ of multidegree less or equal (resp. 
less) than L with respect to Z1, . . . , Zd. We remark that if z = z1, . . . , zd, then

(zL)⊥ = Γ<L. (2)

Lemma 3.1. If L ∈ Nd
+, then

(i) WzL/m ◦WzL
∼= Soc(A/zLA)∨,

(ii)
⋃

L∈Nd
+
WzL = I⊥

Proof. (i) see [5], Lemma 1.9 (ii).
(ii) follows from (2) and (1) because

⋃

L∈Nd
+

WzL =
⋃

L∈Nd
+

(I⊥ ∩ Γ<L) = I⊥. ✷

For all i = 1, . . . , d we denote by γi = (0, . . . , 1, . . . 0) ∈ Nd the i-th the coordinate 
vector. We write 1d = (1, . . . , 1) ∈ Nd, more in general, for all positive integer t ∈ N we 
write
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td = (t, . . . , t) ∈ Nd

The following result is a consequence of a modified Koszul complex on R/I.

Proposition 3.2.
(i) Assume d = 1. For all l ≥ 2 there is an exact sequence of finitely generated 

R-submodules of Γ

0 −→ Wz1 −→ Wzl
1

z1◦−→ Wzl−1
1

−→ 0.

(ii) Assume d ≥ 2. If z = z1, . . . , zd, then for all L ∈ Nr such that L ≥ 2d there is an 
exact sequence of finitely generated R-submodules of Γ

0 −→ Wz −→ WzL −→
d⊕

k=1
WzL−γk −→

⊕

1≤i<j≤d

WzL−γi−γj

Proof. (i) Assume d = 1. Since z1 is regular on R/I, for all l ≥ 2, the following sequence 
of Artinian Gorenstein rings is exact

0 −→ R

I + (zl−1
1 )

·z1−→ R

I + (zl1)
−→ R

I + (z1)
−→ 0

This induces by duality the following exact sequence of finitely generated R-submodules 
of Γ

0 −→ Wz1 −→ Wzl
1

z1◦−→ Wzl−1
1

−→ 0.

(ii) Assume d ≥ 2. If z = z1, . . . , zd, then we prove that for all L ∈ Nd such that L ≥ 2d

the following sequence of R-modules is exact

⊕

1≤i<j≤d

R

I + (zL−γi−γj )
φL−→

d⊕

k=1

R

I + (zL−γk)
ϕL−→ R

I + (zL) −→ R

I + (z) −→ 0

where: ϕL(v1, . . . , vd) =
∑d

k=1 zkvk, and
φL(vi,j ; 1 ≤ i < j ≤ d) =

∑
1≤i<j≤r(0, . . . , zj , . . . , −zi, . . . , 0)vi,j ;

for short we denote by v the class of an element v ∈ R in the above different quotients.
Since L ≥ 2d for all 1 ≤ i < j ≤ d we have L − γi − γj ∈ Nd. It is easy to prove that 
ϕLφL = 0, so we have to prove that Ker(ϕL) ⊂ Im(φL). Given (v1, . . . , vd) ∈ Ker(ϕL)
we have that 

∑d
k=1 zkvk ∈ I + (zL), so there are λ1, . . . , λr ∈ R such that

d∑

k=1
zk(vk − λiz

lk−1
k ) ∈ I.
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Since z is a regular sequence on A = R/I we deduce that, modulo I,

((vk − λiz
lk−1
k )k=1,...,d) ≡

∑

1≤i<j≤d

µi,j(0, . . . , zj , . . . ,−zi, . . . , 0)

for some µi,j ∈ R, 1 ≤ i < j ≤ d. From this we deduce that (v1, . . . , vd) ∈ Im(φL).
Now the exact sequence of Artinian Gorenstein rings induces by Matlis duality the 

following exact sequence of Γ-modules

0 −→ Wz −→ WzL

ϕ∗
L−→

d⊕

k=1
WzL−γk

φ∗
L−→

⊕

1≤i<j≤d

WzL−γi−γj

with ϕ∗
L(v) = (z1 ◦ v, . . . , zd ◦ v) and φ∗

L(v1, . . . , vd) = (zj ◦ vi − zi ◦ vj ; 1 ≤ i < j ≤ d). 
This proves (ii). ✷

We recall the following basic fact that will be useful in the following.

Lemma 3.3. Let (R, m, k) be a local ring and let f : M −→ N be an epimorphism between 
two non-zero cyclic R-modules. Let m ∈ M be an element such that f(m) is a generator 
of N . Then m is a generator of M .

Proof. We remark that f induces an isomorphism of one-dimensional k-vector spaces 
f̄ : M/mM −→ N/mN . Since the coset of f(m) in N/mN is non-zero the coset of m in 
M/mM is non-zero. Hence m is a generator of M . ✷

We remark that if L = 1d, then Wz1d = Wz = (I + (z1, . . . , zd))⊥. Then Wz is a 
non-zero cyclic R-submodule of Γ and denote by H1d a generator:

W1d = ⟨H1d⟩.

