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Numerical invariants of a minimal free resolution of a module M
over a regular local ring (R,n) can be studied by taking advantage
of the rich literature on the graded case. The key is to fix suitable
n-stable filtrations M of M and to compare the Betti numbers
of M with those of the associated graded module grM(M). This
approach has the advantage that the same module M can be
detected by using different filtrations on it. It provides interesting
upper bounds for the Betti numbers and we study the modules for
which the extremal values are attained. Among others, the Koszul
modules have this behavior. As a consequence of the main result,
we extend some results by Aramova, Conca, Herzog and Hibi on
the rigidity of the resolution of standard graded algebras to the
local setting.

 2009 Elsevier Inc. All rights reserved.

Introduction

Consider a local ring (R,n) and let M be a finitely generated R-module. In the literature, starting
from classical results by Northcott, Abhyankar, Matlis and Sally, several authors detected basic numer-
ical characters of the module M by means of the Hilbert function of M arising from the standard
n-adic filtration or, more in general, from n-stable filtrations (see [RV] for an extensive overview).
Deeper information can be achieved from the numerical invariants of a minimal free resolution of M .
It is a classical tool to equip M with a suitable filtration and to get information on M from the graded
free resolution of the corresponding associated graded module. This approach has the advantage to
benefit from the rich literature concerning the graded cases to return the information to the local
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ones. In particular, the main goal of the paper is to compare the numerical invariants of a local ring
(A,m) with those of the associated graded ring with respect to the m-adic filtration on A, that is the
standard graded algebra grm(A) := ⊕

t!0 mt/mt+1. This is a graded object which corresponds to a rel-
evant geometric construction that encodes several information on A. In fact if A is the localization at
the origin of the coordinate ring of an affine variety V passing through 0, then the associated graded
ring grm(A) is the coordinate ring of the tangent cone of V . Often, we may assume that A = R/I
where R is a regular local ring. In this case grm(A) " P/I∗ where I∗ is a homogeneous ideal of a
polynomial ring P generated by the initial forms (w.r.t. the n-adic filtration) of the elements of I . In
this setting, the theory of the Gröbner bases and the leading term ideals offers interesting results on
the extremal values of the Betti numbers (see for example [AHH,Bi,CHH,C]).

It is the reason why we are mainly interested in studying finitely generated modules M over a
regular local ring (R,n). In this case grn(R) = ⊕

i!0 ni/ni+1 is a polynomial ring, say P , and the
associated graded module with respect to the any n-stable filtration of M is a finitely generated P -
module.

In general, the problem is how to lift the information from the associated graded module with
respect to an n-stable filtration to the original module M . If the associated graded module with re-
spect to the n-adic filtration grn(M) = ⊕

i!0 niM/ni+1M has a linear resolution (as a grn(R)-module),
then it is easy to see that the Betti numbers of M and grn(M) coincide. In this case, the module M
is said to have a linear resolution in the terminology of Herzog, Simis and Vasconcelos (see [HSV])
or of Sega (see [Se]), equivalently M is Koszul in the terminology of Herzog and Iyengar (see [HI]).
Koszul modules are important examples in our investigation. In this paper, we prefer to say that M
is Koszul because to have linear resolution is misleading in the graded case. We recall that a lo-
cal ring (A,m) is said Koszul if the residue field k is Koszul as an A-module, that is the graded
k-algebra grm(A) = ⊕

i!0 mi/mi+1 is Koszul in the classical meaning introduced by Priddy (see [HI,
Remark 1.10]). By combining results by Herzog, Iyengar (see [HI, Proposition 1.5, Definition 1.7]) and
Römer (see [R, Theorem 3.2.8]) or Martinez and Zacharia (see [MZ, Theorems 2.4, 2.5 and 3.4]), we
can conclude that Koszul graded modules and componentwise linear modules coincide. Given these
considerations, in this paper we will speak of Koszul modules in the case of modules over a local ring
and of componentwise linear modules or, indifferently, of Koszul modules in the graded case.

Recently, many papers have been written extending classical results of the theory of the associated
graded ring with respect to the n-adic filtration to the more general case of a stable (or good) filtration
M = {Mi}i!0 on a finitely generated module M over a local ring (R,n). The associated graded module
grM(M) = ⊕

i Mi/Mi+1 has a natural structure as a finitely generated G-module where G = grn(R) =⊕
i!0 ni/ni+1. We are interested to compare the free resolution of M as an R-module and the free

resolution of grM(M) as a G-module.
An important starting point of our investigation is a result due to Robbiano (see [Rob] and

also [HRV,Se]) which says that from a minimal G-free resolution of grM(M) we can build up an
R-free resolution on M which is not necessarily minimal. Hence, for the Betti numbers of M and
grM(M) one has

βi(M) ! βi
(
grM(M)

)

for every i " 0. In particular, the free resolution of M is minimal if and only if βi(grM(M)) = βi(M)
for every i " 0.

According to [HRV], a finitely generated module M is called of homogeneous type with respect to
an n-stable filtration M, if βi(M) = βi(grM(M)) for every i " 0. If M is of homogeneous type, then in
particular depthM = depthgrM(M). Notice that a Koszul module is a module of homogeneous type
with respect to the n-adic filtration, conversely there are modules of homogeneous type which are
not Koszul.

Under the assumption that R is a regular local ring, the main result of this paper (Theorem 3.1)
says that if the minimal number of generators of M (as an R-module) and the minimal number of
generators of grM(M) (as a G-module) coincide, then M is of homogeneous type with respect to M,
provided that grM(M) is a componentwise linear module or equivalently grM(M) is a Koszul module.
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Moreover, Theorem 3.6 says that if grM(M) is Koszul for some n-stable filtration M, then M is Koszul,
provided the minimal number of generators of M and grM(M) coincide. It is an interesting question
to ask whether the converse holds.

The first application deals with the classical case of the associated graded ring of a local ring
A = R/I ((R,n) is a regular local ring). In this case, we will apply Theorem 3.1 in the case M = I
equipped with the n-stable filtration M = {I ∩ ni}. The point is that I∗ = grM(I).

As a consequence we prove that if I is minimally generated by an n-standard base and I∗ (the
ideal generated by the initial forms of the elements of I) is componentwise linear, then the numerical
invariants of a minimal free resolution of A and those of grm(A) coincide (see Corollary 3.3). In
particular, under these assumptions, depth A = depth grm(A). We point out that, if this is the case,
I is a Koszul module by Theorem 3.6.

It is worth remarking that we cannot delete the condition which I∗ is componentwise linear, in
fact in general A and grm(A) do not have the same Betti numbers even if the minimal number of
generators of I and I∗ coincide, that is I is minimally generated by an n-standard base of I . For ex-
ample this is the case if we consider the defining ideal I of the semigroup ring A = k[[t19, t26, t34, t40]]
(see [HRV, Example, Section 3]). Notice that both A and grm(A) are Cohen–Macaulay.

