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Abstract

In this paper we determine the possible Hilbert functions of a Cohen-
Macaulay local ring of dimension d and multiplicity e, in the case the em-
bedding dimension v satisfies v = e + d − 3 and the Cohen-Macaulay type is
smaller or equal then e − 3.

Introduction
The Hilbert function HA(n) of a local ring (A, m) is a good measure of the

singularity at (A, m). We can say that this numerical function describes the degree
to which A deviates from a regular local ring, or, equivalently, the associated graded
ring G =

∑
n≥0 mn/mn+1 deviates from a polynomial ring over the residue field A/m.

For a given local ring (A, m) it is often very difficult to compute its Hilbert
function. The main idea is to reduce the computation of the Hilbert function of A
to the computation of the Hilbert function of a lower dimensional local ring which
is a quotient of A modulo an ideal generated by a superficial sequence whose initial
forms are a regular sequence in G. Unfortunately, even if A is Cohen-Macaulay, G
can have depth zero, which means that its irrelevant maximal ideal

∑
n≥1 mn/mn+1

may consist entirely of zero divisors.
Sometimes the key to whether G has high enough depth lies in the embedding

dimension of the local ring. If (A, m) is a d-dimensional local Cohen-Macaulay ring
of multiplicity e, then the embedding dimension v of A satisfies v ≤ e + d − 1 (see
[1]). Here and in the following we let h be the embedding codimension of A, which is
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by definition h = v−d. In [12] it was shown that there are precisely three embedding
dimensions v = d, d + 1, e + d − 1 which guarantee that G is Cohen-Macaulay for
an arbitrary Cohen-Macaulay local ring (A, m). In each case only a specific Hilbert
function is allowed and easily described.

In the case v = e + d − 2, in [15] it was shown that G is not necessarily Cohen-
Macaulay, the possible exceptions being the local rings of maximal type e − 2. In
the same paper Sally made the conjecture that in the critical case the depth of G is
always at least d − 1. This conjecture has been positively solved in [11] and [16] by
using deep properties of the Ratliff-Rush filtration of the maximal ideal of A.

Further, in [11], all the possible Hilbert series have been described as follows

PA(z) :=
∑
n≥0

HA(n)zn =
1 + hz + zs

(1 − z)d

where 2 ≤ s ≤ h + 1.

Finally in [14] it is shown that for Gorenstein local rings with embedding dimen-
sion v = e + d− 3, the associated graded ring G is Cohen-Macaulay and its Hilbert
series is

PA(z) =
1 + hz + z2 + z3

(1 − z)d
.

The proof of this far reaching result is achieved first by reducing, via a standard
trick, to the one dimensional case, and then by a very clever analysis of the possible
minimal sets of generators of the powers of the maximal ideal of A. Even if this proof
is quite computational, we could extract from it some fundamental ideas which are
now used in this paper, which can be considered as an extension and completion of
Sally’s work.

Here we are dealing with a local Cohen-Macaulay ring (A, m) with embedding
dimension v = e + d − 3. If we pass to an artinian reduction B = A/J, where J is
the ideal generated by a maximal superficial sequence in A, we have two possible
Hilbert series for B, namely

PB(z) = 1 + hz + 2z2

or
PB(z) = 1 + hz + z2 + z3.

In the first case we say that A is short, while, in the second case, we say that A is
stretched.

If the type τ(A) of A is bigger than 1, then G is no more Cohen-Macaulay, but
if τ(A) < h we first prove in Theorem 2.3 that the length of the A-module m2/Jm

is at most one. This last condition implies depth(G) ≥ d − 1, another far reaching
result essentially contained in [11] but concretely formulated, at the same time, by
Huckaba, Elias, Corso-Polini-Vaz Pinto and Rossi in a series of papers (see [7], [5],
[4], [10],) recently appeared.
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This reduces the computation of the Hilbert function of A to the computation of
the Hilbert function of a local Cohen-Macaulay ring of dimension one and embedding
dimension v which satisfies v = e−2. Under these assumptions, we prove in Theorem
2.4 that the Hilbert series of A is

PA(z) =
1 + hz + zt + zs

1 − z

where 2 ≤ t ≤ s ≤ τ + 2.

Further, if A is stretched, then t < s. This gives a fresh and short proof of the
result of Sally because, if A is Gorenstein, then A is stretched and τ = 1 so that the
theorem implies that

PA(z)(1 − z) = PB(z),

a condition under which G is Cohen-Macaulay.

These results point out the main open question. It is not known for τ ≥ h
whether G has depth at least d − 1.

The methods we develop here are quite similar to those used in the proof of Sally’s
conjecture in [11]. The properties of the Ratliff-Rush filtration and the relationships
between certain numerical characters of a Cohen-Macaulay local ring of dimension
one are illustrated in the first section of the paper and used in the second section
where the main result is proved. In the last section we collect some examples to
show that the upper bound we have found in Theorem 2.3 is sharp. Other examples
are inserted to disprove several conjectures one can made on possible extensions of
the results proved here.

Some of the results of this paper have been conjectured after explicit computa-
tions performed by the computer algebra system CoCoa ([2]).

1 Preliminaries

Let (A, m) be a local ring of dimension d, multiplicity e and residue field k = A/m.
The Hilbert function of A is by definition the Hilbert function of the associated
graded ring of A which is the homogeneous k-algebra

G := grm(A) = ⊕n≥0(m
n/mn+1).

Hence
HA(n) = HG(n) = dimk(m

n/mn+1).