In particular Wz is the dual of the Artinian reduction R/I + (z). It is clear that H1d

depends from the regular sequence z we consider. Our goal is to lift the generator H1d

of W1d to a suitable generator HL of WzL = (I + (zL))⊥, for all L = (l1, . . . , ld) ∈ Nd
+.

Proposition 3.4. For all L = (l1, . . . , ld) ∈ Nd
+ and for all i = 1, . . . , d such that li ≥ 2, 

let HL−γi be a generator of WzL−γi . There exists a generator HL of WL satisfying

zi ◦HL = HL−γi

for all i = 1, . . . , d such that li ≥ 2.

Proof. For every L ∈ Nd
+ we define |L|+ as the number of positions i ∈ {1, . . . , d} such 

that li ≥ 2. We proceed by recurrence on the pair (|L|+, |L| −(d −|L|+)) ∈ {1, . . . , d} ×N. 
Notice that |L| − (d − |L|+) ≥ 2|L|+.
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Assume that |L|+ = 1. After a permutation, we may assume that L = (l, 1, . . . , 1)
with l ≥ 2. Consider the ideal J = I + (z2, . . . , zd); from Proposition 3.2 (i) we get an 
exact sequence

0 −→ W1d −→ WL = (J + (zl1))⊥
z1◦−→ WL−γ1 = (J + (zl−1

1 ))⊥ −→ 0.

Notice that |L −γ1|+ ≤ 1 and that if |L −γ1|+ = 1 then |L −γ1| −(d −1) = |L| −(d −1) −1. 
Hence by induction we know that there exists HL ∈ WL satisfying z1 ◦HL = HL−γ1 and 
WL−γ1 = ⟨HL−γ1⟩. Lemma 3.3 applied to the epimorphism

WL = (J + (zl1))⊥
x1◦−→ WL−γ1 = (J + (zl−1

1 ))⊥ −→ 0

with m = HL gives that HL is a generator of WL.
We may assume that r = |L|+ ≥ 2. After a permutation we may assume that 

L = (l1, . . . , lr, 1 . . . , 1) with li ≥ 2 for i = 1, . . . , r. We set z′ = z1, . . . , zr and 
L′ = (l1, . . . , lr) ∈ Nr

+. Consider the ideal J = I + (zr+1, . . . , zd); from Proposition 3.2
(ii) we get an exact sequence

0 −→ T1r −→ TL′
ϕ∗

L′−→
r⊕

k=1
TL′−γk

φ∗
L′−→

⊕

1≤i<j≤r

TL′−γi−γj

where T1r = W1d , TL′ = (J+z′ L
′)⊥ = (I+zL)⊥ = WL, TL′−γk = (J+z′ L

′−γk)⊥ = (I+
zL−γk)⊥ = WL−γk and TL′−γi−γj = (J + z′ L

′−γi−γj )⊥ = (I + zL−γi−γj)⊥ = WL−γi−γj . 
Hence, by induction, we know that for all k = 1, . . . , r there exists HL−γk ∈ Γ such that 
WL−γk = ⟨HL−γk⟩ and zi ◦HL−γk = HL−γk−γi for all i ∈ {1, . . . , r}, i ̸= k. From this we 
deduce that

(HL−γ1 , . . . , HL−γr ) ∈ Ker(φ∗
L′),

from the above exact sequence there exists HL ∈ WL such that zk ◦HL = HL−γk for all 
k = 1, . . . , r. The same argument as before proves that HL is a generator of WL. ✷

Remark 3.5. With the above notation, given two DP-polynomials H, G ∈ Γ, we say that 
G is a primitive of H with respect to z1 ∈ R if z1 ◦G = H. From the definition of ◦, we 
will get

G = Z1H + C

for some C ∈ Γ such that z1◦C = 0. Remark that Z1H denotes the usual multiplication in 
a polynomial ring and we do not use the internal multiplication in Γ as DP-polynomials. 
Hence in Proposition 3.4, we will say that HL is a primitive of HL−γi with respect to zi
for all i = 1, . . . , d.
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We prove now the main result of this paper which is an extension to the d-dimensional 
case of Macaulay’s Inverse System correspondence. We give a complete description of 
the R-submodules of Γ whose annihilator is a d-dimensional Gorenstein local ring. In 
the Artinian case they are cyclic generated by a polynomial of Γ, in positive dimension 
the dual modules are not finitely generated and further conditions will be required.

Definition 3.6. Let d ≤ n be a positive integer. An R-submodule M of Γ is called 
Gd-admissible if it admits a system of generators {HL}L∈Nd

+
in Γ = kDP [Z1, . . . , Zn]

satisfying the following conditions

(1) for all L ∈ Nd
+ and for all i = 1, . . . , d

zi ◦HL =
{

HL−γi if L− γi > 0
0 otherwise.

(2) AnnR(HL) ◦HL+γi = ⟨HL−(li−1)γi
⟩ for all i = 1, . . . , d and L = (l1, · · · , ld) ∈ Nd

+.

If this is the case, we also say that M is Gd-admissible with respect to the elements 
z1, . . . , zd ∈ R.

