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Abstract

The Ratliff—-Rush filtration has been shown to be a very useful tool for studying numerical invariants
of the associated graded rigg:= P, . O(If/1’+1) ofalocalring(A, m) with respect to the classical
I-adic filtration. The advantage of this approach is that the associated gradézlomgwith respect
to the Ratliff—Rush filtration has positive depth, but unfortuna@ly’s not necessarily a standard
graded algebra. _

In this paper, we study some numerical invariantgsofvhen/ is anm-primary ideal of a local
Cohen—Macaulay ring and, as consequence, we prove an upper bound on the first coefficient of the
Hilbert polynomial ofG which extends the already known bounds.
© 2005 Elsevier B.V. All rights reserved.

MSC:Primary: 13D40; secondary: 13P99

0. Introduction

The notion of Ratliff=Rush closure

I:= U ("t
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ofanideall in a Noetherian local ring has been introduced [2] where the authors show
that, if I contains a regular element, théns a reduction off and, even morel)" = I"

for all largen, T being the largest ideal with this property. More generally it has also been
proved in[12] that

—_—~

72722...2]72[:'—&-12...2ﬁ:]ﬂ

for all largen. e ~

Since it is clear thafi// C Ii+/ for everyi and j, the collection of ideal$/"},cx
is a filtration of A which is called theRatliff-Rush filtrationinduced byl and which is a
Noetherian filtration.

The Ratliff—-Rush filtration has been shown to be a very useful tool for studying numerical
invariants of the associated graded riGg:= @,20(1’/11“) of A with respect to the
classicall -adic filtration (se¢3,4,7,8,10,11,13,15,18]

For example, for all not negative integerthe degreen component of the zeroth
local cohomology module of; with respect to the ideali ; = @,21(171”1) can be
written as

[HS, (G)], = ("L 1)/ 1"+,

HenceG has posmve depth if and only i* = 17 for all n >0.
Sincel? 2 IP+1 we can consider the abelian group

G = @/

p=0

which has a natural structure of graded algebra over its degree zero part, the local ring

Go= A/I with multiplication induced by the multiplication mdp’ x [4 = [r+a.

The rlngG is called the associated graded ringAfwith respect to the Ratliff-Rush
filtration induced by/. If I is m-primary, thenGy is an Artinian local ring and we can
consider the Hilbert function aff which is by definition

Hi(0) = 2, 7(Gy) = MT' 1Y),

where we simply writel(M) for the length of theA-moduleM. This function gives useful
information on some numerical invariants related to the classical Hilbert functibriltie
advantage is thaf has positive depth, but unfortunatems not a standard graded algebra
because we do not necessarily haml = G1G;.

Hence, the classical tools used for the computation of the Hilbert function in the standard
case, are no more available here. However i anm-primary ideal of a one-dimensional
Cohen—Macaulay local rin@A, m), we can prove in Theorem 2.1 that the Hilbert function
of G is strictly increasing up to reach the multiplicigyof 7, the same behaviour which the
Hilbert function of G has in the cas€& is Cohen—Macaulay. By using this result and as a
particular case of a more precise bound, we prove in Corollary 2.3 that for exdry

Hy(t) = min(e, t + A(A/D)).
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This inequality should be compared with the inequality
Hg(t) > min(e,  + 1)

which holds for a given one-dimensional standard graded alglorger an Artinian local
ring Ro and where the Hilbert function ot is defined afig (1) := Ag,(R;).

If R is a field, this last result can be found[B] or can be achieved as a consequence
of the classical Macaulay’s theorem, while, in the c&gds Artinian, it follows from an
extension of Macaulay’s theorem due to Blancafort (@€orollary 2.11].

Our approach also gives a bound on the regularit§ G in terms of the invariants af.
More precisely we prove in Theorem 2.4 and 2.5 that

§<e — maxw(l), v(D)) + 1,

wherev(J) denotes the minimal number of generators/ of

We remark that in most of the case€/) > v(I), but Example 3.6. ii14] shows that
v(I) — v(I) can be positive and large as you want even in a regular local ring.

In the last section, as a simple numerical consequence of the described properties of the
Hilbert functions ofG, we recover and extend in Theorem 3.1 a remarkable result proved
by Elias[5].