On the analogy with the graded case and by taking advantage of it, we can rephrase the result in
terms of suitable monomial ideals attached to the ideal I . If we define Gin(I) := Gin(I∗) the generic
initial ideal of I∗ w.r.t. the reverlex order, then we may deduce from the homogeneous case (see
[AHH,CHH,C]),

βi(I) ! βi
(
Gin(I)

)

for every i " 0 and, as a consequence of Theorem 3.1, the equality holds if and only if β0(I) =
β0(Gin(I)) or equivalently I is minimally generated by an n-standard base and I∗ is componentwise
linear (see Corollary 3.3). A similar result can be also presented in terms of Lex(I) which is the unique
lex segment ideal in P such that R/I and P/Lex(I) have the same Hilbert function. Taking advantage
from the graded case, Corollary 3.4 is an extension to the local case of a result by Herzog and Hibi.

In [CHH], Conca, Herzog and Hibi proved an upper bound for the Betti numbers of the local ring
A in terms of the so-called generic annihilators of A; Corollary 3.7 shows that, under the assumption
of the main result, the extremal Betti numbers are achieved.

Theorem 3.6 has another interesting consequence. Assume I ⊆ n2 is a non-zero ideal of R . It is
known that the symmetric algebra of the maximal ideal m of A = R/I is S A(m) " ⊕

i!0 ni/Ini−1.
If we consider the n-adic filtration on the ideal I , then the associated graded module grn(I) =⊕

i!0 In
i/Ini+1 with respect to the filtration M = {Ini} sits inside S A(m) as a graded submodule,

via the canonical embedding grn(I)(−2) → S A(m). Herzog, Rossi and Valla in [HRV, Theorem 2.13]
showed that we can deduce the homological properties of the symmetric algebra by taking advantage
from this comparison. By using this result and the fact that the ideals under investigation are Koszul,
Theorem 3.8 extends a recent result by Herzog, Restuccia and Rinaldo [HRR, Theorem 3.9] on the
depth of the symmetric algebra.

1. Preliminaries on filtered modules

Throughout the paper (R,n) is a local ring and M is a finitely generated R-module. We say, ac-
cording to the notation in [RV], that a filtration of submodules M = {Mn}n!0 on M is an n-filtration
if nMn ⊆ Mn+1 for every n " 0, and a stable (or good) n-filtration if nMn = Mn+1 for all sufficiently
large n. In the following a filtered module M will be always an R-module equipped with a stable
n-filtration M.

If M = {M j} is an n-filtration of M , define

grM(M) =
⊕

j!0

(M j/M j+1)
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which is a graded grn(R)-module in a natural way. It is called the associated graded module to the
filtration M.

To avoid triviality, we assume that grM(M) is not zero or equivalently M '= 0. If N is a submodule
of M , by Artin–Rees lemma, the sequence {N ∩ M j | j " 0} is a good n-filtration of N . Since

(N ∩ M j)/(N ∩ M j+1) " (N ∩ M j + M j+1)/M j+1 (1)

grM(N) is a graded submodule of grM(M) denoted by N∗ .
If m ∈ M \ {0}, we denote by νM(m) the largest integer p such that m ∈ Mp (the so-called valuation

of m with respect to M) and we denote by m∗ or grM(m) the residue class of m in Mp/Mp+1 where
p = νM(m). If m = 0, we set νM(m) = +∞.

Using (1), it is clear that grM(N) is generated by the elements x∗ with x ∈ N , we write

grM(N) =
〈
x∗: x ∈ N

〉
.

On the other hand it is clear that {(N +M j)/N | j " 0} is a good n-filtration of M/N which we denote
by M/N . These graded modules are related by the graded isomorphism

grM/N(M/N) " grM(M)/grM(N).

For completeness we collect, in this section, a part of the well-known results concerning the ho-
momorphisms of filtered modules.

Definition 1.1. If M and N are filtered R-modules and f : M → N is an R-homomorphism, f is said to
be a homomorphism of filtered modules if f (Mp) ⊆ Np for every p " 0 and f is said strict if f (Mp) =
f (M) ∩ Np for every p " 0.

The morphism of filtered modules f : M → N clearly induces a morphism of graded grn(R)-
modules

gr( f ) : grM(M) → grN(N).

It is clear that gr(·) is a functor from the category of the filtered R-modules into the category of the
graded grn(R)-modules. Furthermore we have a canonical embedding (Ker f )∗ → Ker(gr( f )).

Proposition 1.2. (See [RoV].) Let F : M g→ N
f→ Q be a complex of filtered modules and

gr(F) : grM(M)
gr(g)−→ grN(N)

gr( f )−→ grQ(Q )

be the induced complex of graded grn(R)-modules. Then gr(F) is exact if and only if F is exact and f and g are
strict morphisms.

As a consequence of the above result we get that a morphism f : M → N of filtered modules is
strict if and only if the canonical embedding (Ker f )∗ → Ker(gr( f )) is an isomorphism.

Definition 1.3. Let L = ⊕s
i=1 Rei be a free R-module of rank s and ν1, . . . ,νs be integers. We define

the filtration L = {Lp: p ∈ Z} on L as follows

Lp :=
s⊕

i=1

np−νi ei =
{
(a1, . . . ,as): ai ∈ np−νi

}
.

We denote the filtered free R-module L by
⊕s

i=1 R(−νi) and we call it special filtration on L.
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So when we write L = ⊕s
i=1 R(−νi) it means that we consider the free module L of rank s with

the special filtration defined above. It is clear that L is an n-stable filtration. A filtered free R-module
L = ⊕s

i=1 R(−νi) is a free module with canonical basis (e1, . . . , es) such that νL(ei) = νi . It is obvious
that grL(L) = ⊕

p Lp/Lp+1 is isomorphic as a grn(R)-module to
⊕s

i=1 grn(R)(−νi) = ⊕s
i=1 G(−νi)

where for short G = grn(R).
The canonical basis (grL(e1), . . . ,grL(es)) of grL(L) will be simply denoted by (e1, . . . , es). Note

that R with the n-adic filtration is the filtered module R(0).
If (F., δ.) is a complex of finitely generated free R-modules, a special filtration on F. is a special

filtration on each Fi that makes (F., δ.) a filtered complex (complex of filtered modules). Our goal
is to consider special filtrations on an R-free resolution of a filtered module M . We recall that over
local rings, each finitely generated module has a minimal free resolution, and this is unique (up to
isomorphism). Thus, one may speak of the minimal free resolution of such a module. We introduce
now the main objects of interest.

Let M be a finitely generated filtered R-module and S = { f1, . . . , f s} be a system of elements of
M and let νM( f i) be the corresponding valuations. As in Definition 1.3, let L = ⊕s

i=1 Rei be a free
R-module of rank s equipped with the filtration L where νi = νM( f i). Then we denote the filtered
free R-module L by

⊕s
i=1 R(−νM( f i)), hence νL(ei) = νM( f i).