Remark 3.7. Given a Gd-admissible set {HL}L∈Nd
+

in Γ, the condition H1d = 0 is equiva-
lent to the vanishing of the R-module M = ⟨HL, L ∈ Nd

+⟩. In fact, assume that H1d = 0. 
We proceed by induction on t = |L| where L ∈ Nd

+. If t = d then L = 1d and HL = 0
by hypothesis. Assume that HL = 0 for all L with |L| ≤ t. We only need to prove that 
HL+γi = 0 for all i = 1, · · · , n. Since HL = 0 we get that AnnR(HL) = R. From the con-
dition (ii) of the above definition we get R ◦HL+γi = ⟨HL−(li−1)γi

⟩ = 0, so HL+γi = 0. 
The converse is trivial.

Theorem 3.8. Let (R, m) be the power series ring and let d ≤ dimR be a positive integer. 
There is a one-to-one correspondence C between the following sets:

(i) d-dimensional Gorenstein quotients of R,
(ii) non-zero Gd-admissible R-submodules M = ⟨HL, L ∈ Nd

+⟩ of Γ.

In particular, given an ideal I ⊂ R with A = R/I satisfying (i), then

C(A) = I⊥ = ⟨HL, L ∈ Nd
+⟩ ⊂ Γ with ⟨HL⟩ = (I + (zL))⊥

is Gd-admissible with respect to a regular linear sequence z = z1, . . . , zd for R/I. Con-
versely, given a R-submodule M of Γ satisfying (ii), then

C−1(M) = R/I with I = AnnR(M) =
⋂

L∈Nd
+

AnnR(HL)

is a d-dimensional Gorenstein ring.
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Proof. Let A = R/I be a quotient of R satisfying (i) and consider z = z1, . . . , zd in R a 
linear regular sequence modulo I. Let z1, . . . , zd, . . . , zn be a minimal system of generators 
of m and let Z1, . . . , Zn be the dual base. Let H1d be a generator of W1d = (I + (z))⊥
in Γ = kDP [Z1, . . . , Zn]. Since d ≥ 1 we have H1d ̸= 0. By Proposition 3.4 there exist 
elements HL, L ∈ Nd

+ in Γ such that WzL = (I + (zL))⊥ = ⟨HL⟩ and by Lemma 3.1
M = I⊥ = ⟨HL, L ∈ Nd

+⟩ satisfies Definition 3.6 (1).
Since WzL+γi = ⟨HL+γi⟩ we have (I +(zL+γi)) ◦HL+γi = 0. In particular I ◦HL+γi =

z
lj
j ◦HL+γi = 0 for all j ∈ {1, . . . , d} and j ̸= i. Hence we get

AnnR(HL) ◦HL+γi = (I + (zL)) ◦HL+γi = (zlii ) ◦HL+γi = ⟨HL−(li−1)γi
⟩.

It follows that M = ⟨HL, L ∈ Nd
+⟩ is a R-submodule of Γ which is Gd-admissible and we 

set C(A) = M . Since H1d ̸= 0 we have that M ̸= 0.
Conversely, let M ̸= 0 be a R-submodule of Γ = kDP [Z1, . . . , Zn] which is 

Gd-admissible. Hence M admits a system of generators {HL}L∈Nd
+

satisfying the fol-
lowing conditions

(1) For all L ∈ Nd
+ and for all i = 1, . . . , d

zi ◦HL =
{

HL−γi if L− γi > 0
0 otherwise.

(2) AnnR(HL) ◦HL+γi = ⟨HL−(li−1)γi
⟩ for all i = 1, . . . , d and L ∈ Nd

+, and H1d ̸= 0, 
Remark 3.7.

For all L ∈ Nd
+ we set WL := ⟨HL⟩ and IL := AnnR(WL). We define the following 

ideal of R

I :=
⋂

L∈Nd
+

IL,

and we prove that R/I is Gorenstein of dimension d.

Claim 1. For all L ∈ Nd
+ it holds IL ⊂ IL+1d + (zL).

Proof. Notice that it is enough to prove that IL ⊂ IL+γi + (zlii ) for i = 1, . . . , d. In fact, 
assume that IL ⊂ IL+γi + (zlii ) for all i = 1, . . . , d. Then

I ⊂ IL+γ1 + (zl11 ) ⊂ IL+γ1+γ2 + (zl11 , zl22 ) ⊂ . . .

· · · ⊂ IL+γ1+···+γd + (zl11 , . . . , zldd ) = IL ⊂ IL+1d + (zL).
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We prove now that IL ⊂ IL+γ1 + (zl11 ). Given β ∈ IL = AnnR(HL) by (2) there is 
γ ∈ R such that

β ◦HL+γ1 = γ ◦HL−(l1−1)γ1 = γ ◦ (zl11 ◦HL+γ1).

From this identity we deduce β − γzl11 ∈ AnnR(HL+γ1) = IL+γ1 , so β ∈ IL+γ1 + (zl11 ).

Claim 2. For all L ∈ Nd
+ it holds IL = I + (zL).

Proof. By (1) we get (zL) ◦HL = 0, hence (zL) ⊂ IL. Since I ⊂ IL we get the inclusion 
I + (zL) ⊂ IL.

Now we prove that IL ⊂ I+(zL). Given βL ∈ IL, by Claim 1 there are βL+1d ∈ IL+1d

and ω0 ∈ (zL) such that

βL = βL+1d + ω0.

