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Abstract

The Ratliff–Rush filtration has been shown to be a very useful tool for studying numerical invariants
of the associated graded ringG := ⊕

t �0(I
t /I t+1) of a local ring(A,m)with respect to the classical

I -adic filtration. The advantage of this approach is that the associated graded ringG̃ ofAwith respect
to the Ratliff–Rush filtration has positive depth, but unfortunatelyG̃ is not necessarily a standard
graded algebra.

In this paper, we study some numerical invariants ofG̃ whenI is anm-primary ideal of a local
Cohen–Macaulay ring and, as consequence, we prove an upper bound on the first coefficient of the
Hilbert polynomial ofGwhich extends the already known bounds.
© 2005 Elsevier B.V. All rights reserved.
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0. Introduction

The notion of Ratliff–Rush closure

Ĩ :=
⋃
n�1

(In+1 : In)
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of an idealI in a Noetherian local ringAhas been introduced in[12] where the authors show
that, if I contains a regular element, thenI is a reduction of̃I and, even more,(Ĩ )n = In

for all largen, Ĩ being the largest ideal with this property. More generally it has also been
proved in[12] that

Ĩ ⊇ Ĩ2 ⊇ · · · ⊇ Ĩ i ⊇ Ĩ i+1 ⊇ · · · ⊇ Ĩ n = In

for all largen.
Since it is clear that̃I i Ĩ j ⊆ Ĩ i+j for every i andj , the collection of ideals{Ĩ n}n∈N

is a filtration ofA which is called theRatliff–Rush filtrationinduced byI and which is a
Noetherian filtration.

The Ratliff–Rush filtration has been shown to be a very useful tool for studying numerical
invariants of the associated graded ringG := ⊕

t �0(I
t /I t+1) of A with respect to the

classicalI -adic filtration (see[3,4,7,8,10,11,13,15,16]).
For example, for all not negative integern the degreen component of the zeroth

local cohomology module ofG with respect to the idealG+ = ⊕
t �1(I

t /I t+1) can be
written as

[H 0
G+(G)]n = (Ĩ n+1 ∩ In)/In+1.

HenceG has positive depth if and only if̃In = In for all n�0.

SinceĨ p ⊇ Ĩ p+1, we can consider the abelian group

G̃ :=
⊕
p�0

(Ĩ p/Ĩ p+1)

which has a natural structure of graded algebra over its degree zero part, the local ring

G̃0 = A/Ĩ , with multiplication induced by the multiplication map̃Ip × Ĩ q → Ĩ p+q .
The ringG̃ is called the associated graded ring ofA with respect to the Ratliff–Rush

filtration induced byI . If I is m-primary, thenG̃0 is an Artinian local ring and we can
consider the Hilbert function of̃G which is by definition

H̃I (t) := �A/Ĩ (G̃t ) = �(Ĩ t /Ĩ t+1),

where we simply write�(M) for the length of theA-moduleM. This function gives useful
information on some numerical invariants related to the classical Hilbert function ofI . The
advantage is that̃G has positive depth, but unfortunatelỹG is not a standard graded algebra
because we do not necessarily haveG̃i+1 = G̃1G̃i .

Hence, the classical tools used for the computation of the Hilbert function in the standard
case, are no more available here. However, ifI is anm-primary ideal of a one-dimensional
Cohen–Macaulay local ring(A,m), we can prove in Theorem 2.1 that the Hilbert function
of G̃ is strictly increasing up to reach the multiplicitye of I , the same behaviour which the
Hilbert function ofG has in the caseG is Cohen–Macaulay. By using this result and as a
particular case of a more precise bound, we prove in Corollary 2.3 that for everyt�0

H̃I (t)� min(e, t + �(A/Ĩ )).
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This inequality should be compared with the inequality

HR(t)� min(e, t + 1)

which holds for a given one-dimensional standard graded algebraR over an Artinian local
ringR0 and where the Hilbert function ofR is defined asHR(t) := �R0(Rt ).