Let φ : L → M be a morphism of filtered R-modules defined by

φ(ei) = f i .

It is clear that φ is a morphism of filtered modules and grL(L) is isomorphic to the graded free G-
module

⊕s
i=1 G(−νM( f i)) with a basis (e1, . . . , es) where deg(ei) = νM( f i). In particular φ induces a

natural graded morphism (of degree zero) gr(φ) : grL(L) → grM(M) sending ei to grM( f i) = f ∗
i .

Let c =t (c1, . . . , cs) be an element of L. By the definition of the filtration L on L, we have

νL(c) = min
{
νR(ci) + νM( f i): 1 ! i ! s

}
! νM

(
φ(c)

)
.

Set grL(c) =t (c′
1, . . . , c

′
s) and ν = νL(c), then

c′
i =

{
grn(ci) if νR(ci) + νM( f i) = ν,
0 if νR(ci) + νM( f i) > ν.

If we denote by Syz(S) the submodule of L generated by the first syzygies of f1, . . . , f s ,
then Syz(S) = Kerφ. Likewise let Syz(grM(S)) be the module generated by the first syzygies of
grM( f1), . . . , grM( f s), then Syz(grM(S)) = Ker(gr(φ)).

Then we have the following fundamental diagram:

0 Syz(S)
⊕s

i=1 R(−νM( f i))
φ

grL

M

grM

0 Syz(grM(S))
⊕s

i=1 G(−νM( f i))
gr(φ)

grM(M)

Definition 1.4. Let M be a filtered module. An element g ∈ M is a lifting of an element h ∈ grM(M) if

grM(g) = h.

Remark 1.5. If p ∈ Syz(S), then we have grL(p) ∈ Syz(grM(S)); in particular the map grL induces a
map

grL| : Syz(S) → Syz
(
grM(S)

)
.
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Following the setting in [Sh, Section 2] and [KR], we introduce the concept of standard bases of a
module.

Definition 1.6. Let M be a filtered R-module. A subset S = { f1, . . . , f s} of M is called a standard basis
of M if

grM(M) =
〈
f ∗
1 , . . . , f ∗

s
〉
.

If any proper subset of S is not a standard basis, we call S a minimal standard basis.

Let f : M → N be a morphism of filtered R-modules and gr( f ) : grM(M) → grN(N) the induced
homomorphism. If gr( f ) is surjective, then f is a strict surjective homomorphism. By using this fact
and Proposition 1.2, we can prove next theorem which gives a criteria for standard bases. In the case
of ideals, the result had been proved in [RoV]. We omit here the proof because it is essentially the
same as Theorem 2.9 in [Sh].

Theorem 1.7. Let M be a filtered R-module, f1, . . . , f s ∈ M and S = { f1, . . . , f s}. The following facts are
equivalent:

1. { f1, . . . , f s} is a standard basis of M.
2. { f1, . . . , f s} generates M and every element of Syz(grM(S)) can be lifted to an element in Syz(S).
3. { f1, . . . , f s} generates M and Syz(grM(S)) = grL(Syz(S)).

Note that a similar result is well known for Gröbner bases (see for example [KR, Theorem 2.4.1(D1)
and (B2)]).

With the notation of the previous fundamental diagram, the equivalent conditions of Theorem 1.7
are also equivalent to the following:

4. gr(φ) is surjective.
5. { f1, . . . , f s} generates M and φ is strict.

In this setting it comes natural the following result presented in [Rob] and also in [HRV, Theo-
rem 3.1], which gives a comparison between an R-free resolution of M and a G-free resolution of
grM(M). The result will be a central tool in our investigation and we present here a proof in terms of
standard bases because this constructive approach will be fundamental in the following.

Theorem 1.8. Let M be a filtered R-module and (G.,d.) a G-free graded resolution of grM(M). Then we can
build up an R-free resolution (F., δ.) of M and a special filtration F on it such that grF(F.) = G..

Proof. Let

G. : · · · →
βl⊕

i=1

G(−ali)
dl→

βl−1⊕

i=1

G(−al−1i)
dl−1→ · · · d1→

β0⊕

i=1

G(−a0i)
d0→ grM(M) → 0

be a G-free resolution (not necessarily minimal) of grM(M). We define now (F., δ.) by inductive pro-
cess focused on Theorem 1.7.

We put gi = d0(e0i) ∈ grM(M) and let f i ∈ M be a lifting of gi . Starting from the integers a0i =
νM( f i), define F0 the R-free module of rank β0 with the special filtration

F0 =
β0⊕

i=1

R(−a0i) and δ0 : F0 → M
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such that δ0(e0i) = f i . Since d0 is surjective, then the f i ’s generate a standard base of M hence, by

Theorem 1.7, Ker(d0) = grF0 (Ker(δ0)) and F0
δ0→ M → 0 is exact.

Suppose that we have defined filtered free modules F0, . . . , F j with 0 ! j < l such that

F j
δ j→ F j−1 → · · · → F0

δ0→ M → 0

is a part of an R-free resolution of M . In particular, for every i ! j, grFi
(Fi) = Gi , grFi

(δi) = di and
moreover

Ker(d j) = grF j

(
Ker(δ j)

)
. (2)

Let Ker(d j) = 〈g j1, . . . , g jβ j+1 〉, then there exist f ji ∈ Ker(δ j) which are lifting of g ji . So g ji = grF j
( f ji)

and a j+1i = νF j ( f ji). Define now the filtered free R-module

F j+1 =
β j+1⊕

i=1

R(−a j+1i) and δ j+1 : F j+1 → F j

such that δ j+1(e j+1i) = f ji . Then

F j+1
δ j+1→ F j

δ j→ F j−1

is a complex such that grF j+1
(δ j+1) = d j+1. Because of (2), f j1, . . . , f jβ j+1 is a standard basis of

Ker(δ j) as a submodule of the filtered module F j . So again by Theorem 1.7, we get Ker(d j+1) =
grF j+1

(Ker(δ j+1)) and we can continue by inductive process. !

It is worth remarking that if we start from a minimal free resolution of grM(M), then the R-free
resolution of M , given in the proof of Theorem 1.8, is not necessarily minimal and it is minimal if and
only if the corresponding Betti numbers coincide, i.e. βi(grM(M)) = βi(M) for every i " 0. In general
the following inequalities hold:

• βi(grM(M)) " βi(M) for every i " 0.

Let R be is a regular local ring and denote by pd( ) the projective dimension of a module:

• pd(grM(M)) " pd(M);
• depth(grM(M)) ! depthM .

We are interested in finding classes of finitely generated R-modules M for which the equalities
hold. Accordingly with [HRV, Section 3] we give the following definition.