For a Cohen—Macaulay one-dimensional local fidgm) one has for every >0

MAMTH =" Ho(t) =e(n+1) —e1,
t=0
wheree is the multiplicity ofA ande; is an integer which is called the first Hilbert coefficient
of A.
In the quoted paper, by using deep methods related to the strict transform of the blowing
up of A, Elias proved that

5= (5)-(")

wherev is the embedding dimension df This bound is sharp and it can be used to give all
the possible Hilbert—-Samuel polynomials for the class of one-dimensional Cohen—Macaulay
local rings with multiplicitye and embedding dimensian

In Theorem 3.2, as a consequence of a more general result, we improve the upper bound
for e1 proved by Elias by showing that for an-primary ideal of a Cohen—Macaulay local
ring (A, m) one has

e1< <;> - <”(1)2_d) — A/ + 1.

This result can be used to give strict constraints on the Hilbert function af-pnimary
ideal in a Cohen—Macaulay local ring, for example it says that the Hilbert series
143z -2+ +7°
1-¢
is not admissible since=5, v = 4 ande; = 8.

Pn(z) =



28 M.E. Rossi, G. Valla / Journal of Pure and Applied Algebra 201 (2005) 25-41

The paper ends with a short proof (see Proposition 3.3) that, in thd ¢aglee maximal
ideal of A, if 1 reaches its maximal value, thénhas a specified Hilbert function, a result
which was the main theorem [6].

1. Preliminaries

Let (A, m) be a local ring of dimensiod and/ anm-primary ideal inA. Let us recall a
construction due to Ratliff and Rush (§é€]). For everyn >0 we have a chain of ideals

mcrthycptz2e. . cpthife.
This chain stabilizes at an ideal which we will denote by

In = L anthers.

k=1

Hence there is a positive integerdepending om, such that” = ["+*: ¥ for everyk >t.
It is clear that we havé® = A and for every non-negative integérand j

cIi, [ificriti, fitlicri,

We will denote byG~ =@ O(INZ' / If’:l) the associated graded ring 4fwith respect to
the Ratliff-Rush filtration and by

Hy(t) := 2, 7(Gy) = ATt /1172

its Hilbert function. This is the Hilbert function we refer to in the title.
Superficial elements play an important role in this paper. We recall that an elernrent
I is called superficial for if d > 1 and there exists an integet 0 such that

(" :x)ynic=1"1

for everyn > c.

It is well known that if the residue field is infinite, superficial elements always exist.
Further, if A has positive depth, every superficial elementi/f@s also a regular element in
A.

If x is superficial for7 and a non-zero divisor, itis an easy consequence of the Artin Rees
lemma that for every integgr> 0 we havel/: x = I/~1. From this we easily get’ = I,
for i > 0.

Finally, for everyn >0, we have

[y = [, 1)
which implies thaiG has positive depth.
If G := @i>0(ll/1’+1) is the associated graded ring &fwith respect to thd -adic
filtration, we haveﬁ,» =G, fori > 0. We recall that; is a standard graded algebra which has

not necessarily positive depth, whité is not a standard graded algebra, but depth 0
by (2).
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In this paper, we study some properties%f(t) and we show how these properties give
information on the Hilbert functiod; (r) of 7 which, as usual, is defined as

Hi(t) = Ho(t) = 2ay (I' /1" = 21" /1.
The generating function of the numerical functifiip(r) is the power series
Pi(z) =Y Hi()z"
t>0

This series is called the Hilbert seriegd/oft is well known that this series is rational and that,
even more, there exists a polynomtal(z) with integers coefficients such thiat(1) # 0
and

For everyi >0, the integers

h (1)
ei(l) = ===

are called thdilbert coefficient®f 7. The integeeo (/) =i (1) is themultiplicity of 7 and
it is simply denoted by (/).
It is well known that the polynomial

d
. N X+d—i
pr(X) = g( Diei(1) ( g )
has the property that for evenys> 0
pi(n) = A(A/I"N) =" Hi(j).

j=0

Since we havg"+1 = [n+1 for everyn big enough, we also get for eveiy> 0

pr(n) = MA/IFY = 3" H()).

j=0

A well-known property we will use in the paper is the following: if, ..., x, is
a superficial sequence fdr (which meansr; is superficial for/ andX; is superficial
forl/(x1,...,x;—1)forevery2<i<r)andweput := I/(x1,...,x;),then,fori=0, ...,

d — r, we havee; (I) = ¢;(I). Hence, for example, if = 1 andx is a superficial element
in I, theneg(1) = eo(I/xA) = A(A/xA).