If R0 is a field, this last result can be found in[9] or can be achieved as a consequence
of the classical Macaulay’s theorem, while, in the caseR0 is Artinian, it follows from an
extension of Macaulay’s theorem due to Blancafort (see[2, Corollary 2.11]).

Our approach also gives a bound on the regularitys̃ of G̃ in terms of the invariants ofI .
More precisely we prove in Theorem 2.4 and 2.5 that

s̃�e − max(v(I ), v(Ĩ )) + 1,

wherev(J ) denotes the minimal number of generators ofJ .
We remark that in most of the casesv(Ĩ )�v(I ), but Example 3.6. in[14] shows that

v(I ) − v(Ĩ ) can be positive and large as you want even in a regular local ring.
In the last section, as a simple numerical consequence of the described properties of the

Hilbert functions ofG̃, we recover and extend in Theorem 3.1 a remarkable result proved
by Elias[5].

For a Cohen–Macaulay one-dimensional local ring(A,m) one has for everyn?0

�(A/mn+1) =
n∑

t=0

HG(t) = e(n + 1) − e1,

wheree is the multiplicity ofAande1 is an integer which is called the first Hilbert coefficient
of A.

In the quoted paper, by using deep methods related to the strict transform of the blowing
up ofA, Elias proved that

e1�
(
e

2

)
−
(
v − 1

2

)
wherev is the embedding dimension ofA. This bound is sharp and it can be used to give all
the possible Hilbert–Samuel polynomials for the class of one-dimensional Cohen–Macaulay
local rings with multiplicitye and embedding dimensionv.

In Theorem 3.2, as a consequence of a more general result, we improve the upper bound
for e1 proved by Elias by showing that for anm-primary ideal of a Cohen–Macaulay local
ring (A,m) one has

e1�
(
e

2

)
−
(
v(I ) − d

2

)
− �(A/I) + 1.

This result can be used to give strict constraints on the Hilbert function of anm-primary
ideal in a Cohen–Macaulay local ring, for example it says that the Hilbert series

Pm(z) = 1 + 3z − z2 + z3 + z4

1 − z

is not admissible sincee = 5, v = 4 ande1 = 8.
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The paper ends with a short proof (see Proposition 3.3) that, in the caseI is the maximal
ideal ofA, if e1 reaches its maximal value, thenA has a specified Hilbert function, a result
which was the main theorem in[6].

1. Preliminaries

Let (A,m) be a local ring of dimensiond andI anm-primary ideal inA. Let us recall a
construction due to Ratliff and Rush (see[12]). For everyn�0 we have a chain of ideals

In ⊆ In+1: I ⊆ In+2: I2 ⊆ · · · ⊆ In+k: I k ⊆ · · · .
This chain stabilizes at an ideal which we will denote by

Ĩ n :=
⋃
k�1

(In+k: I k).

Hence there is a positive integert , depending onn, such that̃In = In+k: I k for everyk� t .
It is clear that we havẽI0 = A and for every non-negative integersi andj

I i ⊆ Ĩ i , Ĩ i Ĩ j ⊆ Ĩ i+j , Ĩ i+1 ⊆ Ĩ i .

We will denote bỹG := ⊕
i�0(Ĩ

i/Ĩ i+1) the associated graded ring ofA with respect to
the Ratliff–Rush filtration and by

H̃I (t) := �A/Ĩ (G̃t ) = �(Ĩ t /Ĩ t+1)

its Hilbert function. This is the Hilbert function we refer to in the title.
Superficial elements play an important role in this paper. We recall that an elementx in

I is called superficial forI if d�1 and there exists an integerc >0 such that

(In : x) ∩ I c = In−1

for everyn> c.
It is well known that if the residue field is infinite, superficial elements always exist.

Further, ifA has positive depth, every superficial element forI is also a regular element in
A.