Definition 1.9. A filtered module M is said to be of homogeneous type with respect to the given
filtration M if βi(grM(M)) = βi(M) for every i " 0.

When the R-module M is of homogeneous type with respect to the n-adic filtration, we simply say
that M is of homogeneous type.

The n-adic filtration has a particular interest and it produces the first interesting class of modules
of homogeneous type: the Koszul modules introduced by J. Herzog and S. Iyengar in [HI]. In fact,
by [HI, Proposition 1.5], M is a Koszul R-module if and only if grn(M) has a linear resolution as a
grn(R)-module which implies in particular that M is of homogeneous type.
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Remark 1.10. Consider M = I an ideal of a regular local ring (R,n). In this paper we will focus our
attention on the following filtrations of the ideal I .

1. M = {np I} (the n-adic filtration on I): in this case grM(I) = grn(I) = ⊕
p!0 In

p/Inp+1. Accord-
ingly with our setting, we say that I is of homogeneous type if βi(grn(I)) = βi(I) for every i " 0.

2. M = {np ∩ I}: in this case grM(I) = I∗ = ⊕
p!0 I ∩ np/I ∩ np+1 = ⊕

p!0 I ∩ np + np+1/np+1 is the
ideal of the polynomial ring P = grn(R) generated by the initial forms of the elements of I . Hence
if A = R/I and m = n/I , the associated graded ring grm(A) " P/I∗ . According to our setting, we
say that I is of homogeneous type with respect to M if βi(grM(I)) = βi(I) for every i " 0. This
is equivalent to say that βi(A) = βi(grm(A)) for every i " 0, that is the local ring (A,m) is of
homogeneous type.

The following examples show how it is difficult to find modules of homogeneous type.

Example 1.11. (1) Let I = (x3 − y7, x2 y − xt3 − z6) be in R = k[[x, y, z, t]]. The ideal is a complete
intersection and hence the resolution of I as an R-module is given by the Koszul complex. But

I∗ =
(
x3, x2 y, x2t3, xt6, x2z6, xy9 − xz6t3, xy8t3, y7t9

)
⊆ P = k[x, y, z, t]

and hence β0(I∗) = 8 > β0(I) = 2. Using [CoCoA], it is possible to check that β1(I∗) = 12 > β1(I) = 1,
β2(I∗) = 6 > β2(I) = 0, β3(I∗) = 1 > β3(I) = 0.

The following example shows that β0(I) = β0(I∗) and pd(I) = pd(I∗) do not force I to be of homo-
geneous type.

(2) Consider the local ring

A = k
[[
t19, t26, t34, t40

]]
= k[[x, y, z, t]]/I,

one can prove that I is minimally generated by an n-standard base, i.e. β0(I) = β0(I∗) = 5, I and I∗ are
perfect ideals (hence they have the same projective dimension), nevertheless I is not of homogeneous
type with respect to M = {np ∩ I}, neither A is of homogeneous type (see [HRV, Example (3)]).

Nevertheless examples of local rings of homogeneous type (not necessarily Koszul) can be given.

Example 1.12. (1) Let I be an ideal of R generated by a super-regular sequence. This means that
I = ( f1, . . . , fr) where f1, . . . , fr is a regular sequence and an n-standard base of I , equivalently the
initial forms f ∗

1 , . . . , f ∗
r are a regular sequence in P = grn(R) (see [VV]). Then both A = R/I and I are

of homogeneous type (see [HRV, Example 1, Theorem 3.6]).
(2) Let I be the ideal generated by the maximal minors of a generic r× s (r ! s) matrix X = (xij) in

R = k[[xij]], then grn(I) " I(−r) has a linear resolution and it is easy to prove that I is of homogeneous
type.

(3) Let I be an ideal of the regular ring (R,n) such that A = R/I is Cohen–Macaulay of minimal
multiplicity and let m = n/I , then J. Sally (see [Sa]) proved that grm(A) is Cohen–Macaulay of mini-
mal degree and I has a standard base of equimultiple elements of degree 2. From this, using [HRV,
Lemma 3.3], one can prove that I is of homogeneous type.

(4) Let I be an ideal of the regular ring (R,n) generated by two elements, then I is of homoge-
neous type (see [HRV, Proposition 3.4]).

(5) Let I be the defining ideal of a monomial curve in A3 in the regular ring R such that ν(I) =
ν(I∗), then A = R/I is of homogeneous type. Because I is a perfect ideal of codimension two, it
is enough to recall that Robbiano and Valla in [RoV1] proved that, in this case, grm(A) is Cohen–
Macaulay.
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We remark that Proposition 2.4 in [RS] gives us a criterion for producing more modules of homo-
geneous type.

2. Properties of componentwise linear modules

The componentwise linear modules over a polynomial ring had been introduced by Herzog and
Hibi by enlarging the class of the graded modules with a d-linear resolution. Interesting results con-
cerning their graded Betti numbers had been proved by Aramova, Conca, Herzog and Hibi (see [H,HH,
AHH,CHH,C]). Later Römer (see [R]) studied more homological properties of the componentwise lin-
ear graded modules in the general setting of finitely generated modules over Koszul algebras (instead
of polynomial rings), some of them partially overlap with those of Martinez and Zacharia in [MZ].
Thanks to the fact that componentwise linear modules and graded Koszul modules coincide, in the
literature one can find two different approaches: the first coming from Herzog and Hibi’s methods
(see [HH,CHH]) dealing with graded ideals in the polynomial ring and a purely homological approach
(see [MZ] and [HI]) on modules over Koszul algebras. However, in view of the applications, in this
section we consider graded modules over a polynomial ring P = k[x1, . . . , xn] even if most of the
results hold in a more general setting.

Let N be a graded P -module. For d ∈ Z we write N〈d〉 for the submodule of N which is generated
by all homogeneous elements of N with degree d. In the graded case we may also define the graded
Betti numbers, i.e.

βi, j(N) := dimk Tor
P
i (k,N) j .

If the context is clear, we will simply write βi, j .

Definition 2.1. Let N be a graded P -module.

(i) Let d ∈ Z. Then N has a d-linear resolution if βi, j = 0 for j '= d + i.
(ii) N is componentwise linear if for all integers d the module N〈d〉 has a d-linear resolution.

For more information concerning the componentwise linear modules, see [HH,C,R,CHH]. We select
here some good properties of their graded minimal free resolutions.

Set indeg(N) = min{d ∈ Z: Nd '= 0}. If N is componentwise linear, it is known that N/N〈indeg(N)〉 is
componentwise linear too (see [R, Lemma 3.2.2]). Let (G.,d.) be the minimal graded free resolution
of N and define the subcomplex (G̃., d̃.) of (G.,d.) by

G̃ i = P
(
−

(
i + indeg(N)

))βi,i+indeg(N) ⊆ Gi and d̃. = d.|G̃..