The generating function of this numerical function is the power series

PA(z) =
∑
n∈N

HA(n)zn
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which is called the Hilbert Series of A. This series is rational and there exists a
polynomial h(z) ∈ Z[z] such that

PA(z) =
h(z)

(1 − z)d

where h(1) = e ≥ 1. We remark that if dim(A) = 0, then e(A) = λ(A) where λ
denotes length.

The polynomial h(z) = h0 + h1z + · · · + hsz
s is called the h-polynomial of A.

For every i ≥ 0, we let

ei :=
h(i)(1)

i!

and (
X + i

i

)
:=

(X + i) · · · (X + 1)

i!
.

Then
e0 = e

and the polynomial

pA(X) :=
d−1∑
i=0

(−1)iei

(
X + d − i − 1

d − i − 1

)

has rational coefficients and degree d − 1; further for every n >> 0

pA(n) = HA(n).

The polynomial pA(X) is called the Hilbert polynomial of A.

The embedding codimension of A is the integer

h := embcod(A) := HA(1) − d.

It is clear that h = h1, the coefficient of z in the h-polynomial of A. Further
embcod(A) = 0 if and only if A is a regular local ring.

We recall that if A has positive dimension, an element x in m is called superficial
for A if there exists an integer c > 0 such that

(mn : x) ∩ mc = mn−1

for every n > c.
It is easy to see that a superficial element x is not in m2 and that x is superficial

for A if and only if x∗ := x ∈ m/m2 does not belong to the relevant associated
primes of G. Hence, if the residue field is infinite, superficial elements always exist.
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Further if A has positive depth, every superficial element is also a regular element
in A.

A sequence x1, . . . , xr in the local ring (A, m) is called a superficial sequence for
A, if x1 is superficial for A and xi is superficial for A/(x1, . . . , xi−1) for 2 ≤ i ≤ r.

It is clear that if J is generated by a superficial sequence, then

J ∩ m2 = Jm.

By passing, if needed, to the local ring A[X](m,X) we may assume that the residue
field is infinite. Hence if depth(A) ≥ r, every superficial sequence x1, . . . , xr is also a
regular sequence in A. Such a sequence has the right properties for a good behaviour
of the numerical invariants under reduction modulo the ideal it generates.

In particular if J = (x1, . . . , xr), and (B, n) = (A/J,m/J), then B is a local ring
with

• dim(B) = d − r,

• If depth(A) ≥ r, then depth(B) = depth(A) − r,

• embcod(A) = embcod(B),

• ei(A) = ei(B) for i = 0, . . . , d − r.

• e(A) = e(B) = λ(A/J).

The following relevant property of superficial sequences will also be needed.

• depth(grm(A)) ≥ r ⇐⇒ x∗
1, . . . , x

∗
r is a regular sequence in grm(A) ⇐⇒

PA(z) = PB(z)
(1−z)r ⇐⇒ mj ∩ J = Jmj−1 for every j ≥ 1.

Let (A, m) be a Cohen-Macaulay local ring. For every n we consider the chain
of ideals

mn ⊆ mn+1 : m ⊆ mn+2 : m2 ⊆ · · · ⊆ mn+k : mk ⊆ · · ·
This chain stabilizes at an ideal which was denoted by Ratliff and Rush in [9] as

m̃n :=
⋃
k≥1

(mn+k : mk).

We have
m̃ = m,

and for every i, j
mi ⊆ m̃i,

m̃im̃j ⊆ m̃i+j.

Further, if x is superficial for A,

m̃n+1 : x = m̃n
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for every n ≥ 0.

In the following we let J be the ideal generated by a maximal superficial sequence
(x1, . . . , xd) and define for every n ≥ 0

ρn := λ(m̃n+1/Jm̃n).

For example we have

ρ0 = λ(m̃/J) = λ(m/J) = λ(A/J) − λ(A/m) = e − 1. (1)

It is natural to introduce a new set of numerical invariants, namely to let for
every n ≥ 0

an := λ(m̃n/mn).

In particular we have
a0 = a1 = 0.

Finally we define also for every n ≥ 0 the integers

vn := λ(mn+1/Jmn).

It is clear that

v0 = λ(m/J) = e − 1 (2)

and

v1 = λ(m2/Jm) = λ(A/Jm) − λ(A/m2) = e + d − (1 + h + d) = e − h − 1. (3)

It is clear that if vj = 0 for some positive integer j, then vt = 0 for every t ≥ j. On
the other hand, if vj = 1 for some positive integer j, then mj+1/Jmj is a k-vector
space of dimension one , so that

mj+2 ⊆ Jmj

and
mj+1 = Jmj + (ab)

for some a ∈ m and b ∈ mj, ab �∈ Jmj. It follows that

mj+2 = Jmj+1 + abm ⊆ Jmj+1 + amj+1 = Jmj+1 + (a2b) ⊆ mj+2.

Hence, if vj = 1, for every t ≥ j we can find suitable elements a ∈ m, b ∈ mj such
that

mt+1 = Jmt + (at+1−jb) (4)
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It follows that if vj = 1, then vt ≤ 1 for every t ≥ j.