When the ringd has dimension one, we have nice properties of the above-defined integers.
Hence, from now on, we are assuming tlat n) is a Cohen—Macaulay local ring of
dimensiond = 1 and we will simply writee ande for the Hilbert coefficientgq(/) and
e1(1), respectively.
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Further, we letc be a superficial element of the-primary ideal/ and we recall that,
sinceA is Cohen—Macaulay; is regular onA andG as well.
We consider for every> 0 the following diagram:

A D [it1 o gitl
U U U
xA D xI' D xI'.
Accordingly, we set
p; = /I(Ifij:l/x;"), vi = A X1
and then from the diagram we get
e=J(A/xA) = H(i) + v = Hi (i) + p;. 2)

HenceH; (i) = e if and only if v; = 0, that is/*** = x1, and similarlyH, (i) = ¢ if and
only if p;, =0, thatis/it1 = xI'.
Lets be the integer defined by

v;i>0 ifi<s -1,
v, =0 ifiz>s 3)

so thats is exactly theeduction numbeof 7. Itis well known that < e —1 (see for example
[17, Remark 6.16]

We havel‘+1 = xI' for everyi > s, from which we easily get by induction arx0 and
foreveryp>s,

I'P =x"IP, 4)
Let j be an integerj >s, and letr be a positive integer such tht = 17+ I"; we have
L= [+ gt C it = s st — s ps
so that, for everyj >,
Ii=1/, H()=H(j)=e, vj=p;=0.
Since forn >0
n n
prm)y=em+1) —ex=Y Hi()=)y_ H),
i=0 i=0

by (2) we get

n s—1
G-y u-Yu
i=0 i=0
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and, similarly,
s—1

e1= Z Pi- (5)
i=0

We want now to describe the components of the Ratliff—-Rush filtration in the one-
dimensional case. .
Letr >0 and;j andp integers such thatQ j <s < p; if ax’ € 1/, then, by (4),

ax'1P=7 c [P = x' [P
sothata € 1P: 17=J. This proves that

Ptxt crppri (6)
foreveryr >0 and 0< j <s < p.

Proposition 1.1. Let (A, m) be a Cohen—Macaulay local ring of dimension one and let
be anm-primary ideal inA with reduction numbey. Let p > s be an integerthen for every
j =>0we have

5= I‘_’:xp_j=1p11p_j if j<s,
1 if >

Proof. We have already seen that = 17 if j=s.
Now, letr be a positive integer such that

[i=r+
If j <s we can use (6) and (4) to get
[/ = [Tt C ¥t C [P P=) C [P xP=i C [P P
— [P P C

The conclusion follows. [

2. The Hilbert function of G

In this section A, m) is alocal Cohen—Macaulay ring of dimension ohan ideal which
is primary form, x a superficial element ih ands the reduction number af.

We will simply write H (1) and H (¢) instead ofH, (t) and H, (¢) for the Hilbert function
of G andG, respectively, and for the multiplicity e(/) of 1.

Since by (1) we hav&/+1: x=T, for everyr >0 the multiplication byt gives an injective
map

0— (~7,—x> 5[+1
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whose cokernel is
Gri1/xGr = I/ (x Tt 4 [1¥2),
Since we have
xIt 4 12 C [JF 4 [172 C [1741,
if we let
by i= AT 4 [1+2)x ]t 4 [172)
and
¢ = AL I 4 [142)
for everyt >0 we get
Ht+1)=H@) +c¢ + by @)

Further, since for every> s we haveﬁ(t) =e, itis clear that, = b, =0 for everyr >s.

The nextresult is the main theorem of this section. We recall tiRaisifa one-dimensional
Cohen—Macaulay standard graded algebra over a field, its Hilbert function is strictly increas-
ing until it reaches the multiplicity at which it stabilizes. We prove that the same property
holds for the Cohen—Macaulay graded algefiraven ifG is an algebra over an Artinian
local ring and it is not standard.

Theorem 2.1. Let (A, m) be a Cohen—Macaulay local ring of dimension olet / be an
m-primary ideal inA and letr >0 be an integerThe following conditions are equivalent

@ Ht+1) =H(@).

(b) b, =0.