Römer proved that G̃. is the minimal (linear) graded free resolution of N〈indeg(N)〉 and G./G̃. is the
minimal graded free resolution of N/N〈indeg(N)〉 (see [R, Lemma 3.2.4]).

As a consequence of these properties we easily get the following information that have an intrinsic
interest in the theory of componentwise linear modules.

Proposition 2.2. Let N be a graded P-module minimally generated in degrees i1, . . . , im. Assume N is compo-
nentwise linear and let (G.,d.) be the minimal graded free resolution of N. Then for every 1 ! s ! pd(N) we
have

TorPs (k,N) j = 0 for j '= i1 + s, . . . , im + s.

In particular, if for some 1 ! s ! pd(N) and 1 ! r !m, TorPs (k,N)ir+s = 0, then TorPs+1(k,N)ir+s+1 = 0.
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Proof. Let N1 = N〈indeg(N)〉 . Since N is componentwise linear, N1 has i1 = indeg(N)-linear resolution
and N = N/N1 is a componentwise linear module minimally generated in degrees i2, . . . , im . Thus,
from the short exact sequence

0 → N1 → N → N → 0

we obtain TorPi (k,N) j = TorPi (k,N1) j ⊕TorPi (k,N) j . Repeating this procedure, we can find the sequence
of graded modules N1, . . . ,Nm , such that Ni has an ir-linear resolution and

TorPi (k,N) j =
m⊕

r=1

TorPi (k,Nr) j .

Hence, the conclusion follows. !

The following remark will clarify the shape of the matrices associated to the differential maps of
the resolutions of componentwise linear modules.

Remark 2.3. Let N be a graded P -module generated in degrees i1, . . . , im . Assume N is component-
wise linear and let (G.,d.) be the minimal graded free resolution of N . Then by the above proposition
Gs = ⊕m

j=1 Pβs,i j+s (−(i j + s)) for every 1 ! s ! pd(N). We want to describe the shape of the matrix

Ms associated to Gs
ds→ Gs−1 with respect to the canonical homogeneous bases of Gs and Gs−1 of

degrees respectively i1 + s, . . . , im + s and i1 + s − 1, . . . , im + s − 1.
By using Proposition 2.2, without loss of generality, we may assume Ms of the following shape:

i1 + s i2 + s im + s
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

i1 + s − 1
{

Bi1i1s Bi1 i2s . . . Bi1ims

i2 + s − 1
{

0 Bi2 i2s . . . Bi2ims

0 0 . . .
...

im + s − 1
{

0 . . . 0 Bimims

where all the non-zero entries of Bi1 i1s, Bi2 i2s, Bimims (diagonal blocks) are linear forms and the non-
zero entries of Bip iqs with p < q (up-diagonal blocks) are forms of degree at least two.
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Remark 2.4. Let N be a componentwise linear graded P -module. Set N1 := N and for every j =
2, . . . ,m we define

N j := N j−1/(N j−1)〈indeg(N j−1〉 = N j−1/(N j−1)〈i j−1〉.

By [R, Lemmas 3.2.2 and 3.2.4], it is easy to show that, for every 1 ! s ! pd(N), the matrices Bi j i j s
(on the diagonal) in Ms have the following properties:

• in each column of Bi j i j s at least one entry is different from zero;
• the columns of Bi j i j s minimally generate the s-th syzygy module of (N j)〈i j〉 .

Indeed it is enough to remark that the matrices Bi j i j s can be considered as the matrices associated
to the differential maps of the minimal free resolution of (N j)〈i j〉 which has linear resolution.

We present the following example in order to help the reader to visualize better the resolutions
of componentwise linear modules.

Example 2.5. Let P = k[x1, x2, x3, x4] and I = (x21, x1x2, x
2
2, x1x3, x2x

2
3, x1x

3
4, x

4
3). The ideal I is Borel-

fixed, so I is componentwise linear and the minimal free resolution of I is:

0 → P (−7)
d3→ P (−4) ⊕ P (−5) ⊕ P4(−6)

d2→ P4(−3) ⊕ P2(−4) ⊕ P5(−5)

d1→ P4(−2) ⊕ P (−3) ⊕ P2(−4) → I → 0.

According to Remark 2.3, we have

x2 x1 0 0 0 0 x34 0 0 0 x33

0 0 x1 0 x23 0 0 0 0 0 0

−x3 0 −x2 x1 0 x23 0 x34 0 0 0

M1 = 0 −x3 0 −x2 0 0 0 0 x34 0 0

0 0 0 0 −x2 −x1 0 0 0 x23 0

0 0 0 0 0 0 0 0 0 −x2 −x1

0 0 0 0 0 0 −x3 −x2 −x1 0 0

One can find a similar shape for M2 and M3.

3. Extremal Betti numbers

In this section, we present the main result of the paper and the application to the minimal free
resolutions of a local ring. We denote by µ( ) the minimal number of generators of a module over a
local ring (or the minimal number of generators of a graded module over the polynomial ring).
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Theorem 3.1. Let M be a finitely generated filtered module over a regular local ring (R,n). Assume that

1. µ(M) = µ(grM(M));
2. grM(M) is a componentwise linear P -module.

Then M is of homogeneous type with respect to M.

Proof. For short we denote grM(M) by M∗ . By Corollary 2.2, its minimal graded free resolution (G.,d.)
as a P = grn(R)-module has the following shape:

0 →
m⊕

j=1

P
βh,i j+h

(
−(i j + h)

) dh→ · · · d1→
m⊕

j=1

Pβ0,i j (−i j) → M∗ → 0

where h = pd(M∗) and 0 < i1 < i2 < · · · < im are the degrees of a minimal system of generators of M∗ .
Denote by βt(M∗) the total Betti numbers of M∗ . From (G.,d.) we can build up a free resolution
(F., δ.) of M by the inductive process described in Theorem 1.8:

0 →
m⊕

j=1

R
βh,i j+h

(
−(i j + h)

) δh→ · · · δ1→
m⊕

j=1

Rβ0,i j (−i j) → M → 0.

We have to prove that (F., δ.) is minimal. For every t = 0, . . . ,h denote by M∗
t (resp. Mt ) the matrix

of the differential map dt (resp. δt ). We prove that the columns of Mt for t = 0, . . . ,h minimally
generate the t-th syzygy module of M , that is Ker(δt−1). We proceed by inductive process. The first
step (t = 0) follows easily from the assumption µ(M) = µ(M∗), which says that a minimal system of
generators of M∗ (say g−1,i) build up a minimal system of generators of M (say f−1,i). Suppose now
that for each 0 ! t ! s < h we have proved that

Fs =
m⊕

j=1

Rβs,i j+s
(
−(i j + s)

) δs→ · · · δ1→ F0 =
m⊕

j=1

Rβ0,i j (−i j)
δ0→ M → 0

is part of a minimal free resolution of M . This means in particular that, if ds(es,r)) = gs−1,r and f s−1,r
is the corresponding lifting in the filtered module Fs−1 (F−1 = M), then { f s−1,1, . . . , f s−1,βs } is a
minimal generating set for the s-th syzygy module. By following the proof of Theorem 1.8, we have
to prove now that

Fs+1 =
βm⊕

i=1

Rβs+1,i j+s+1
(
−(i j + s + 1)

) δs+1→ Fs → Fs−1

is part of a minimal free resolution of M . Because { f s−1,1, . . . , f s−1,βs } is a minimal generating set for
the module their generated, we conclude that all entries of Ms+1 belong to n. The goal is to prove
that the columns of the matrix Ms+1 minimally generate the s + 1-st syzygy module of M .