When the ring A has dimension one, we have more relevant properties of the
integers already introduced. Hence, from now on, we are assuming d = 1 and we
let J = (x) where x is a superficial element of the local Cohen-Macaulay ring A.
Further we let

hA(z) = h0 + h1z + · · · + hsz
s

where h0 �= 0. Hence s is the degree of the h-polynomial of A. We clearly have
h0 = 1, h1 = h and

hi = HA(i) − HA(i − 1) (5)

for every i ≥ 1 so that

e =
s∑

i=0

hi = HA(s). (6)

It is well known that for every j ≥ 0

e = HA(j) + vj. (7)

Further, since x is a regular element in A, from the diagram

m̃j+1 ⊃ xm̃j

∪ ∪
mj+1 ⊃ xmj

we easily get for every j ≥ 0,

ρj + aj = vj + aj+1. (8)

Since we have seen that e = HA(s), from (7) we get vs = 0. On the other hand
from (5) and (7) we get

hi = vi−1 − vi (9)

for every i ≥ 1, hence hs = vs−1 �= 0. It follows that

{
vj > 0 if j ≤ s − 1
vj = 0 if j ≥ s

(10)

and

e1 =
s∑

j=0

jhj =
s−1∑
j=0

vj. (11)
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A final property which will be used later is the following upper bound for the de-
gree of the h-polynomial in the one-dimensional case, bound which is a consequence
of a well known result of Herzog and Waldi (see [6]):

s ≤ e − 1. (12)

We want now to describe the components of the Ratliff-Rush filtration in the
one dimensional case.

Lemma 1.1 Let d = 1. For every t ≥ 0 and j ≤ s we have

ms+t = xtms

and
mj+t : xt ⊆ ms : ms−j.

Proof. Since HA(s) = e, by (7) we get vs = 0, hence ms+1 = xms and the first
assertion follows by multiplication by m.

If now axt ∈ mj+t, then

axtms−j ⊆ mt+s = xtms

so that a ∈ ms : ms−j. �

Proposition 1.2 Let d = 1. Then we have:

m̃j =

{
ms : xs−j = ms : ms−j if j ≤ s
mj if j ≥ s

Proof. For some t ≥ 0 we have

m̃j = mj+t : mt ⊆ mj+t : xt.

If j ≤ s we can use the above lemma and we get

mj+t : xt ⊆ ms : ms−j ⊆ ms : xs−j ⊆ m2s : xs−jms = m2s : m2s−j ⊆ m̃j.

If instead j ≥ s, we get

mj+t : xt = xj+t−sms : xt ⊆ xj−sms ⊆ mj ⊆ m̃j.

In both cases the conclusion follows. �

As a consequence of the above proposition we get

aj = 0 for every j ≥ s. (13)
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By using (7) and (8), we easily get the well known formula (see [8])

e1 =
s−1∑
j=0

vj =
s−1∑
j=0

ρj (14)

We will need in the following a suitable lower bound for the integers aj which will
be a consequence of the subsequent result.

Lemma 1.3 Let d = 1. For every k ≥ 0 and 1 ≤ p ≤ s − 1 we have

mp �⊂ xmp−1 + (mp+k+1 : xk).

Proof. If mp ⊂ xmp−1 + (mp+k+1 : xk), by using the preceding lemma we get

mp ⊆ xmp−1 + (ms : ms−p−1)

so that

ms = ms−pmp ⊆ ms−p(xmp−1 + (ms : ms−p−1)) ⊆ xms−1 + ms+1

which, by Nakayama Lemma, implies ms = xms−1. This means vs−1 = 0, which is a
contradiction. �

Proposition 1.4 Let d = 1 and j, t be non negative integers such that j + t ≤ s.
Then

aj ≥ HA(j − 1) − HA(j + t − 1) + t.

Proof. We have an exact sequence

0 → mj−1∩(mj+t : xt)/mj → mj−1/mj xt

→ mj+t−1/mj+t → mj+t−1/xtmj−1+mj+t → 0.

Since by Lemma 1.1
mj+t : xt ⊆ ms : ms−j ⊆ m̃j,

we get
aj ≥ HA(j − 1) − HA(j + t − 1) + λ(mj+t−1/xtmj−1 + mj+t).

Now, if t = 0, we have nothing to prove. If t ≥ 1, we have

mj+t−1 ⊇ mj+t + xmj+t−2 ⊇ mj+t + x2mj+t−3 ⊇ · · · ⊇ mj+t + xtmj−1.

Since the length of this chain is t, the conclusion follows if we are able to prove that
all the inclusions are strict. But if we would have

mj+t + xkmj+t−1−k = mj+t + xk+1mj+t−2−k

for some 0 ≤ k ≤ t − 1, then

mj+t−1−k ⊆ xmj+t−2−k + (mj+t : xk).
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We get a contradiction by using the above lemma after observing that if we let
p = j + t− 1− k, then, since k + 2 ≤ j + t ≤ s, we get 1 ≤ p = j + t− 1− k ≤ s− 1.

�

By using this result we get a rough but useful upper bound for the degree of
the h-polynomial of A in term of the Cohen-Macaulay type τ(A) of A which is by
definition

τ(A) = dim(J : m/J).

Proposition 1.5 Let d = 1. Then

s ≤ 1 + τ(A) + λ(x : m + m̃2/x : m).

Proof. From the diagram

x : m + m̃2 ⊃ m̃2 ⊃ m2

∪ ∪
x : m ⊃ xA ⊃ xm

we get

1 + τ(A) + λ(x : m + m̃2/x : m) = λ(m2/xm) + a2 + λ(x : m + m̃2/m̃2).

By (3)
λ(m2/xm) = e − h − 1

while by the above proposition we get

a2 ≥ HA(1) − HA(s − 1) + s − 2 ≥ h − e − s.

Since x ∈ x : m, x �∈ m̃2 we also have

λ(x : m + m̃2/m̃2) ≥ 1.

Hence

1 + τ(A) + λ(x : m + m̃2/x : m) ≥ e − h − 1 + h − e − s + 1 = s,

as wanted. �

We end this section with a result which will be used in the proof of the main theorem.
We need a preliminary Lemma which uses the main idea of the proof of the classical
Cayley-Hamilton theorem.