If x is superficial forI and a non-zero divisor, it is an easy consequence of the Artin Rees
lemma that for every integerj?0 we haveI j : x = I j−1. From this we easily getI i = Ĩ i ,
for i?0.

Finally, for everyn�0, we have

Ĩ n+1: x = Ĩ n. (1)

which implies that̃G has positive depth.
If G := ⊕

i�0(I
i/I i+1) is the associated graded ring ofA with respect to theI -adic

filtration, we havẽGi =Gi for i?0. We recall thatG is a standard graded algebra which has
not necessarily positive depth, whilẽG is not a standard graded algebra, but depthG̃>0
by (1).
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In this paper, we study some properties ofH̃I (t) and we show how these properties give
information on the Hilbert functionHI (t) of I which, as usual, is defined as

HI (t) = HG(t) = �A/I (I t /I t+1) = �(I t /I t+1).

The generating function of the numerical functionHI (t) is the power series

PI (z) =
∑
t �0

HI (t)z
t .

This series is called the Hilbert series ofI . It is well known that this series is rational and that,
even more, there exists a polynomialhI (z) with integers coefficients such thathI (1) �= 0
and

PI (z) = hI (z)

(1 − z)d
.

For everyi�0, the integers

ei(I ) := h
(i)
I (1)

i!
are called theHilbert coefficientsof I . The integere0(I )=hI (1) is themultiplicityof I and
it is simply denoted bye(I ).

It is well known that the polynomial

pI (X) :=
d∑

i=0

(−1)iei(I )

(
X + d − i

d − i

)
has the property that for everyn?0

pI (n) = �(A/In+1) =
n∑

j=0

HI (j).

Since we haveIn+1 = Ĩ n+1 for everyn big enough, we also get for everyn?0

pI (n) = �(A/Ĩ n+1) =
n∑

j=0

H̃I (j).

A well-known property we will use in the paper is the following: ifx1, . . . , xr is
a superficial sequence forI (which meansx1 is superficial forI and xi is superficial
for I/(x1, . . . , xi−1) for every 2� i�r)and we put̄I := I/(x1, . . . , xr ), then, fori=0, . . . ,
d − r, we haveei(I ) = ei(Ī ). Hence, for example, ifd = 1 andx is a superficial element
in I , thene0(I ) = e0(I/xA) = �(A/xA).

When the ringAhas dimension one, we have nice properties of the above-defined integers.
Hence, from now on, we are assuming that(A,m) is a Cohen–Macaulay local ring of
dimensiond = 1 and we will simply writee ande1 for the Hilbert coefficientse0(I ) and
e1(I ), respectively.
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Further, we letx be a superficial element of them-primary idealI and we recall that,
sinceA is Cohen–Macaulay,x is regular onA andG̃ as well.

We consider for everyi�0 the following diagram:

A ⊇ Ĩ i+1 ⊇ I i+1

∪ ∪ ∪
xA ⊇ xĨ i ⊇ xI i .

Accordingly, we set

�i := �(Ĩ i+1/xĨ i), vi := �(I i+1/xI i)

and then from the diagram we get

e = �(A/xA) = HI (i) + vi = H̃I (i) + �i . (2)

HenceHI (i) = e if and only if vi = 0, that isI i+1 = xI i , and similarlyH̃I (i) = e if and
only if �i = 0, that isĨ i+1 = xĨ i .

Let s be the integer defined by

vj >0 if i�s − 1,

vi = 0 if i�s (3)

so thats is exactly thereduction numberof I . It is well known thats�e−1 (see for example
[17, Remark 6.16]).

We haveI i+1 = xI i for everyi�s, from which we easily get by induction ont�0 and
for everyp�s,

I t+p = xt Ip. (4)

Let j be an integer,j�s, and lett be a positive integer such that̃I j = I j+t : I t ; we have

Ĩ j = I j+t : I t ⊆ I j+t : xt = xj+t−sI s : xt = xj−sI s ⊆ I j ,

so that, for everyj�s,

Ĩ j = I j , H̃I (j) = HI (j) = e, vj = �j = 0.