Since M∗ is componentwise linear, accordingly with Remark 2.3, we may assume that M∗
s+1 has

the following shape:
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i1 + s + 1 i2 + s + 1 im + s + 1︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

i1 + s
{

M∗
i1i1s+1 M∗

i1 i2s+1 . . . M∗
i1ims+1

i2 + s
{

0 M∗
i2 i2s+1 . . . M∗

i2ims+1

0 0 . . .
...

im + s
{

0 . . . 0 M∗
imims+1

The columns of M∗
s+1 are the initial forms of the columns of Ms+1 with respect to the special

filtration (Fs)p = ⊕m
j=1

⊕βs,i j+s

k=1 np−i j−sesk,i j on Fs . In particular by looking the degree matrix of M∗
s+1,

the elements of M∗
ip iqs+1 have degree iq − ip + 1 and the matrices M∗

i j i j s+1 (on the diagonal) have the
good properties described in Remark 2.4.

Denote now by Mipiqs+1 the blocks corresponding to the rows labeled by ip + s and the columns
labeled by iq + s+ 1 in Ms+1. Remark that in Ms+1 the non-zero entries of the blocks Mipiqs+1 have
valuation at least iq − ip + 1. Hence if p < q the non-zero elements have valuation at least 2. Notice
that the non-zero entries of the blocks with p > q (under the diagonal blocks) have valuation " 1
because all the entries belong to n.

Denote by Cik j with k = 1, . . . ,m and j = 1, . . . ,βs+1,ik+s+1 the columns of Ms+1 (respectively
C∗
ik j

those of M∗
s+1). By Remark 2.4 in each column Cik j there is at least one element of valuation 1

and it belongs to the block Mikiks+1. Suppose now that there exists (k, j) such that

Cik j =
m∑

r=1

βs+1,ir+s+1∑

p=1

λ(ir ,p)Cir p

with (ir, p) '= (ik, j). Because in Cik j there is at least one element of valuation 1 and the entries of
Mikir s+1 with r > k have valuation at least 2, necessarily there exists an integer u with 1 ! u ! k
such that λ(iu ,p) /∈ n for some p. Assume u the least integer with such property. This leads to prove
that the columns of M∗

iu iu s+1 are not linearly independent against Remark 2.4. Assume u = k and
let Cik p1 , . . . ,Cik pt be columns corresponding to invertible coefficients λ(ik,p1), . . . ,λ(ik,pt ) (in the band
ik + s + 1). By using again that the entries of Mikir s+1 with r > k have valuation at least 2, one can
easily prove that the columns of M∗

ik iks+1 corresponding to (ik, j), (ik, p1), . . . , (ik, pt) are not linearly
independent. In the same way if u < k we repeat the same argument on M∗

iu iu s+1 and we get the
conclusion. !

One of the main goal of the paper is the application of the above result to an ideal I of the regular
local ring (R,n). In particular, we are interested in comparing the numerical invariants of the minimal
R-free resolution of A = R/I and those of the minimal graded P -free resolution of grm(A) = P/I∗

where m = n/I and I∗ is the graded ideal generated by the initial forms of I . We recall that if we apply
the general theory on filtered modules to M = I and M = {np ∩ I}, as we described in Remark 1.10,
we obtain grM(M) = I∗ .
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As we have already said

βi(R/I) ! βi
(
P/I∗

)
. (3)

Theorem 3.1 says that if I is minimally generated by an n-standard base and I∗ is componentwise
linear, then the equality holds. Notice that in Theorem 3.1 the assumption which I is minimally gen-
erated by an n-standard base is necessary and it is not a consequence of the assumption that I∗ is
componentwise linear. For example, if I is the defining ideal of A = k[[t10, t19, t21, t53]], then one can
check that I∗ is componentwise linear, but µ(I) = 5 and µ(I∗) = 7.

The inequality (3) and Theorem 3.1 suggest us new upper bounds coming from the homogeneous
context. From now on assume the residue field k of characteristic 0. We have two monomial ide-
als canonically attached to I∗: the generic initial ideal with respect to the revlex order and the
lex-segment ideal of I∗ characterized by Macaulay’s theorem. They play a fundamental role in the
investigation of many algebraic, homological, combinatorial and geometric properties of the ideal I
itself. We denote

Gin(I) := Gin
(
I∗

)
and Lex(I) := Lex

(
I∗

)
.

For the first equality, notice that in [B] it is proved that if R = k[[x1, . . . , xn]], one can define an anti-
degree-compatible ordering on the terms of R such that the leading term ideal of I , after performing a
‘generic change’ of coordinates, is a monomial ideal which coincides with Gin(I∗). The second equality
is clear from Macaulay’s theorem because the Hilbert function of the local ring A = R/I is the Hilbert
function of grm(A) = P/I∗ . All the involved monomial ideals have the same Hilbert function, indeed

HFA(n) = HFgrm(A)(n) = HFP/I∗(n) = HFP/Lex(I)(n) = HFP/Gin(I)(n),

nevertheless, since βi(R/I∗) ! βi(P/Gin(I∗)) ! βi(P/Lex(I∗)), we have

βi(R/I) ! βi
(
P/Gin(I)

)
! βi

(
P/Lex(I)

)
(4)

for every i " 0. The first inequality follows by standard deformation argument, the second was proved
by A. Bigatti [B] and H.A. Hulett [Hu] in characteristic zero and extended later by K. Pardue [P] to
positive characteristic.

Componentwise linear ideals have been characterized by A. Aramova, J. Herzog and T. Hibi in
[AHH] as those ideals having the same Betti numbers as their generic initial ideal.

Theorem 3.2. (See [AHH, Theorem 1.1].) Let J be a homogeneous ideal of P . The following facts are equivalent:

(i) µ( J ) = µ(Gin( J )).
(ii) βi( J ) = βi(Gin( J )) for every i " 0.
(iii) βi j( J ) = βi j(Gin( J )) for every i, j " 0.
(iv) J is componentwise linear.

Generalization of this result have been proved in [CHH,C,P].
Let now I be an ideal in the local ring R and we present the similar result in the local setting.

Since µ(I) ! µ(I∗) ! µ(Gin(I)), as a corollary of Theorem 3.1 and the above result, we deduce the
following characterization.