Lemma 1.6 Let I = (x1, . . . , xv) and L be ideals of the local ring (A, m). Let us
assume that there exist elements a, x ∈ m such that

aI ⊆ xI + L.

Then there exists σ ∈ xmv−1 such that for every b ∈ I we have

(av − σ)b ∈ Lmv−1.
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Proof. For every j = 1, . . . , v we can find elements λij ∈ A, cj ∈ L, such that

axj +
v∑

i=1

λijxxi = cj.

We get a system of v equations in v variables

(x1, . . . , xv)M = (c1, . . . , cv)

where M is the matrix M = (δija +λijx). If we multiply on the right by the adjoint
of M, whose entries are elements of mv−1, we get

det(M)xi ∈ Lmv−1

for every i = 1, . . . , v. Since clearly det(M) = av −σ with σ ∈ xmv−1, the conclusion
follows. �

Theorem 1.7 Let i ≥ 0 be an integer and I and K ideals of the local ring (A, m).
Let us assume that I can be generated by v elements and there exist a, x ∈ m, c ∈ A,
z ∈ K such that

1. mi+1 = xmi + (acz).

2. az ∈ xK + Im.

3. aI ⊆ x(I + K).

4. cK ⊆ mi.

Then
mv+i+1 = xmv+i.

Proof. By 2. we can write
az = xr + s

with r ∈ K and s =
∑

piwi, pi ∈ m, wi ∈ I. Since by 4. cr ∈ mi and by 1.
acz = xcr + cs ∈ mi+1, we get

cs ∈ mi+1.

By 3. we have
aI ⊆ xI + xK,

hence by the above Lemma we can find σ ∈ xmv−1 such that

w(av − σ) ∈ xKmv−1

for every w ∈ I. It follows that there exist fi ∈ xKmv−1 such that

avs =
∑

pi(a
vwi) =

∑
pi(σwi + fi) = σs +

∑
pifi = σs + g

with g ∈ xKmv. From this we get

av+1cz = avc(az) = avc(xr + s) = c(avs) + xav(cr) = σcs + cg + xavcr.
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Since
cs ∈ mi+1, σ ∈ xmv−1,

we get
σcs ∈ xmv+i.

On the other hand, since

cK ⊆ mi, g ∈ xKmv,

we get
cg ∈ x(cK)mv ⊆ xmv+i

and
xavcr ∈ xmv+i.

This implies
av+1cz ∈ xmv+i.

But, as in (4), by 1. we get

mv+i+1 = xmv+i + (av+1cz).

The conclusion follows. �

2 The Hilbert Function

In this section (A, m) is a Cohen-Macaulay local ring of multiplicity e = h + 3.
As usual we denote by J the ideal generated by a maximal superficial sequence
(x1, . . . , xd) and we let B = A/J. The h-polynomial of the artinian local ring B is
either

hB(z) = 1 + hz + z2 + z3

or
hB(z) = 1 + hz + 2z2.

In the first case, following [13], we say that A is stretched and we have m3 �⊂ Jm

and m4 ⊆ Jm; in the second case, following [3] we say that A is short and we have
m3 ⊆ Jm. In both case we have the following useful structure of the square of the
maximal ideal of A.

Proposition 2.1 Let e = h + 3. Then

m2 =

{
Jm + (cf), c, f ∈ m, c, f �∈ J if A is stretched.
Jm + (cf, cg), c, f, g ∈ m, c, f, g �∈ J if A is short.
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Proof. If A is stretched, then we have

HA/J(2) = 1 = dim(m2/m3 + (J ∩ m2)) = dim(m2/m3 + Jm).

Hence
m2 = m3 + Jm + (cf)

with c, f ∈ m, c, f �∈ J. The conclusion follows by Nakayama Lemma.

If A is short, then m3 ⊆ Jm so that m2/Jm is a k-vector space of dimension 2
by (3). This implies

m2 = Jm + (xy, zt)

for suitable x, y, z, t ∈ m, x, y, z, t �∈ J. Now, if yz �∈ Jm, then either m2 = Jm +
(xy, yz) or m2 = Jm + (zt, yz) and the conclusion follows. If xt �∈ Jm, then either
m2 = Jm + (xy, xt) or m2 = Jm + (zt, xt) and again we are through. Finally if
yz, xt ∈ Jm, then

m2 = Jm + (xy, zt) = Jm + ((x + z)y, (x + z)t)

and the conclusion follows as well. �

After the above result has been proved, we clearly need a deeper investigation
of Cohen-Macaulay local rings (A, m) with the property that m2 = Jm + cI. In the
next proposition we do not use the assumption e = h + 3.

Proposition 2.2 Let (A, m) be a local Cohen-Macaulay ring such that m2 = Jm+cI
for some c ∈ m, c �∈ J and some ideal I ⊆ m. Then we have:

i) m = I + (J : c).

ii) mn+1 = Jmn + cnI for every n ≥ 1.

iii) vn+1 ≤ vn for every n ≥ 0.

iv) If J : m �= J : c, then v2 < v1.

v) If dim(A) = 1, then HA(n) ≤ HA(n + 1) for every n ≥ 0.

vi) If I = (d), then vn ≤ vn+1 + 1 for every n ≥ 1.