Since forn?0

pI (n) = e(n + 1) − e1 =
n∑

i=0

HI (i) =
n∑

i=0

H̃I (i),

by (2) we get

e1 =
n∑

i=0

vi =
s−1∑
i=0

vi
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and, similarly,

e1 =
s−1∑
i=0

�i . (5)

We want now to describe the components of the Ratliff–Rush filtration in the one-
dimensional case.

Let t�0 andj andp integers such that 0�j�s�p; if axt ∈ I j+t , then, by (4),

axt Ip−j ⊆ I t+p = xt Ip

so thata ∈ IP : Ip−j . This proves that

I j+t : xt ⊆ Ip: Ip−j (6)

for everyt�0 and 0�j�s�p.

Proposition 1.1. Let (A,m) be a Cohen–Macaulay local ring of dimension one and letI

be anm-primary ideal inAwith reduction numbers. Letp�s be an integer, then for every
j�0we have

Ĩ j =
{
Ip: xp−j = Ip: Ip−j if j�s,

I j if j�s.

Proof. We have already seen that̃I j = I j if j�s.
Now, let t be a positive integer such that

Ĩ j = I j+t : I t .

If j�s we can use (6) and (4) to get

Ĩ j = I j+t : I t ⊆ I j+t : xt ⊆ Ip: Ip−j ⊆ Ip: xp−j ⊆ Ip+s : xp−j I s

= Ip+s : Ip+s−j ⊆ Ĩ j .

The conclusion follows. �

2. The Hilbert function of G̃

In this section(A,m) is a local Cohen–Macaulay ring of dimension one,I an ideal which
is primary form, x a superficial element inI ands the reduction number ofI .

We will simply writeH(t) andH̃ (t) instead ofHI (t) andH̃I (t) for the Hilbert function
of G andG̃, respectively, ande for the multiplicity e(I ) of I .

Since by (1) we havẽI t+1: x= Ĩ t , for everyt�0 the multiplication byx gives an injective
map

0 → G̃t
x→ G̃t+1
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whose cokernel is

G̃t+1/xG̃t = Ĩ t+1/(xĨ t + Ĩ t+2).

Since we have

xĨ t + Ĩ t+2 ⊆ I Ĩ t + Ĩ t+2 ⊆ Ĩ t+1,

if we let

bt := �(I Ĩ t + Ĩ t+2/xĨ t + Ĩ t+2)

and

ct := �(Ĩ t+1/I Ĩ t + Ĩ t+2)

for everyt�0 we get

H̃ (t + 1) = H̃ (t) + ct + bt . (7)

Further, since for everyt�s we haveH̃ (t)= e, it is clear thatct = bt = 0 for everyt�s.
The next result is the main theorem of this section. We recall that ifR is a one-dimensional

Cohen–Macaulay standard graded algebra over a field, its Hilbert function is strictly increas-
ing until it reaches the multiplicity at which it stabilizes. We prove that the same property
holds for the Cohen–Macaulay graded algebraG̃, even ifG̃ is an algebra over an Artinian
local ring and it is not standard.

Theorem 2.1. Let (A,m) be a Cohen–Macaulay local ring of dimension one, let I be an
m-primary ideal inA and lett�0 be an integer. The following conditions are equivalent:

(a) H̃ (t + 1) = H̃ (t).
(b) bt = 0.
(c) H̃ (t) = e.
(d) H̃ (n) = e for everyn� t .

Proof. It is clear by (7) that (a) implies (b). Let us prove that (b) implies (c). Ift�s, then
H̃ (t) = H(t) = e. So lett + 1�s. By assumption we have

I Ĩ t ⊆ xĨ t + Ĩ t+2

and we claim that

I s = xs−t Ĩ t .