(c) H(t) =e.

(d) H(n)=e foreveryn>t.

Proof. Itis clear by (7) that (a) implies (b). Let us prove that (b) implies (c) s, then
H(t) = H(t) = e. So letr + 1<s. By assumption we have
170 C x]t 4 [1+2
and we claim that
IS = xS,
We have
KT C S =1,
on the other hand
IS — ]X-l-l]t-‘rl g I‘Y_t_llft g I‘Y_t_l(x;; + 17;2) g xIS—t—l;; + I’;:"-:l
=x1s—t—l;; + ]‘H—l.
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If s =t + 1 we are done by Nakayama. Otherwise ¢ + 1 and we have

XD L o s Ty L o 2 T 4 [rA2) 4 st
C.XZIS_Z_ZF[ + IS+1 c...C xs—l;} + IS+1.

The claim follows again by Nakayama.
From the claim we get

L= 18 C xS L C sl = 5L
hencers*+1 = x5~ [+1, and we finally get
e = A(I° 15Ty = (xS~ T /s Yy = J(TT /1Y) = H ().
Let us finally prove that (c) implies (d). if>¢, we have
eze—p,= I-NI(n)Qﬁ(t) =e
and the conclusion follows. [J

As an easy consequence of this result, we have the following crucial corollary.

Corollary 2.2. Letj be a non-negative integethen for every: > j we have
N N n—1
H(n)> min <e, HGj)+n—j+Y_ c,-) .
i=0
Proof. If j =n there is nothing to prove. So let> j and consider the sequence
HHD<SHG+D< - <H®m).

If for somej <i <n—1we haveH (i)=H (i +1), thene= H (i) < H (n) and the conclusion

follows. Otherwisé;, ..., b,—_1 > 0 and we have

N N n—1 N n—1
Hmy=HG)+ Y (ci+b)ZH()+ Y ci+n—j.

i=j i=j

as wanted.

We can get free of the nasty term involving #e in the above inequality by proving the
following corollary. We will use throughout the notation

A= MA)T) = H(0).
Corollary 2.3. For everyn >0 we have

H(n)> min(e, n + /).
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Proof. We haveH (0) = / so that by the above corollary we get

n—1
ﬁ(n)} min (e,ﬁ(O)—l—n—i—Zci) > min(e, n + A). Il
i=0

The next result of this main section gives an upper bound for the reduction number of
the Ratliff—-Rush filtration.
In the rest of the paper we let

o:= I+ INZ/FZ)
so that
cot+ =TT+ 12 + 21 + 12/12) = )(T1/12) = H (D).
We also denote by the integer

g::Z c,~+6=/l(1~/1~2)+2c,'.

i>0 i>1

Theorem 2.4. Let (A, m) be a Cohen—Macaulay local ring of dimension one and lbé
anm-primary ideal inA. We havee — g + 1>1and

ﬁ(e—g—i—l):e.

Proof. Sincec; =0 for j >0, we can consider the least integer0 such that; = 0 for
everyj >t. _

If t =0, theng = ¢ and, in this caseg> H(1) = ¢cp + ¢ = g, S0 thate — ¢ >0 and
e—g+1l=e—0+1>1. ByCorollary 2.2 we get

e—g
H(e—g+1)=H(e—o—+1)>min<e,H(1)+e—a+1—1+Zc,->=e.
i=1

If insteadr >1, theng = Zﬁ;(l, ¢; + o with ¢;_1, b,_1 > 0. Sinceb;_1 >0, we have
H(t — 1) <e, hence, ift > 2, we can apply Corollary 2.2 with=1,n =t — 1 to get

-2
HO=Ht—D+ba+ea>HD+1-1-1+Y ¢i+b_1+c1
i=1
t—2
=c0+0'+t—2+z ci+b_1+c_1>g+1—1
i=1

The inequalityH (t) > g+ —1 holds true also if=1 because, in that cagerco+o=H (1).
Hence ift > 1, we have

e>Ht)>g+1—1



M.E. Rossi, G. Valla / Journal of Pure and Applied Algebra 201 (2005) 25-41 35

so thate — ¢ + 1>¢>1 and finally by Corollary 2.2 we get

e—g
ﬁ(e—g+1)2min(e,ﬁ(t)—i—e—g—i—l—t—i—Zci)

i=t
e—g
>min(e,g+t—1+e—g+l—t+2ci>=e,
i=t

as wanted. O

We have seen that the integeplays a central role in the above theorem. Unfortunately, it
looks like a mysterious invariant of the iddahvolving unaccessible integers. Nevertheless,
the next theorem proves that it is bounded below by nice numerical invariants of the ideal
1.