Proof. i) We have cm ⊆ m2 = Jm + cI hence

m ⊆ I + (Jm : c) ⊆ I + (J : c) ⊆ m.

ii) If n = 1 there is nothing to prove. We make induction on n. Let n ≥ 2 and
mn = Jmn−1 + cn−1I. Then

mn+1 = Jmn + cn−1Im ⊆ Jmn + cmn ⊆ Jmn + c(Jmn−1 + cn−1I) =

= Jmn + cnI ⊆ mn+1.
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iii) We have a canonical map

mn+1/Jmn → mn+2/Jmn+1

given by the multiplication by c. By ii) this map is surjective and the conclusion
follows.

iv) If a ∈ J : c, a �∈ J : m, let b ∈ m such that ab �∈ J. Then ac ∈ J ∩ m2 = Jm

so that ab ∈ m2/Jm is a non zero element of the kernel. The conclusion follows.

v) By iii) we have vn+1 ≤ vn for every n ≥ 0. If dim(A) = 1, the conclusion
follows by (7).

vi) We must prove that the kernel of the map as in iii) has length smaller or
equal than one. But this kernel is the module

mn+1 ∩ (Jmn+1 : c)/Jmn.

Since for t >> 0 we have mt ⊆ J, we get mn+1+t ⊆ Jmn+1; on the other hand
mn+1 �⊂ Jmn+1, hence there exists an integer r > n such that

mr �⊂ Jmn+1, mr+1 ⊆ Jmn+1.

We claim that
mn+1 ∩ (Jmn+1 : c) = Jmn + mr.

The claim gives the conclusion because Jmn +mr/Jmn is a k-vector space generated
by cr−1d.

Let us prove the claim. If r = n + 1, then mn+2 ⊆ Jmn+1 so that

mn+1 ⊆ Jmn+1 : c

and we are done. Let r ≥ n + 2, and a ∈ mn+1 ∩ (Jmn+1 : c). Then a ∈ Jmn + mn+1

and if, by contradiction, a �∈ Jmn +mr, we could find an integer t such that n+1 ≤
t ≤ r − 1 and

a ∈ Jmn + mt, a �∈ Jmn + mt+1.

This implies a = bct−1d + w where b �∈ m and w ∈ Jmn. Hence ct−1d ∈ Jmn+1 : c so
that mr ⊆ mt+1 ⊆ Jmn+1, a contradiction. �

A recent result found independently by Huckaba, Elias, Corso-Polini-Vaz Pinto,
Rossi (see [7], [5], [4], [10],) says that the associated graded ring G of any Cohen-
Macaulay local ring A has depth at least d − 1 if v2 ≤ 1. When e = h + 3, this
happens if the Cohen-Macaulay type of A, which will be denoted simply by τ , is not
too big.

Theorem 2.3 Let e = h + 3. If τ < h, then v2 ≤ 1.
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Proof. By Proposition 2.1 we may write

m2 = Jm + cI

with c �∈ J. Since by (3) λ(m2/Jm) = 2, we get the conclusion by iv) in Proposition
2.2 if we can prove that J : m �= J : c. We have by i) of the same proposition

m = I + (J : c),

hence, if by contradiction J : m = J : c, then

J ⊆ J : m ⊆ (J : m) + I = (J : c) + I = m.

If we can prove that
λ(J : m + I/J : m) ≤ 2

then we get
h + 2 = λ(m/J) ≤ τ + 2,

a contradiction. Now if A is stretched, then by Proposition 2.1, I = (t) and we have
a filtration

J : m ⊆ (J : m) + (t2) ⊆ (J : m) + (t) = (J : m) + I.

Since t2m ⊆ m3 ⊆ J : m and tm = t((t) + (J : c)) ⊆ (J : m) + (t2),

(J : m) + (t2)/(J : m) and (J : m) + (t)/(J : m) + (t2)

are k-vector spaces of dimension ≤ 1, hence

λ(J : m + I/J : m) ≤ 2.

If A is short, then by Proposition 2.1 I is a two generated ideal; hence, since Im ⊆
m2 ⊆ J : m, J : m + I/J : m is a k-vector space of dimension

λ(J : m + I/J : m) ≤ 2.

�

We come now to the main results of the paper concerning the Hilbert Function of a
local Cohen-Macaulay ring with e = h + 3.

We want to prove the following theorems:

Theorem 2.4 Let e = h + 3 and d = 1. Then

a) hA(z) = 1 + hz + zt + zs with 2 ≤ t ≤ s ≤ τ + 2.

b) If v2 = 0 then G is Cohen-Macaulay and s = t = 2.

c) If v2 = 1 then t = 2.

d) If A is stretched then t < s.

15



Theorem 2.5 Let e = h + 3. Then

a) If v2 = 0 then G is Cohen-Macaulay and hA(z) = 1 + hz + 2z2.

b) If v2 = 1 then depth(G) ≥ d − 1 and hA(z) = 1 + hz + z2 + zs where{
3 ≤ s ≤ τ + 2 if A is stretched.
2 ≤ s ≤ τ + 2 if A is short.

We first claim that the proof of Theorem 2.5 is reduced to the proof of Theorem
2.4.

Namely, if v2 = 0, then m3 = Jm2, hence A is short and G is Cohen-Macaulay
with hA(z) = 1 + hz + 2z2. This proves part a) of Theorem 2.5

If v2 = 1, then we have already remarked that depth(G) ≥ d − 1 so that, if we
let R = A/I, where I is the ideal generated by the first d− 1 elements in a maximal
superficial sequence, then hA(z) = hR(z). We thus have e(R) = h + 3, dim(R) = 1,
τ(A) = τ(R) and mj+1 ∩ I = Imj for every j ≥ 0. It follows that

v2(A) = λ(m3/Jm2) = λ(m3/Jm2 + m3 ∩ I) = λ
(
(m/I)3/(J/I)(m/I)2

)
= v2(R).