Corollary 3.3. Let I be an ideal of the regular local ring (R,n). The following facts are equivalent:

(i) µ(I) = µ(Gin(I)).
(ii) βi(I) = βi(I∗) = βi(Gin(I)) for every i " 0.
(iii) µ(I) = µ(I∗) and I∗ is componentwise linear.
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J. Herzog and T. Hibi [HH, Corollary 1.4] proved the corresponding result of Theorem 3.2 for the
lex-segment ideal associated to a homogeneous ideal of P . The result is very interesting because in
general it is easier to determine Lex(I) (it is uniquely determined by the Hilbert function) than Gin(I).

Similarly, starting from the inequalities µ(I) ! µ(I∗) ! µ(Gin(I)) ! µ(Lex(I)), it is easy to deduce:

Corollary 3.4. Let I be an ideal of the regular local ring (R,n). The following facts are equivalent:

(i) µ(I) = µ(Lex(I)).
(ii) βi(I) = βi(I∗) = βi(Lex(I)) for every i " 0.
(iii) µ(I) = µ(I∗) and I∗ is a Gotzmann ideal.

Example 3.5. (1) Let (A,m,k) be a stretched Cohen–Macaulay ring of embedding codimension h.
Sally in [Sa] defined the stretched Cohen–Macaulay ring as the local rings which admit an Artinian
reduction B with Hilbert function HB(i) ! 1 for i " 2. For example this is the case if A is Cohen–
Macaulay of multiplicity ! h + 2.

If A has maximal Cohen–Macaulay type (i.e. h) and grm(A) is Cohen–Macaulay, then A is of
homogeneous type. We may assume A = R/I where R is a regular local ring. By reducing the prob-
lem to the Artinian reduction B , it is known (see [Sa] and [EV]) that µ(I) =

(h+1
2

)
. In particular

µ(I) = µ(Gin(I)), then B (hence A) is of homogeneous type by Corollary 3.3.
(2) The local ring A = k[[t9, t17, t19, t39]] is of homogeneous type. In this case the defining ideal

I =
(
x2x3 − x41, x

5
2 − x1x43, x2x4 − x21x

2
3, x

2
3x4 − x1x42, x

3
3 − x21x4, x

2
4 − x31x

3
2
)

is minimally generated by a standard base. Moreover Gin(I) = (x21, x1x2, x
2
2, x1x

2
3, x2x

2
3, x

5
3), hence

µ(I) = µ(I∗) = µ(Gin(I) = 6 and we may apply Corollary 3.3. Notice that A is not stretched because
HB(2) = 3.

A. Conca, J. Herzog and T. Hibi proved that the Betti numbers of an ideal I of a regular local ring
R of dimension n can be related to another sequence of numbers, α1(I),α2(I), . . . called the generic
annihilator numbers of A = R/I . Assuming that the residue class field is infinite, regular system of
parameters y1, . . . , yn can be chosen such that for every p = 1, . . . ,n

Ap := (y1, . . . , yp−1)A :A yp/(y1, . . . , yp−1)A

is of finite length. Denoting by

αp(A) := length Ap,

in [CHH, Corollary 1.2] it was proved that

βi(A) !
n−i+1∑

j=1

(
n − j
i − 1

)
α j(A).

If A is a graded standard algebra, in [CHH] it is proved that the equality holds provided the ho-
mogeneous ideal I is componentwise linear. In the local case we loose this characterization, but by
[CHH, Theorem 1.5 and Remark 1.6], the equality holds if I is Koszul or equivalently grn(I) has a linear
resolution. By [HI, Proposition 1.5], for proving that a module is Koszul, it will be useful to introduce
the linearity defect denoted by ld.
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As usual let (F., δ.) be a minimal R-free resolution of a module M . For all integer i we have

grn(Fi)(−i) =
⊕

j!i

n j−i F i/n
j+1−i F i " grn(R)βi(M)(−i).

Following this construction due to D. Eisenbud, G. Floystad and F.O. Schreyer in [EFS], the differential
maps δi induces a bihomogeneous map:

δlini+1 : grn(Fi+1)(−i − 1) → grn(Fi)(−i)

which can be described by matrices of linear forms. Precisely the matrices, say Mlin
i+1, are obtained by

replacing in Mi+1 all entries of valuation > 1 by 0 and by replacing all the entries of valuation one
by their initial forms with respect to the n-adic filtration. The minimality of (F., δ.) ensures that the
maps {δlini } are well defined and form a complex homomorphism denoted by linR(F.) which is not
necessarily exact. It is called the linear part of the resolution. For the construction of this complex and
related results see [EFS], as well [HI,R]. T. Römer introduced a measure for the lack of the exactness
and he defined

ld(M) := inf
{
j: Hi

(
linR(F.)

)
= 0 for i " j + 1

}
.

In particular lpd(M) = 0 if and only if linR(F.) is exact. Following [HI], M is Koszul if and only
if ld(M) = 0. Römer proved in [R, Theorem 3.2.8] that, for graded modules, having ld(M) = 0 is
equivalent to be componentwise linear and hence to be Koszul. Herzog and Iyengar proved in [HI,
Proposition 1.5] that to be Koszul is equivalent to the fact that linR(F.) is the minimal free resolution
of grn(M) = ⊕

j n
jM/n j+1M . In particular this is the case if and only if grn(M) has a linear resolution

as a grn(R)-module.
The following theorem says that under the assumptions of Theorem 3.1, the module M is Koszul,

hence M is of homogeneous type (w.r.t. the n-adic filtration).

Theorem 3.6. Let M be a finitely generated filtered module over a regular local ring (R,n) such that µ(M) =
µ(grM(M)).

If grM(M) is a componentwise linear P -module (equivalently a Koszul graded module), then M is Koszul.

Proof. We prove ld(M) = 0. Let M∗ = grM(M) and (G.,d.) be a minimal P -free resolution of M∗

(where P = grn(R)). Denote by 0 < i1 < · · · < im the degrees of the elements of a minimal set of
generators of M∗ .

From G. we can build linP (G.) as defined before. Since M∗ is a componentwise linear module,
linP (G.) is exact (ld(M∗) = 0). Moreover, we can split linR(G.) as

⊕m
r=1 lin

P (Gir .) where linP (Gir .) is
the linear part of the resolution of the submodule of M∗ generated by the minimal set of generators
of M∗ of degree ir .

In fact, by the construction, the matrices lin(M∗
j ) associated to

dlinj : Pβ j(M∗)(− j) → Pβ j−1(M∗)(− j + 1)

are obtained from M∗
j by replacing all the entries of degree > 1 by 0. Then, by Remark 2.3, the

matrices lin(M∗
j ), 1 ! j ! pd(M) will present the following shape:
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i1 + j im + j
︷ ︸︸ ︷ ︷ ︸︸ ︷

i1 + j − 1
{

M∗
i1i1 j 0 0

0 . . . 0

im + j − 1
{

0 0 M∗
imim j

We remark that all the blocks on the diagonal are the same as in M∗
j (they have linear entries)

and the upper diagonal blocks are replaced by 0 because the corresponding entries have degree at
least two.