We will denote byv(J) the minimal number of generators of an iddabf a local ring
A.

Theorem 2.5. Let (A, m) be a Cohen—Macaulay local ring of dimension one and leé
anm-primary ideal inA. Then

g > maxw(l), v(I)).
Proof. Recall that
g =T/12) + Z e =MI/12) + Z HIFL T 4 [1+2),

i>1 i>1
We remark that for every>1, IIN" cImn If’:l, hence we have
MFLITE 4 [1%2) > (1L T O [FL 4 [42) = 41+ 4 /12 + [m).

We know that there exists an integ€rsuch that for every > N we havel/ = I/. Hence
fori >0 we haveli+2 = [i+2 = [ [i+1 C Im and so it is easy to see that

¢=(T/12) + 212 + Im/Im).
Now

WT/12) + 212 + T/ Tm) > AT /12 + Im) + A(12 + Tm/Tm) = o(D).
On the other hand(T/12) > A(I + 12/12)> (I + 12/12 + I'm), hence

¢ (I + 12/1m) = v(])

as desired. O

By analogy with the classical case, Jebe the least integersuch thatf (1) = e. Since
e= H](])+p] ,itis cleartha¥Fis also the leastintegesuch thap,=0. SinceH (s)= H(s) e
we haves <s.
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We will denote by
v := max(l), v(I)).
By the above theorems we have
s<e—g+1l<e—v+1

We end this section by proving a far reaching property of the powers ef-anmary
ideal I in a one-dimensional Cohen—Macaulay local ring.

Proposition 2.6. With the above notatigmwe havel* C x*A: x~¢*1, As a consequence

171 x8724 C XV 24,

Proof. We know thatf (e — g +1) =e. This impliesp; = 0 for everyj >e — g + 1 so
that75+te—8+1 = x¥1¢=¢+1, Hence, using (4), we get

xe—g—&-lls — Is+e—g+1 — [ste—g+1l — Spe—g+1,

The first assertion follows.

As for the second, we havé—1 = xe=1=5 15 € xe=1=5 (x5 A: xe—8+1),

Now, if s >e — g+ 1, thenwe gef®~1 C xe~1-sys—ete—14 =824 If s<e — g+ 1,
thene — 1 — s > g — 2 so thate® 15 A C x8~2A. This proves the second assertiori]

3. The bound for e;

In this section, we use the result on the Hilbert functiorGato get an upper bound for
the Hilbert coefficient, of 1.
We recall that we have defined for every 0 the integers

¢ = A LT 4 [172),
Further we set

o= I +12/12), g:=3 ci+a, i=xA/T)=HO)
i=0

ands the least integer such thatl-1(t) =e.

At the end of the last section, in Theorem 2.5, we provedghat. We remark now that
the integet’ can be zero, but, if this is the case, thigd /1) > 2(A/I) =e, henceH (1) =e
for everyr >0 ande; = 0. Thus, we will tacitly assume in the rest of this section fhatl.

A final remark on the integey is needed. Namely we claim that> 2, unless =m and
Alisregular. Infack >co+ 6= H(1) = A+ co+ bg, henceg >1 and ifg =1 theni =1
andbp =0. This implies &= 1=¢ so thatH (0) > 1=e¢ =1, which impliesH (0) = 1. Hence
I =mandA is regular.
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Theorem 3.1. Let (A, m) be a Cohen—Macaulay local ring of dimension one and lbé
anm-primary ideal inA. Then

e1< (;) - <g;1) —FU—-1).

Proof. We have by (5) and (2)
s—1 5—1 -1
1= p;=Y p;=e—Y H().
j=0 j=0 j=0
Since 0<j <5 — 1, we havefi(j) < e so that, by Corollary 2.3, we get

H(j)>j+ I

Hence

By Theorem 2.4 we haveé<e — g + 1. Becausg >2 we also have
s<e+g—2.