We can thus apply Theorem 2.4 to get part b) of Theorem 2.5. The claim is
proved.

We want to prove now Theorem 2.4. Hence, in the rest of this section, A is a
local Cohen-Macaulay ring of dimension one with e = h + 3.

By Proposition 2.2 iii), we have vj ≤ vj−1 for every j ≥ 1, so that by (9) hj ≥ 0
for every j ≥ 0. This means that

hA(z) = 1 + hz + zt + zs

with 2 ≤ t ≤ s.

If v2 = 0, then, as before, A is short and G is Cohen-Macaulay with

hA(z) = 1 + hz + 2z2;

hence s = t = 2 and b) is proved.

If v2 = 1, then by (9) and (3)

h2 = v1 − v2 = e − h − 1 − 1 = 1,

hence t = 2. This proves c).

Finally if A is stretched, then by Proposition 2.2 vi) we get vj ≤ vj−1 ≤ vj + 1
for every j ≥ 2 so that 0 ≤ hj ≤ 1 for the same j′s. This implies t < s and proves
d).

We are left to prove that, in any case, s ≤ τ + 2.
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This is clear if τ ≥ h, because by (12)

s ≤ e − 1 = h + 2 ≤ τ + 2.

Hence we may assume τ < h which, by Proposition 2.3, implies v2 ≤ 1. Since in
the case v2 = 0 we have s = t = 2 ≤ τ + 2, the proof of Theorem 2.4, and thus of
Theorem 2.5, is reduced to the proof of the following result.

Theorem 2.6 Let e = h + 3 and d = 1. If v2 = 1 then s ≤ τ + 2.

Proof. Since v2 = 1, by (4) we have for every n ≥ 2

mn+1 = xmn + (an−1b) (15)

where a ∈ m, b ∈ m2. Further by (9) and (3) we have

h2 = v1 − v2 = e − h − 1 − 1 = 1,

hence, by v) in Proposition 2.2,

hA(z) = 1 + hz + z2 + zs

with 2 ≤ s.

Since τ ≥ 1, the conclusion is clear if s ≤ 3; hence we may also assume s ≥ 4.

We will prove the theorem in several steps.

Step 1. We may assume a2 = s − 3, and

ρj =


s − 1 if j = 1.
1 if j = 2.
0 if j ≥ 3.

Proof. By Proposition 1.4 we have

a2 ≥ HA(1) − H(s − 1) + s − 2

so that
a2 ≥ h + 1 − (h + 2) + s − 2 = s − 3.

By (8), we get
ρ1 = v1 + a2 ≥ 2 + s − 3 = s − 1.

Further, if ρ2 = 0, then m̃3 ⊆ xm̃2 which implies m̃2 ⊆ x : m. By using Proposition
1.5 we get s ≤ τ + 1.

Hence we may assume ρ2 ≥ 1. From the true definition of e1 we have

e1 =
s∑

j=0

jhj = h + 2 + s;
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on the other hand by (14) and (1) we have

e1 =
s−1∑
j=0

ρj = h + 2 +
s−1∑
j=1

ρj.

This implies
∑s−1

j=1 ρj = s hence ρ1 = s − 1, ρ2 = 1, ρj = 0, for every j ≥ 3 and
a2 = s − 3. This proves step 1.

Now it is clear that we have a filtration of length s − 2 connecting m2 to m̃2,
namely

m2 ⊆ m3 : x ⊆ m4 : x2 ⊆ · · · ⊆ ms : xs−2 = m̃2,

where the last equality follows by Proposition 1.2.
Since a2 = s − 3 there exists an integer j such that 0 ≤ j ≤ s − 3 and

m2 ⊂ m3 : x ⊂ m4 : x2 ⊂ · · · ⊂ mj+2 : xj = mj+3 : xj+1.

We remark that we have

HA/xA(2) = λ(m2 + x/m3 + x) = λ(m2/m3 + m2 ∩ x) =

= HA(2) − λ(m3 + m2 ∩ x/m3) = HA(2) − λ(x(m2 : x)/x(m3 : x)) =

= HA(2) − λ(m/m3 : x) = HA(2) − HA(1) + λ(m3 : x/m2) = 1 + λ(m3 : x/m2).

From this we get that A is stretched if and only if j = 0.

Step 2. Let j be the integer defined above. Then

mj+2 ⊆ xjA

and
λ(mj+2 : xj/m2) = j.

Proof. If j = 0, everything is clear. Let j ≥ 1; by the choice of j we have

λ(mj+2 : xj/m2) ≥ j.

From the exact sequence

0 → mj+2 : xj/m2 → m/m2 → mj+1/mj+2 → mj+1/xjm + mj+2 → 0,

where the map in the middle is multiplication by xj, we get

λ(mj+2 : xj/m2) = h + 1 − HA(j + 1) + λ(mj+1/xjm + mj+2).

Since 2 ≤ j + 1 ≤ s − 2, HA(j + 1) = h + 2 so that

λ(mj+2 : xj/m2) = λ(mj+1/xjm + mj+2) − 1.
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By using the filtration

mj+1 ⊇ xmj ⊇ x2mj−1 ⊇ · · · ⊇ xjm,

we get

λ(mj+1/xjm + mj+2) + λ(xjm + mj+2/xjm) = λ(mj+1/xjm) =

=
j−1∑
t=0

λ(xtmj+1−t/xt+1mj−t) =
j−1∑
t=0

λ(mj+1−t/xmj−t) =
j−1∑
t=0

vj−t = j − 1 + 2 = j + 1.