Since βL+1d ∈ IL+1d , by Claim 1 there are βL+2d ∈ IL+2d and ω1 ∈ (zL+1d) such that

βL+1d = βL+2d + ω1,

so βL = βL+2d + ω0 + ω1. By recurrence there are sequences {βL+t1d}t≥0 and {ωt}t≥0
such that βL+td ∈ IL+td , ωt ∈ (zL+td). For all t ≥ 0 it holds

βL = βL+td +
t∑

i=0
ωt.

Since ωt ∈ (zL+td) for all t ≥ 0 we get that there exists ω =
∑

t≥0 ω
t ∈ k[[z1, · · · , zn] ]. 

Hence there exists β = limt→∞ βL+td ∈ k[[z1, · · · , zn] ], so

βL = β + ω.

Notice that ω ∈ (zL) and that β ∈
⋂

t≥0 IL+td = I. From this we get that βL ∈ I +(zL).
If R = k[z1, · · · , zn] then β ∈ I ⊂ R. Since βL ∈ R we get that ω =

∑
t≥0 ω

t ∈ R =
k[z1, · · · , zn].

Claim 3. z is a regular sequence of R/I and dim(R/I) = d.

Proof. Since W1d = ⟨H1d⟩ = I⊥1d
, by Claim 2 I⊥1d

= (I + (z))⊥. By Remark 3.7 we get 
that H1d ̸= 0 since M ̸= 0. Hence R/I + (z) is Artinian and then dim(R/I) ≤ d. Next 
we prove that z is a regular sequence modulo I and hence dim(R/I) = d.

First we prove that z1 is a non-zero divisor of A = R/I. By (1) the derivation by z1
defines an epimorphism of R-modules

WL = ⟨HL⟩
z1◦−→ WL = ⟨HL−γ1⟩ −→ 0
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for all L ≥d 2d. This sequence induces an exact sequence of R-modules

0 −→ R

I + (zL−γ1)
.z1−→ R

I + (zL) .

Let a ∈ R such that z1a ∈ I. Since z1a ∈ I + (zL) we deduce that a ∈ I + (zL−γ1) for all 
L ≥d 2d, and we conclude that a ∈ I.

Assume that z1, . . . , zr, r < d, is a regular sequence of R/I. Given L′ = (lr+1, . . . , ld) ∈
Nd−r

+ such that li ≥ 2, for all i = r + 1, . . . , d, we write L = (1, . . . , 1, lr+1, . . . , ld) ∈ Nd
+. 

By (1) the derivation by zr+1 defines an epimorphism of R-modules

WL = ⟨HL⟩
zr+1◦−→ WL = ⟨HL−γr+1⟩ −→ 0.

This sequence induces an exact sequence of R-modules

0 −→ R

I + (z1, . . . , zr) + (zlr−1
r+1 , . . . , zldd )

.zr+1−→ R

I + (z1, . . . , zr) + (zlrr+1, . . . , z
ld
d )

.

Let a ∈ R such that zr+1a ∈ I+(z1, . . . , zr). Since zr+1a ∈ I+(z1, . . . , zr) +(zlrr+1, . . . , z
ld
d )

we deduce that a ∈ I + (z1, . . . , zr) + (zlr−1
r+1 , . . . , zldd ) for all L′ ≥r 2d. Hence a ∈ I +

(z1, . . . , zr), as wanted.

Claim 4. R/I is Gorenstein.

Proof. (I +(z))⊥ is cyclic, so R/I +(z) is Gorenstein. Since R/I is Cohen–Macaulay by 
Claim 3, we have that R/I is a d-dimensional Gorenstein ring.

We define C′(M) = R/I where I =
⋂

L∈Nd
+
IL and we prove that C and C′ are inverse 

each other. Let A = R/I be a d-dimensional Gorenstein rings A = R/I such that 
z1, . . . , zd is a regular sequence of A. Then

C′C(A) = R/J

where

J =
⋂

L∈Nd
+

AnnR((I + (zL))⊥) =
⋂

L∈Nd
+

I + (zL) = I,

because AnnR((I + (zL))⊥) = I + (zL). Hence C′C is the identity map in the set of rings 
satisfying (i).

Let M = ⟨HL; L ∈ Nd
+⟩ be an R-module satisfying (ii). Then C′(M) = R/I where 

I =
⋂

L∈Nd
+

AnnR(HL). By Claim 2 we know I+(zL) = AnnR(HL) so CC′(M) = M . ✷
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Remark 3.9. Theorem 3.8 can be also applied to standard graded quotients R/I of R
where R is the polynomial ring (and I is an homogeneous ideal). In this case the dual 
R-submodule M of Γ will be generated by homogeneous DP-polynomials HL. Hence 
the correspondence will be between d-dimensional Gorenstein graded k-algebras and 
Gd-admissible homogeneous R-submodules M of Γ.