An easy computation shows that

e g—1 ~ (5+1) (e—=5—g+De—-5+g—2)
(2)—< 5 >—es+( > )— 5 =0,

hence

e1< 65 — <;J2“1> —50-1< (;) - <g51> —50-1. O

Since by Theorem 2.5 we haye> v, we can give a weaker bound fgrwhich, however,
uses more accessible invariants.

For every primary ideal of the one-dimensional Cohen—Macaulay local tingve have

e1< (;)—(”;1)—m—1>< <§>—<“;1)—z+1.

We would like to extend the inequality

as(5)-("51)-2
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to the higher-dimensional case. Unfortunately, the integﬁ) does not behave well under
reduction modulo a superficial sequence. For this reason we will extend to higher dimension
the inequality

1< (g)—(”(”z_l)—wrl ®)

which holds in the one-dimensional case by the above remark.

Theorem 3.2. Let(A, m) be a Cohen—Macaulay local ring of dimensi@and let/ be an
m-primary ideal inA. Then

e1< (;) - (v(l)z_d) XA/ + 1.

Proof. In the one-dimensional case the result follows by (8).det2, letx1, ..., x4—1
be a superficial sequence inand denote/ := I/(x1,...,x4s—1) in the one-dimensional
Cohen—Macaulay local ring /(x1, . .., x4—1). The multiplicity ande; do not change from
I to J so that, by induction, we have

e1< (;) - <”(J)2_ 1) —MA/D + 1.

The conclusion follows because we clearly have

v(J)=zv() —(d—-1). ]

Coming back to the one-dimensional case we remark that=ifi, then (8) becomes

-1
()1
In [6] we proved that equality holds if and only if
1+ (m) — Dz + 35 2
(1-2) ’

The proof there was very hard and long. We end this paper by giving a shorter proof using
the methods developed in the previous sections.

Py(2) =

Proposition 3.3. Let(A, m) be a one-dimensional Cohen—Macaulay local ring of embed-
ding dimension. If

o=()-(3)

1+ w-Dz+Y5ha
(1-2) '

then

Pa(z) =
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Proof. Itis well known (seq1]) that we always have> v and ife = v thene; = 0. Hence
we havee >v + 1. By looking at the proof of Theorem 3.1 we see immediately that

2=(2)-("2")

impliesv = g and

Ao={" e,
This implies that; = 1 andc; =0 for everyi =0, ..., e — v — 1. Hence we have
7?17:1 = mgf + 7?17:2 9)
foreveryi =0,...,e —v —1.

Sinceﬁ(l) = 2, we can find an elemente m such thatn = (x, y) + me. Using this
and (9) we easily get

m=(x, y) +me vl
By induction on; one gets for every > 1
111j = (x, y)j + xj—lme—v+l_

We claim that this impliesn/ = (x, y)/ for everyj >v. Sincej >v, we havee — v +
j=e>s + 1, hence we may apply Proposition 1.1 to get

et _ {me”“ cxemvti—(emvtD) —qpe—vti . =1l if o — 4+ 1<,

me—vtl if e—v+1>5.

It follows that

1TIj = (x, y)j _’_xj—11ne—v+l C (x, y)j + me—vHi,

By Nakayama we get the claim.
SinceH (j) > min(e, j + 1), this implies

j+1 ifvgj<e—1,

H(j):{e if j>e.

On the other hand for every> 1 we have

(x, y) L 4 x/me—vtl

’

m/txm/ = '
x(x,y)! + xime—v+l

hencem/*1/xm/ is a cyclic module generated by+! so that

/L xemd ~ A/ : pi T,
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Foreveryr>e — v + 1, H(t)=e so thatp, = 0; this implies
ITI-; — xt—e+v—ln1/g—_\;:1

for everyt >e — v + 1. Hence for every > 1 we have

y]'+1n/l—e\_—/v C me—v+i+l — yJme—v+1 - .
Thus we get a chain
XA CxA+me v C am yj+l C A.

This implies for everyj > 1

—~—
— o~

vj<e— AXA+meV/xA)=e— AmV/xmeV Y =e—p, 4
=He—v—1)=e—v.

Finally we get

e—2 v—1 e—2 e—2
e1 = Zvi=zvi+Zvi<6—1+(v—l)(e—v)+2(e—i—1)
i=0 i=0 i=v imv
e v—1
-(3)-(2")
From this it follows thatv; = e — v for i = 1,...,v — 1 and this gives the

conclusion. O
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