From this we get

j ≤ λ(mj+2 : xj/m2) = j + 1 − λ(xjm + mj+2/xjm) − 1 = j − λ(xjm + mj+2/xjm).

Hence
λ(mj+2 : xj/m2) = j

and
xjm + mj+2 = xjm

which implies
mj+2 ⊆ xjA.

This proves step 2.

Since mj+2 ⊆ xjA we can write

ajb = xjz, z ∈ mj+2 : xj ⊆ m̃2.

By (15) we get

mj+3 = xmj+2 + (aj+1b) = xmj+2 + (axjz). (16)

Step 3. With the above notation we have

m̃3 = xm̃2 + (az).

Proof. Since z ∈ m̃2, we have az ∈ m̃3. By Step 1 ρ2 = λ(m̃3/xm̃2) = 1, hence the

conclusion follows if we can prove that az �∈ xm̃2.

Let us assume, by contradiction, that az = xp; then

aj+1b = a(ajb) = xjaz = xj+1p

hence p ∈ mj+3 : xj+1 = mj+2 : xj. This implies

aj+1b = x(xjp) ∈ xmj+2
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so that, by (15),
mj+3 = xmj+2.

This means vj+2 = 0, which, since j + 2 ≤ s − 1, is a contradiction to (10).

Step 4. If j ≥ 1, then we have:

a) mj+1 : xj−1 ⊆ x : m.

b) mj+2 : xj ⊆ (z) + (x : m).

Proof. If cxj−1 ∈ mj+1, then, by Step 2,

cxj−1m ⊆ mj+2 ⊆ xjA.

This implies c ∈ x : m which proves a).

If cxj ∈ mj+2 = xmj+1 + (ajb) = xmj+1 + (xjz), then (c − pz)xj ∈ xmj+1 for
some p ∈ A. Hence, by a),

c − pz ∈ xmj+1 : xj ⊆ mj+1 : xj−1 ⊆ x : m.

This proves b) so that the proof of step 4 is now complete.

In the following v(I) denotes the minimal number of generators of the ideal I.

Step 5. There exists an ideal I such that v(I) = s − 3, aI ⊆ xm̃2 and

m̃2 = (mj+2 : xj) + I.

Proof. By Step 1 we have s−3 = a2 = λ(m̃2/m2), while, by step 2, λ(mj+2 : xj/m2) =

j. Hence m̃2/mj+2 : xj is a k-vector space of dimension s − 3 − j and we can write

m̃2 = (mj+2 : xj) + (w1, . . . , ws−3−j).

Since wi ∈ m̃2, we have awi ∈ m̃3 and by Step 3 we can write

awi = ri + liaz

where ri ∈ xm̃2. It follows that for every i

a(wi − liz) ∈ xm̃2.

Since z ∈ mj+2 : xj, we have

m̃2 = (mj+2 : xj) + (w1 − l1z, . . . , ws−3−j − ls−3−jz)

and the conclusion follows with I = (w1 − l1z, . . . , ws−3−j − ls−3−jz).

Step 6. We have
I ⊆ x : m.
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Proof.
If, by contradiction, there exist w ∈ I, c ∈ m such that cw �∈ xA, then, since

cw ∈ m̃3 and ρ2 = 1, we can write

m̃3 = xm̃2 + (cw).

By using Step 5, we get

m̃3 = xm̃2 + (cw) = xI + x(mj+2 : xj) + (cw) ⊆ x(mj+2 : xj) + Im.

Since z ∈ m̃2, we get
az ∈ x(mj+2 : xj) + Im.

At this point we want to use Theorem 1.7 to get a contradiction. We will use
Theorem 1.7 with the following setting:

K := mj+2 : xj, v := s − 3 − j, c := xj i := j + 2.

Then we have
v + i + 1 = s − 3 − j + j + 2 + 1 = s

and we need to verify the four conditions of the theorem.

Condition 1. becomes mj+3 = xmj+2 + (axjz) which follows from (16).

Condition 2 becomes az ∈ x(mj+2 : xj) + Im which has been verified before.

Condition 3 becomes aI ⊆ x(I + mj+2 : xj) = xm̃2 which follows from Step 5.

Condition 4 becomes xj(mj+2 : xj) ⊆ mj+2 which is trivial.

This proves Step 6.

Step 7. Conclusion.

Proof. By Step 6 we have I ⊆ x : m, hence, by using Proposition 1.5 and Step 5, we
get

s ≤ 1 + τ + λ(x : m + m̃2/x : m) = 1 + τ + λ
(
(x : m) + (mj+2 : xj)/x : m

)
.

Now, if j = 0, then A is stretched and, according to Proposition 2.1, m2 = xm+(cf).
Since m4 ⊆ xm, it is clear that x : m + m2/x : m = (x : m) + (cf)/x : m is a k-vector
space of dimension ≤ 1. The conclusion follows.

If j ≥ 1, then by Step 4 we have mj+2 : xj ⊆ (z) + x : m, hence

λ
(
(x : m) + (mj+2 : xj)/x : m

)
≤ λ (x : m + (z)/x : m) .

Since ρ3 = 0, we have
zm2 ⊆ m̃4 = xm̃3
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so that x : m + (z)/x : m is k-vector space of dimension ≤ 1 and the conclusion
follows also in this case.

The proof of the theorem is now complete.
�

We want to remark that if A is stretched then, as noticed in Step 1 of the
theorem, j = 0 so that the proof of this main result is strongly simplified. Namely,
one does not need to prove Step 2 , Step 4 and Step 5.