Remark 3.10. Let A = R/I be a d-dimensional Gorenstein quotient of R and let z =
z1, . . . , zd ∈ m \ m2 be a linear regular sequence for R/I. By Theorem 3.8, let M =
⟨HL, L ∈ Nd

+⟩ be the dual module. Then by Macaulay’s correspondence, the socle degree 
of the Artinian reduction A/(z)A coincides with deg(H1d). On the other hand we have 
the following inequality on the multiplicity of A:

e0(A) ≤ LengthR(A/(z)A) = dimk(⟨H1d⟩).

The equality holds in the graded case or in the local case if z is a superficial sequence 
of A. If A is a standard graded k-algebra which is Gorenstein (hence Cohen–Macaulay), 
then the multiplicity and the Castelnuovo Mumford regularity of A coincide with those of 
any Artinian reduction, in particular A/(z)A. Hence e(A) = dimk(⟨H1d⟩) and reg(A) =
degH1d .

According to the previous remark, in the graded case important geometric information 
such as the multiplicity, the arithmetic genus, or more in general, the Hilbert polynomial 
of the Gorenstein k-algebra depend only on the choice of H1d , the first step in the 
construction of a Gd-admissible dual module, see Example 4.5. We can state the following 
result which refines Theorem 3.8 in the case of graded k-algebras.

Theorem 3.11. Let R be the polynomial ring and let d ≤ dimR be a positive integer. 
There is a one-to-one correspondence C between the following sets:

(i) d-dimensional Gorenstein standard graded k-algebras A = R/I of multiplicity 
e = e(A) (resp. Castelnuovo–Mumford regularity r = reg(A))

(ii) non-zero Gd-admissible homogeneous R-submodules M = ⟨HL, L ∈ Nd
+⟩ of Γ such 

that dimk⟨H1d⟩ = e (resp. degH1d = r)

The following remarks will be useful in the effective construction of a Gd-admissible 
R-submodule of Γ.

Remark 3.12. Condition (2) in Definition 3.6 can be replaced by the following:
(2) ⟨HL⟩ ∩k[Z1, . . . , ̂Zi, . . . , Zn] ⊆ ⟨HL−(li−1)γi

⟩ for all L ∈ Nd
+ and for all i = 1, . . . , d.

Proof. Let {HL}L∈Nd
+

be in Γ satisfying conditions (1) and (2) of Definition 3.6, we prove 

condition (2) above. Let βi ∈ ⟨HL⟩ ∩k[Z1, . . . , ̂Zi, . . . , Zn], then there exists αi ∈ R, such 
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that βi = αi ◦ HL ∈ k[Z1, . . . , ̂Zi, . . . , Zn] and hence zi ◦ βi = 0. Now αi ◦ HL−γi =
αi ◦ (zi ◦HL) = zi ◦ (αi ◦HL) = zi ◦ βi = 0, hence αi ∈ Ann(HL−γi) and by assumption 
βi ∈ ⟨HL−(li−1)γi

⟩.
Conversely assume (2) above. Let αi ∈ Ann(HL−γi) and we prove αi ◦ HL ⊆

⟨HL−(li−1)γi
⟩. We have zi ◦ (αi ◦HL) = αi ◦ (zi ◦HL) = αi ◦HL−γi = 0, hence αi ◦HL ∈

k[Z1, . . . , ̂Zi, . . . , Zn]. It follows αi ◦HL ∈ ⟨HL⟩ ∩ k[Z1, . . . , ̂Zi, . . . , Zn] ⊆ ⟨HL−(li−1)γi
⟩, 

as required. ✷

Remark 3.13. It is easy to see that condition (2) of Definition 3.6 is equivalent to

HL+γi ∈ (AnnR(HL−(li−1)γi
) AnnR(HL))⊥.

It is worth mentioning that any Gd-admissible set {HL}L∈Nd
+

with M = ⟨HL; L ∈ Nd
+⟩, 

satisfies

(i) M = ⟨Htd ; t ≥ n0⟩ for any integer n0 ≥ 1,
(ii) if L ∈ Nd

+, then HL+1d ∈ (AnnR(H1d) AnnR(HL)d)⊥.

Proof. (i) Notice that for all L ∈ Nd
+ there is t ∈ N such that L ≤d td, so HL is 

determined by Htd because HL = ztd−L ◦Htd , see Theorem 3.8.
(ii) Since L + 1d = (L + 1d − γ1) + γ1, from Theorem 3.8 (ii) we get that

AnnR(HL) ◦HL+1d = ⟨HL+1d−l1γ1⟩.

Since 
∑d

i=1 liγi = L, by recurrence we deduce that

AnnR(HL)d ◦HL+1d = ⟨HL+1d−L⟩ = ⟨H1d⟩.

From this identity we get (ii). ✷

Remark 3.14. Let M = ⟨HL; L ∈ Nd
+⟩ be a non-zero R-submodule of Γ which is 

Gd-admissible with respect to a linear regular sequence z1, . . . , zd ∈ R. Let Z1, . . . , Zd

the corresponding dual elements in Γ1. As a consequence of Definition 3.6, for t ≥ 1 and 
in accordance with Remark 3.5, we can write

H(t+1)d = Z1 · · ·ZdHtd + Ct+1 =
t∑

i=0
Zi

1 · · ·Zi
d Ct+1−i

where (z1 . . . zd) ◦ Ci = 0 for all i = 1, . . . , t + 1. Notice that by the above remark the 
diagonal elements H(t+1)d can describe the module M = ⟨HL, L ∈ Nd

+⟩.
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4. Examples and effective constructions

Many interesting questions arise from Theorem 3.8, but the most challenging aim is 
to deepen the effective aspects. We are interested in the construction of R-submodules 
M of Γ which are Gd-admissible and to their corresponding Gorenstein k-algebras. We 
hope that the following examples can suggest interesting refinements of our main result.