We have

xs−t Ĩ t ⊆ Ĩ s = I s,

on the other hand

I s = I s−t−1I t+1 ⊆ I s−t−1I Ĩ t ⊆ I s−t−1(xĨ t + Ĩ t+2) ⊆ xI s−t−1Ĩ t + Ĩ s+1

= xI s−t−1Ĩ t + I s+1.
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If s = t + 1 we are done by Nakayama. Otherwises > t + 1 and we have

xI s−t−1Ĩ t + I s+1 = xI s−t−2I Ĩ t + I s+1 ⊆ xI s−t−2(xĨ t + Ĩ t+2) + I s+1

⊆ x2I s−t−2Ĩ t + I s+1 ⊆ · · · ⊆ xs−t Ĩ t + I s+1.

The claim follows again by Nakayama.
From the claim we get

I s+1 = xI s ⊆ xs−t Ĩ t+1 ⊆ Ĩ s+1 = I s+1,

henceI s+1 = xs−t Ĩ t+1, and we finally get

e = �(I s/I s+1) = �(xs−t Ĩ t /xs−t Ĩ t+1) = �(Ĩ t /Ĩ t+1) = H̃ (t).

Let us finally prove that (c) implies (d). Ifn� t , we have

e�e − �n = H̃ (n)�H̃ (t) = e

and the conclusion follows.�

As an easy consequence of this result, we have the following crucial corollary.

Corollary 2.2. Let j be a non-negative integer; then for everyn�j we have

H̃ (n)� min

(
e, H̃ (j) + n − j +

n−1∑
i=0

ci

)
.

Proof. If j = n there is nothing to prove. So letn> j and consider the sequence

H̃ (j)�H̃ (j + 1)� · · · �H̃ (n).

If for somej� i�n−1 we haveH̃ (i)=H̃ (i+1), thene=H̃ (i)�H̃ (n) and the conclusion
follows. Otherwisebj , . . . , bn−1>0 and we have

H̃ (n) = H̃ (j) +
n−1∑
i=j

(ci + bi)�H̃ (j) +
n−1∑
i=j

ci + n − j,

as wanted. �

We can get free of the nasty term involving thec′
i s in the above inequality by proving the

following corollary. We will use throughout the notation

� := �(A/Ĩ ) = H̃ (0).

Corollary 2.3. For everyn�0we have

H̃ (n)� min(e, n + �).
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Proof. We haveH̃ (0) = � so that by the above corollary we get

H̃ (n)� min

(
e, H̃ (0) + n +

n−1∑
i=0

ci

)
� min(e, n + �). �

The next result of this main section gives an upper bound for the reduction number of
the Ratliff–Rush filtration.

In the rest of the paper we let

� := �(I + Ĩ2/Ĩ2)

so that

c0 + � = �(Ĩ /I + Ĩ2) + �(I + Ĩ2/Ĩ2) = �(Ĩ /Ĩ2) = H̃ (1).

We also denote byg the integer

g :=
∑
i�0

ci + � = �(Ĩ /Ĩ2) +
∑
i�1

ci .

Theorem 2.4. Let (A,m) be a Cohen–Macaulay local ring of dimension one and letI be
anm-primary ideal inA.We havee − g + 1�1 and

H̃ (e − g + 1) = e.

Proof. Sincecj = 0 for j?0, we can consider the least integert�0 such thatcj = 0 for
everyj� t .

If t = 0, theng = � and, in this case,e�H̃ (1) = c0 + � = �, so thate − ��0 and
e − g + 1 = e − � + 1�1. By Corollary 2.2 we get

H̃ (e − g + 1) = H̃ (e − � + 1)� min

(
e, H̃ (1) + e − � + 1 − 1 +

e−g∑
i=1

ci

)
= e.