3 Examples

In this last section we discuss several examples which put some light on the results
we have proved before and on some possible extensions.

• First we show that in Theorem 2.3 we cannot delete the assumption τ < h.

Let
A = k

[[
t7, t8, t13, t19, t25

]]
.

Then h = 4, e = 7 = h + 3 and x = t7 is a superficial element of A. We have τ = 4,

PA/xA(z) = 1 + 4z + z2 + z3

and

PA(z) =
1 + 4z + z3 + z5

1 − z
.

Hence A is stretched and v2 = 2.

Let
A = k

[[
t6, t7, t15, t23

]]
.

Then h = 3, e = 6 = h + 3 and x = t6 is a superficial element of A. We have τ = 3,

PA/xA(z) = 1 + 3z + 2z2

and

PA(z) =
1 + 3z + z3 + z5

1 − z
.

Hence A is short and v2 = 2.

• We remark that, as a consequence of Theorem 2.4, if e = h + 3 and A is
Gorenstein then G is Cohen-Macaulay, a result which has been proved by Sally in
[14] and which was the starting point of our investigation. The following examples
show that the result is no more true if we make the weaker assumption τ = 2.

Let
A = k

[[
t6, t7, t11, t15

]]
.
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Then h = 3, e = 6 = h + 3 and x = t6 is a superficial element of A. We have τ = 2,

PA/xA(z) = 1 + 3z + 2z2

and

PA(z) =
1 + 3z + z2 + z4

1 − z
.

Hence A is short and G is not Cohen-Macaulay.

Let

I = (UY − X2Y, UZ − X2Z, U2 − X2U, Y Z − XU, Y 3 − Z2 − XZ − XY 2)

and A = k[[X, Y, Z, U ]]/I. Then h = 3, e = 6 = h + 3 and x = X is a superficial
element of A. We have τ = 2,

PA/xA(z) = 1 + 3z + z2 + z3

and

PA(z) =
1 + 3z + z2 + z4

1 − z
.

Hence A is stretched and G is not Cohen-Macaulay.

The last example is a local ring which is not a domain. Since we could not find
a domain with those properties, we ask the following question:

Problem 3.1 If A is a Cohen-Macaulay stretched domain with multiplicity e = h+3
and Cohen-Macaulay type τ = 2, is G Cohen-Macaulay?

On the other hand the following example shows that there exists Cohen-Macaulay
domains with multiplicity e = h + 3 and Cohen-Macaulay type τ = 3 such that G
is not Cohen-Macaulay.

Let
A = k

[[
t6, t7, t11, t16

]]
.

Then h = 3, e = 6 = h + 3 and x = t6 is a superficial element of A. We have τ = 3,

PA/xA(z) = 1 + 3z + z2 + z3

and

PA(z) =
1 + 3z + z2 + z4

1 − z
.

Hence A is a Cohen-Macaulay stretched domain and G is not Cohen-Macaulay.

• In Theorem 2.4 d) we have proved that if A is stretched then t < s. The
following example shows that this is not the case if A is short. It is enough to
consider a short Cohen-Macaulay local ring such that G is Cohen-Macaulay.
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Let
A = k

[[
t6, t8, t10, t13

]]
.

Then h = 3, e = 6 = h + 3 and x = t6 is a superficial element of A. We have

PA/xA(z) = 1 + 3z + 2z2

and

PA(z) =
1 + 3z + 2z2

1 − z
.

Hence A is short and G is Cohen-Macaulay.

• The Hilbert series of the rings k [[t6, t7, t11, t15]] and k[[X, Y, Z, U ]]/I where

I = (UY − X2Y, UZ − X2Z, U2 − X2U, Y Z − XU, Y 3 − Z2 − XZ − XY 2)

show that the bound s ≤ τ + 2 in Theorem 2.4 is sharp. This is clear if A is
Gorenstein, but in the above examples we have τ = 2.

• Finally we want to remark that if τ ≥ h then we have no control on the Hilbert
function of A in the sense that the degree of the h-polynomial can be the minimum,
which is 2, and the maximum which is e − 1.

Let
A = k

[[
t6, t7, t15, t23

]]
.

Then h = 3, e = 6 = h + 3 and x = t6 is a superficial element of A. We have
τ = 3 = h,

PA/xA(z) = 1 + 3z + 2z2

and

PA(z) =
1 + 3z + z3 + z5

1 − z
.

Hence A is short and s = 5 = e − 1.

Let
A = k

[[
t6, t8, t13, t15

]]
.

Then h = 3, e = 6 = h + 3 and x = t6 is a superficial element of A. We have
τ = 3 = h,

PA/xA(z) = 1 + 3z + 2z2

and

PA(z) =
1 + 3z + 2z2

1 − z
.

Hence A is short, G is Cohen-Macaulay and s = 2.

Let
A = k

[[
t6, t7, t16, t17

]]
.
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Then h = 3, e = 6 = h + 3 and x = t6 is a superficial element of A. We have
τ = 3 = h,

PA/xA(z) = 1 + 3z + z2 + z3

and

PA(z) =
1 + 3z + z2 + z5

1 − z
.

Hence A is stretched and s = 5 = e − 1.

Let
A = k

[[
t6, t11, t19, t20

]]
.

Then h = 3, e = 6 = h + 3 and x = t6 is a superficial element of A. We have
τ = 3 = h,

PA/xA(z) = 1 + 3z + z2 + z3

and

PA(z) =
1 + 3z + z2 + z3

1 − z
.

Hence A is stretched, G is Cohen-Macaulay and s = 2.
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