The following is a first (trivial) example.
If J is an ideal in k[[zd+1, . . . , zn] ], we say that an ideal I ⊂ R = k[[z1, . . . , zd, . . . , zn] ]

is a cone with respect to J if I = JR. In the following result denote S = k[[zd+1, . . . , zn] ]
and let Q = kDP [Zd+1, . . . , Zn] be the corresponding dual.

Proposition 4.1. Given H ∈ Q, consider the following R-submodule of Γ = kDP [z1, . . . , zn]

M = ⟨HL = Zl1−1
1 . . . Zld−1

d H | L = (l1, . . . , ld) ∈ Nd
+⟩.

Then R/ AnnR(M) is a d-dimensional Gorenstein graded k-algebra and AnnR(M) is a 
cone with respect to J = AnnS(H).

Proof. We prove that M is Gd-admissible proving that M satisfies Definition 3.6 with 
respect to the sequence z1, . . . , zd. It is easy to show that M satisfies condition (1) setting 
H1d = H. We prove now that M satisfies also condition (2) of Definition 3.6, that is 
AnnR(HL) ◦ HL+γi ⊆ ⟨HL−(li−1)γi

⟩ for all i = 1, . . . , d and L ∈ Nd
+. First of all we 

observe that, since H ∈ k[Zd+1, . . . , Zn], it is easy to prove that

AnnR⟨Zl1
1 . . . Zld

d H⟩ = AnnR⟨Zl1
1 . . . Zld

d ⟩ + AnnS(H)R = (zl11 , . . . , zldd ) + AnnS(H)R

Hence

AnnR(HL) ◦HL+γi = ((zl11 , . . . , zldd ) + AnnS(H)R) ◦HL+γi =

= (zl11 , . . . , zldd ) ◦HL+γi ⊆ ⟨HL−(li−1)γi
⟩.

From Theorem 3.8 we know that there exists a d-dimensional Gorenstein local ring 
A = R/I such that I⊥ = ⟨HL; L ∈ Nd

+⟩ and I = AnnR(M) =
⋂

L∈Nd
+

AnnR(HL). Hence

I =
⋂

L∈Nd
+

((zl11 , . . . , zldd ) + AnnS(H)R) = AnnS(H)R

is a cone with respect to J = AnnS(H). ✷

We are interested now in more significant classes of Gorenstein d-dimensional 
k-algebras. The dual module of a Gorenstein ring of positive dimension is not finitely 
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generated and we would be interested in effective methods determining Gorenstein rings 
in a finite numbers of steps. This aim motives the following setting.

Let t0 ∈ N+, we say that a family H = {HL; L ∈ Nd
+, |L| ≤ t0} of polynomials of Γ

is admissible if the elements HL satisfy conditions (1) and (2) of Definition 3.6 up to L
such that |L| ≤ t0.

We recall that, starting from a polynomial H1d , Remark 3.12 and Remark 3.13 give 
inductive procedures for constructing an admissible set H = {HL; L ∈ Nd

+, |L| ≤ t0}
with respect to a sequence of linear elements z = z1, · · · , zd.

Proposition 4.2. Let H = {HL; L ∈ Nd
+, |L| ≤ t0} be an admissible set of homogenous 

polynomials with respect to a linear sequence z = z1, · · · , zd with t0 ≥ (r + 2)d where 
r = degH1d . Assume there exists a graded Gorenstein k-algebra A = R/I such that 
(I + (zL))⊥ = ⟨HL⟩ for all |L| ≤ t0. Then

I = AnnR(H(r+2)d)≤r+1R.

Proof. It well known that the Castelnuovo–Mumford reg(A) regularity of the Cohen–
Macaulay ring A =R/I coincides with regularity of the Artinian reduction R/ AnnR(H1d), 
and hence with its socle degree. Hence we get that

reg(A) = s(R/AnnR(H1d)) = degH1d = r

Now the maximum degree of a minimal system of generators of I is at most reg(A) + 1. 
From the identity AnnR(H(r+2)d) = I + (zr+2) we get the claim. ✷

Remark 4.3. Notice that the last result provide a test for checking if an admissible set 
of polynomials can be lifted to a full Gd-admissible family in the graded case. We only 
need to check if the ideal I = AnnR(H(r+2)d)≤r+1R is Gorenstein.

It is worth mentioning that if we know the maximum degree of the generators of I
(which coincides with those of the AnnR(H1d), say b, then

I = AnnR(H(b+1)d)≤bR

We show now some effective constructions of Gorenstein k-algebras by using the above 
results and remarks. In the following example we construct a 1-dimensional Gorenstein 
graded k-algebra of codimension two.