Also, by Theorem 1.8, from G. we can build the minimal R-free resolution (F., δ.) of M . By Theo-
rem 3.1, β j(M) = β j(M∗). In its turn, from (F., δ.) we can build linR(F.). We have to prove that

Hi
(
linP (G.)

)
= 0 /⇒ Hi

(
linR(F.)

)
= 0 for every i " 1.

We remark that Glin
j = F lin

j " Pβ j(M)(− j) where β j(M) = β j(M∗) = ∑m
r=1 β j,ir+ j and, without loss of

generality, we denote by e j
s,ir

for r = 1, . . . ,m, s = 1, . . . ,β j,ir+ j a basis of both Glin
j and F lin

j . The

matrices lin(M j) associated to δlinj : Pβ j(M)(− j) → Pβ j−1(M)(− j + 1) with respect to these bases are
obtained from M j and they have the following shape:

i1 + j im + j
︷ ︸︸ ︷ ︷ ︸︸ ︷

i1 + j − 1
{

M∗
i1i1 j 0 0

∗ . . . 0

im + j − 1
{

∗ ∗ M∗
imim j

where the “diagonal blocks” coincide with those of lin(M∗
j ) (the non-zero entries have valuation 1)

and ∗ denotes 0 or linear forms. Since we always have Ker δlinj ⊇ Im δlinj+1, we prove Ker δlinj ⊆ Im δlinj+1
for every j = 1, . . . ,pd(M).

Fixed an integer r ∈ {1, . . . ,m}, denote by N j
ir
the submodule of Glin

j generated by e j
1,ir

, . . . , e j
β j,ir+ j ,ir

.

Since linP (Gir ) is exact, then Ker(dlinj |N j
ir
) = Im(dlinj+1|N

j+1
ir

). Let
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x =
m∑

r=1

β j,ir+ j∑

s=1

λsre
j
s,ir

∈ Ker δlinj

with λsr ∈ P . Because
∑β j,i1+ j

s=1 λs1e
j
s,i1

∈ Kerdlinj ∩ N j
i1

= Im(dlinj+1|N
j+1
i1

), we get
∑β j,i1+ j

s=1 λs1e
j
s,i1

=
dlinj+1(α1) with α1 ∈ N j+1

i1
. Set

x1 := x− δlinj+1(α1).

Notice that x1 ∈ Ker δlinj because x ∈ Ker δlinj and δlinj ◦ δlinj+1 = 0. It is easy to see that x1 ∈ 〈e j
s,ir

〉 with

r " 2. In fact δ j+1(α1)−d j+1(α1) ∈ Pβ j(M)(− j)/N j
i1

because the blocks on the diagonal of linR(F.) and

linP (G.) coincide.

Hence x1 = ∑m
r=2

∑β j,ir+ j
s=1 λ′

sre
j
s,ir

∈ Ker δlinj with λ′
sr ∈ P and

∑β j,i2+ j

s=1 λ′
sre

j
s,ir

∈ Kerdlinj ∩ N j
i2

=
Im(dlinj+1|N

j+1
i2

). We can repeat the same procedure and finally we find αr ∈ N j+1
ir

, r = 1, . . . ,m − 1,
such that

xm := x− δlinj+1

(
m−1∑

i=1

αi

)

∈ Kerdlinj ∩ N j
im

= Im
(
dlinj+1

∣∣N j+1
im

)
= Im

(
δlinj+1

∣∣N j+1
im

)
.

Because xm ∈ Im(δlinj+1), it follows that x ∈ Im(δlinj+1), as required. !

As a consequence of Theorem 3.6 and of [CHH, Theorem 1.5 and Remark 1.6], we can prove the
following result.

Corollary 3.7. Let I be an ideal of a regular local ring R of dimension n which satisfies one of the equivalent
conditions of Corollary 3.3 and let A = R/I . Then

βi(A) =
n−i+1∑

j=1

(
n − j
i − 1

)
α j(A).

We remark that, under the assumption of the above result, we also have

βi(A) =
n−i+1∑

j=1

(
n − j
i − 1

)
α j

(
grm(A)

)
.

We present now an unexpected consequence on the theory of blowing-up algebras. If I ⊆ n2 is
a non-zero ideal of a regular local ring (R,n), we let A = R/I the local ring with maximal ideal
m = n/I . We denote by S A(m) the symmetric algebra of m over A. In this case it is known (see [HRV,
Corollary 2.2]) that

S A(m) =
⊕

p!0

np/Inp−1.

Even if A is Cohen–Macaulay, the symmetric algebra has a strong tendency not to be Cohen–Macaulay.
M.E. Rossi (see [Ro, Theorems 2.4 and 3.3]) proved that S A(m) is Cohen–Macaulay if and only if A is
an abstract hypersurface ring. One reason is that the Krull dimension of S A(m), compared with the
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one of A, can be very higher. C. Huneke and M.E. Rossi (see [HR]) gave an explicit formula for the
dimension of the symmetric algebra. Applied to the above setting, we get

dim S A(m) = dim R. (5)

It follows from a result of the same paper [HR] that

depth S A(m) ! dim A + 1.

In [HRV, Theorem 2.13], J. Herzog, M.E. Rossi and G. Valla proved that depth S A(m) (with respect to
homogeneous irrelevant maximal ideal) is strictly related to the depth of grn(I). As a consequence, by
using this connection and the results of this paper, we prove the following theorem.

Theorem 3.8. Let I ⊆ n2 be an ideal of a regular local ring (R,n), we let A = R/I the local ring with maximal
ideal m = n/I . Assume that I satisfies one of the equivalent conditions of Corollary 3.3. If depth A > 0, then

depth S A(m) " depth A + 1.

If A is Cohen–Macaulay, then depth S A(m) = dim A + 1.

Proof. By Theorem 3.6 we know that I is of homogeneous type. It follows that depth grn(I) =
depth I = depth A + 1 and the result follows by [HRV, Theorem 2.13(c) and Corollary 4.14]. !

We remark that, if depth A = 0, then depth S A(m) = 0 from [HRV, Proposition 2.3(d)].
Notice that Theorem 3.8 extends and reproves [HRR, Theorem 3.9] which was showed in the

homogeneous context. Moreover, Theorem 3.8 and equality (5) show that if A is Cohen–Macaulay
and the equivalent conditions of Corollary 3.3 hold, then S A(m) is Cohen–Macaulay if and only if
dim A = dim R − 1, which means A is a hypersurface ring. The result recovers, in a particular case,
a more general result proved by M.E. Rossi in [Ro, Theorem 3.3].
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