If instead t�1, theng = ∑t−1
i=0 ci + � with ct−1, bt−1>0. Sincebt−1>0, we have

H̃ (t − 1)< e, hence, ift�2, we can apply Corollary 2.2 withj = 1, n = t − 1 to get

H̃ (t) = H̃ (t − 1) + bt−1 + ct−1�H̃ (1) + t − 1 − 1 +
t−2∑
i=1

ci + bt−1 + ct−1

= c0 + � + t − 2 +
t−2∑
i=1

ci + bt−1 + ct−1�g + t − 1.

The inequalityH̃ (t)�g+t−1 holds true also ift=1 because, in that case,g=c0+�=H̃ (1).
Hence ift�1, we have

e�H̃ (t)�g + t − 1
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so thate − g + 1� t�1 and finally by Corollary 2.2 we get

H̃ (e − g + 1)� min

(
e, H̃ (t) + e − g + 1 − t +

e−g∑
i=t

ci

)

� min

(
e, g + t − 1 + e − g + 1 − t +

e−g∑
i=t

ci

)
= e,

as wanted. �

We have seen that the integerg plays a central role in the above theorem. Unfortunately, it
looks like a mysterious invariant of the idealI involving unaccessible integers. Nevertheless,
the next theorem proves that it is bounded below by nice numerical invariants of the ideal
I .

We will denote byv(J ) the minimal number of generators of an idealJ of a local ring
A.

Theorem 2.5. Let (A,m) be a Cohen–Macaulay local ring of dimension one and letI be
anm-primary ideal inA. Then

g� max(v(Ĩ ), v(I )).

Proof. Recall that

g = �(Ĩ /Ĩ2) +
∑
i�1

ci = �(Ĩ /Ĩ2) +
∑
i�1

�(Ĩ i+1/I Ĩ i + Ĩ i+2).

We remark that for everyi�1, I Ĩ i ⊆ Im ∩ Ĩ i+1, hence we have

�(Ĩ i+1/I Ĩ i + Ĩ i+2)��(Ĩ i+1/Im ∩ Ĩ i+1 + Ĩ i+2) = �(Ĩ i+1 + Im/Ĩ i+2 + Im).

We know that there exists an integerN such that for everyj >N we haveĨ j = I j . Hence
for i?0 we haveĨ i+2 = I i+2 = I Ĩ i+1 ⊆ Im and so it is easy to see that

g��(Ĩ /Ĩ2) + �(Ĩ2 + Im/Im).

Now

�(Ĩ /Ĩ2) + �(Ĩ2 + Im/Im)��(Ĩ /Ĩ2 + Im) + �(Ĩ2 + Im/Im)�v(Ĩ ).

On the other hand�(Ĩ /Ĩ2)��(I + Ĩ2/Ĩ2)��(I + Ĩ2/Ĩ2 + Im), hence

g��(I + Ĩ2/Im)�v(I )

as desired. �

By analogy with the classical case, lets̃ be the least integert such thatH̃ (t) = e. Since
e=H̃I (j)+�j , it is clear that̃s is also the least integert such that�t=0. SinceH(s)=H̃ (s)=e

we havẽs�s.
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We will denote by

v := max(v(Ĩ ), v(I )).

By the above theorems we have

s̃�e − g + 1�e − v + 1.

We end this section by proving a far reaching property of the powers of anm-primary
idealI in a one-dimensional Cohen–Macaulay local ring.

Proposition 2.6.With the above notation, we haveI s ⊆ xsA: xe−g+1. As a consequence

I e−1 ⊆ xg−2A ⊆ xv−2A.

Proof. We know thatH̃ (e − g + 1) = e. This implies�j = 0 for everyj�e − g + 1 so

that ˜I s+e−g+1 = xs Ĩ e−g+1. Hence, using (4), we get

xe−g+1I s = I s+e−g+1 = ˜I s+e−g+1 = xs Ĩ e−g+1.