Example 4.4. Consider R = k[x, y, z] and H1 = Y [3] − Z [3] ∈ Γ = kDP [X, Y, Z]. Notice 
that

AnnR(H1) = (x, yz, y3 + z3)

Our aim is to construct an ideal I ⊆ R = k[x, y, z] such that A = R/I is Gorenstein and 
R/I + (x) = R/ AnnR(H1). We have r = degH1 = 3, but from the above equality we 
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deduce the maximum degree of the generators of the ideal I is three. Hence, by Propo-
sition 4.2 and Remark 4.3, a 1-dimensional lift of the Artinian reduction R/ AnnR(H1)
it is univocally determined by H4 in an admissible set H = {H1, . . . , H4}. In particular

I = AnnR(H4)≤3R.

By using Singular one can verify that the following set is admissible:
H = {H1, H2 = XH1 + Y Z [3], H3 = XH2 − Y [2]Z [3], H4 = XH3 + Y [3]Z [3] − 4Z [6]} and 
hence

I = (yz + xz, y3 + z3 − xy2 + x2y − x3).

Notice that A = R/I is a one-dimensional Gorenstein ring of multiplicity 6, x is a linear 
regular element of A and R/ AnnR(H1) is an Artinian reduction of A.

In the following example we construct a two-dimensional Gorenstein k-algebra of 
codimension three.

Example 4.5. Consider R = k[x, y, z, t, w] and

H1,1 = X [2] + Y [2] + XZ ∈ Γ = kDP [X,Y, Z, T,W ].

Our aim is to construct an ideal I ⊆ R = k[x, y, z, t, w] such A = R/I is Goren-
stein and R/I + (t, w) = R/ AnnR(H1,1). We have r = degH1,1 = 2. By Propo-
sition 4.2, a 2-dimensional lift of the Artinian reduction B = R/ AnnR(H1,1) it is 
univocally determined by H4,4 in an admissible set H = {H1,1, . . . , H4,4}. In particular 
I = AnnR(H4,4)≤3R.

Since the Hilbert function of B is {1, 3, 1}, by [29, Theorem B] we know that B is the 
quotient of k[x, y, z] by an ideal minimally generated by 5 forms of degree two. Hence I
is minimally generated by 5 forms of degree two and then

I = AnnR(H4,4)≤2R = AnnR(H3,3)≤2R.

By using Singular one can verify that the following collection of polynomials forms 
an admissible set:

H1,1 = X [2] + Y [2] + XZ,

H2,2 = 2X [4] + XY [3] + X [2]Y Z + 2Z [4] −X [3]T + Y [2]ZT + XZ [2]T + X [3]W

−X [2]YW − Z [3]W − TWH1,1,

H3,3 = X [5]Y + X [2]Y [4] −X [5]Z + X [3]Y [2]Z + Y [5]Z + X [4]Z [2] + XY [3]Z [2]

+ Y [4]Z [2] + X [2]Y Z [3] + 3Y [3]Z [3] −X [2]Z [4] + 3XY Z [4] − 3Z [6] − 3X [5]T
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+ Y [5]T + XY [3]ZT + X [2]Y Z [2]T + 3Z [5]T + X [4]T [2] + Y [2]Z [2]T [2]

+ XZ [3]T [2] −X [5]W + X [4]YW −X [3]Y 2W − Y [5]W − 2X [4]ZW −XY [3]ZW

− Y [4]ZW −X [2]Y Z [2]W − 2Y [3]Z [2]W + X [2]Z [3]W − 2XY Z [3]W + 2Z [5]W

+ X [3]YW [2] + XY [3]W [2] + Y [4]W [4] −X [3]ZW [2] + X [2]Y ZW [2] + Y [3]ZW [2]

−X [2]Z [2]W [2] + XY Z [2]W [2] − Z [4]W [2] − TWH2,2.

We are ready now to compute AnnR(H3,3)≤2R, hence

I = (z2−xt+zt+zw+tw, yz−t2+yw,−y2+xz+t2,−xy+zt+t2, x2−xz−yt+zt−xw+tw).

Notice that A = R/I is a two-dimensional Gorenstein ring of multiplicity 5, {t, w} is a 
linear regular sequence of A and B is an Artinian reduction of A. The projective scheme 
C defined by A is a non-singular arithmetically Gorenstein elliptic curve of P4

k. Notice 
that the above generators of I are the Pfaffians of the skew matrix

⎛

⎜⎜⎜⎜⎜⎝

0 −x + t −t x −y

x− t 0 x −y z + t

t −x 0 z + w 0
−x y −z − w 0 −t

y −z − t 0 t 0

⎞

⎟⎟⎟⎟⎟⎠

Since the Hilbert function of B is {1, 3, 1} we get that the arithmetic genus of C, that 
coincides with its geometric genus, is e1(B) −e0(B) +1 = 5 −5 +1 = 1, where e0(B), e1(B)
are the Hilbert coefficients of B, see [27].

In the following example we construct a 1-dimensional Gorenstein k-algebra of codi-
mension four.

Example 4.6. Consider R = k[x, y, z, t, v] and H1 = X [2] + Y [2] + Z [2] + T [2] ∈ Γ =
kDP [X, Y, Z, T, V ]. We have r = degH1 = 2. Hence a 1-dimensional lift of the Artinian 
reduction R/ AnnR(H1) it is univocally determined by H4 in an admissible set H =
{H1, . . . , H4}. In particular

I = AnnR(H4)≤3R.

One can verify that the following collection of polynomials forms an admissible set:
H1 = X [2] + Y [2] + Z [2] + T [2],
H2 = V H1 + X [3] + Z [3],
H3 = V H2 + X [4] + Z [4],
H4 = V H3 + X [5] + Z [5].
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Hence

I = (x2 − z2 − xv + zv, xy, y2 − z2 + zv, xz, yz, z2 − t2 − zv, xt, yt, zt).

Notice that A = R/I is a one-dimensional Gorenstein ring of multiplicity 6, v is a linear 
regular element of A and R/ AnnR(H1) is a minimal reduction of A with Hilbert function 
{1, 4, 1}. In this case A is non-reduced and a minimal prime decomposition is

I = (x, y, z − v, t) ∩ (x− v, y, z, t) ∩ (t3, t2 + zv, zt, z2, yt, yz, y2 + zv, x− z)

with minimal primes

(x, y, z − v, t), (x− v, y, z, t), (x, y, z, t);

the minimal graded R-free resolution of A is

0 −→ R(−6) −→ R(−4)9 −→ R(−3)16 −→ R(−2)9 −→ R −→ A = R/I −→ 0.

We present now examples in the local (non-homogeneous) case. Possible obstacles to 
a finite procedure could come in particular when R/I is not algebraic. The ring A = R/I

is algebraic if there is an ideal J ⊂ T = k[z1, . . . , zn](z1,...,zn) such that A is analytically 
isomorphic to R/JR, completion of T/J with respect to the (z1, . . . , zn)-adic topology. 
If the singularity defined by A = R/I is isolated, then A is algebraic. It was proved by 
Samuel for hypersurfaces, [28], and, in general, by Artin in [1, Theorem 3.8]. But there 
are singularities of normal surfaces in C3 which are not algebraic, [30, Section 14, Exam-
ple 14.2]. Notice that the ideal defining the above singularity is principal, in particular 
is Gorenstein.

The following example suggests that in the quasi-homogeneous case, Proposition 4.2
could be still true.

Example 4.7. Consider R = k[[x, y, z]] and we construct a non-homogeneous ideal I in R
such that R/I is Gorenstein of dimension 1 and multiplicity 5. By Theorem 3.8 we should 
exhibit a R-submodule M of Γ = kDP [X, Y, Z] which is G1-admissible. Remark 3.10
suggests to consider a polynomial H1 such that dimk < H1 >= 5. Let H1 = Z [2] +
Y [3] (non-homogeneous, but quasi-homogeneous). In this case degH1 = 3 and H1 is a 
quasi-homogeneous polynomial. One can verify that

H = {H1, H2 = XH1, H3 = X2H1, H4 = X [3]H1 + Y [4]Z + Y Z [3], H5 = XH4}

is an admissible set. In this case is still true that

I = AnnR(H5)≤4R = (yz − x3, z2 − y3).

Notice that the ideal I is the defining ideal in R of the semigroup ring k[[t5, t6, t9]]. In 
particular A = R/I is a domain.
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The above example suggests the interesting problem to characterize the generators of 
the dual module in Theorem 3.8 of a Gorenstein domain.

Next example shows an example where A is a local Gorenstein k-algebra, but the 
corresponding associated graded ring is not longer Gorenstein.

Example 4.8. Consider R = k[[x, y, z, t, u, v]] and we construct an ideal I in R such that 
R/I is Gorenstein of dimension 2. By Theorem 3.8 we exhibit a R-submodule M of Γ =
kDP [X, Y, Z, T, U, V ] which is G2-admissible. Let H = Z [5] +T [4] +U [3] +W [3] +ZTUV . 
One can verify that

M = ⟨H,F = XYH + U [2]T −WTZ,XiY jF, i, j ∈ N⟩

is G2-admissible. Then

AnnR(M) = (z4−tuw, t2w, z2w, t2u, t3−zuw, zt2, z2t, w2−ztu, u2−tu2−ztw−xyzuw).

In particular A = R/ AnnR(M) is a Gorenstein local ring of dimension 2 and of codi-
mension 4. Notice that grn(A) is not Gorenstein because the second difference of the 
Hilbert function (computed by using Proposition 2.2) is not symmetric.

We end this paper with an example showing that Proposition 4.2 cannot be extended 
to the local case without a suitable modification.

Example 4.9. For all n ≥ 2 we consider the one-dimensional local ring An = k[[x, y] ]/(fn)
with fn = y2 − xn. Notice that, for all n ≥ 1, An is algebraic and Gorenstein of multi-
plicity e(An) = 2.

On the other hand An/(x) = k[y]/(y2) is an Artinian reduction of An, so H1 = Y

and hence degH1 = 1. If n ≥ 4, we cannot recover the ideal (fn) after degH1 + 2 steps 
as Proposition 4.2 could suggest.
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