The first assertion follows.
As for the second, we haveI e−1 = xe−1−sI s ⊆ xe−1−s(xsA: xe−g+1).
Now, if s�e− g+ 1, then we getI e−1 ⊆ xe−1−sxs−e+g−1A= xg−2A. If s�e− g+ 1,

thene − 1 − s�g − 2 so thatxe−1−sA ⊆ xg−2A. This proves the second assertion.�

3. The bound for e1

In this section, we use the result on the Hilbert function ofG̃ to get an upper bound for
the Hilbert coefficiente1 of I .

We recall that we have defined for everyt�0 the integers

ct := �(Ĩ t+1/I Ĩ t + Ĩ t+2).

Further we set

� := �(I + Ĩ2/Ĩ2), g :=
∑
i�0

ci + �, � := �(A/Ĩ ) = H̃ (0)

and̃s the least integert such thatH̃ (t) = e.
At the end of the last section, in Theorem 2.5, we proved thatg�v. We remark now that

the integer̃s can be zero, but, if this is the case, then�(A/I)��(A/Ĩ )= e, henceH(t)= e

for everyt�0 ande1 = 0. Thus, we will tacitly assume in the rest of this section thats̃�1.
A final remark on the integerg is needed. Namely we claim thatg�2, unlessI =m and

A is regular. In factg�c0 + � = H̃ (1)= � + c0 + b0, henceg�1 and ifg = 1 then� = 1
andb0 =0. This implies 1=�= e so thatH(0)��= e=1, which impliesH(0)=1. Hence
I =m andA is regular.
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Theorem 3.1. Let (A,m) be a Cohen–Macaulay local ring of dimension one and letI be
anm-primary ideal inA. Then

e1�
(
e

2

)
−
(
g − 1

2

)
− s̃(� − 1).

Proof. We have by (5) and (2)

e1 =
s−1∑
j=0

�j =
s̃−1∑
j=0

�j = ẽs −
s̃−1∑
j=0

H̃ (j).

Since 0�j� s̃ − 1, we haveH̃ (j)< e so that, by Corollary 2.3, we get

H̃ (j)�j + �.

Hence

e1 = ẽs −
s̃−1∑
j=0

H̃ (j)� ẽs − (1 + 2 + · · · + s̃ − 1) − s̃�

= ẽs −
(
s̃ + 1

2

)
− s̃(� − 1).

By Theorem 2.4 we havẽs�e − g + 1. Becauseg�2 we also have

s̃�e + g − 2.

An easy computation shows that(
e

2

)
−
(
g − 1

2

)
− ẽs +

(
s̃ + 1

2

)
= (e − s̃ − g + 1)(e − s̃ + g − 2)

2
�0,

hence

e1� ẽs −
(
s̃ + 1

2

)
− s̃(� − 1)�

(
e

2

)
−
(
g − 1

2

)
− s̃(� − 1). �

Since by Theorem 2.5 we haveg�v, we can give a weaker bound fore1 which, however,
uses more accessible invariants.

For every primary idealI of the one-dimensional Cohen–Macaulay local ringA, we have

e1�
(
e

2

)
−
(
v − 1

2

)
− s̃(� − 1)�

(
e

2

)
−
(
v − 1

2

)
− � + 1.

We would like to extend the inequality

e1�
(
e

2

)
−
(
v − 1

2

)
− � + 1
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to the higher-dimensional case. Unfortunately, the integerv(Ĩ ) does not behave well under
reduction modulo a superficial sequence. For this reason we will extend to higher dimension
the inequality

e1�
(
e

2

)
−
(
v(I ) − 1

2

)
− � + 1 (8)

which holds in the one-dimensional case by the above remark.

Theorem 3.2. Let(A,m) be a Cohen–Macaulay local ring of dimensiond and letI be an
m-primary ideal inA. Then

e1�
(
e

2

)
−
(
v(I ) − d

2

)
− �(A/I) + 1.

Proof. In the one-dimensional case the result follows by (8). Letd�2, let x1, . . . , xd−1
be a superficial sequence inI and denoteJ := I/(x1, . . . , xd−1) in the one-dimensional
Cohen–Macaulay local ringA/(x1, . . . , xd−1). The multiplicity ande1 do not change from
I to J so that, by induction, we have

e1�
(
e

2

)
−
(
v(J ) − 1

2

)
− �(A/I) + 1.

The conclusion follows because we clearly have

v(J )�v(I ) − (d − 1). �

Coming back to the one-dimensional case we remark that, ifI =m, then (8) becomes

e1�
(
e

2

)
−
(
v(m) − 1

2

)
.

In [6] we proved that equality holds if and only if

PA(z) = 1 + (v(m) − 1)z +∑e−1
j=v(m) z

j

(1 − z)
.

The proof there was very hard and long. We end this paper by giving a shorter proof using
the methods developed in the previous sections.

Proposition 3.3. Let (A,m) be a one-dimensional Cohen–Macaulay local ring of embed-
ding dimensionv. If

e1 =
(
e

2

)
−
(
v − 1

2

)
then

PA(z) = 1 + (v − 1)z +∑e−1
j=v z

j

(1 − z)
.
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Proof. It is well known (see[1]) that we always havee�v and ife= v thene1 = 0. Hence
we havee�v + 1. By looking at the proof of Theorem 3.1 we see immediately that

e1 =
(
e

2

)
−
(
v − 1

2

)
impliesv = g and

H̃ (t) =
{
t + 1 if t�e − v,

e if t�e − v + 1.

This implies thatbi = 1 andci = 0 for everyi = 0, . . . , e − v − 1. Hence we have

m̃i+1 =mm̃i + m̃i+2 (9)

for everyi = 0, . . . , e − v − 1.
SinceH̃ (1) = 2, we can find an elementy ∈ m such thatm = (x, y) + m̃2. Using this

and (9) we easily get

m= (x, y) + m̃e−v+1.

By induction onj one gets for everyj�1

mj = (x, y)j + xj−1m̃e−v+1.

We claim that this impliesmj = (x, y)j for everyj�v. Sincej�v, we havee − v +
j�e�s + 1, hence we may apply Proposition 1.1 to get

m̃e−v+1 =
{
me−v+j : xe−v+j−(e−v+1) =me−v+j : xj−1 if e − v + 1�s,

me−v+1 if e − v + 1�s.

It follows that

mj = (x, y)j + xj−1m̃e−v+1 ⊆ (x, y)j + m̃e−v+j .

By Nakayama we get the claim.
SinceH(j)� min(e, j + 1), this implies

H(j) =
{
j + 1 if v�j�e − 1,
e if j�e.

On the other hand for everyj�1 we have

mj+1/xmj = (x, y)j+1 + xj m̃e−v+1

x(x, y)j + xj m̃e−v+1
,

hencemj+1/xmj is a cyclic module generated byyj+1 so that

mj+1/xmj � A/(xmj : yj+1).
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For everyt�e − v + 1, H̃ (t) = e so that�t = 0; this implies

m̃t = xt−e+v−1m̃e−v+1

for everyt�e − v + 1. Hence for everyj�1 we have

yj+1m̃e−v ⊆ ˜me−v+j+1 = xj m̃e−v+1 ⊆ xmj .

Thus we get a chain

xA ⊆ xA + m̃e−v ⊆ xmj : yj+1 ⊆ A.

This implies for everyj�1

vj �e − �(xA + m̃e−v/xA) = e − �(m̃e−v/xm̃e−v−1) = e − �e−v−1

= H̃ (e − v − 1) = e − v.

Finally we get

e1 =
e−2∑
i=0

vi =
v−1∑
i=0

vi +
e−2∑
i=v

vi �e − 1 + (v − 1)(e − v) +
e−2∑
i=v

(e − i − 1)

=
(
e

2

)
−
(
v − 1

2

)
.

From this it follows thatvi = e − v for i = 1, . . . , v − 1 and this gives the
conclusion. �
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