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Abstract

Given a local Cohen–Macaulay ring (R,m), we study the interplay between the integral closedness
—or even the normality—of anm-primary R-ideal I and conditions on the Hilbert coefficients of I .
We relate these properties to the depth of the associated graded ring of I .
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let I be anm-primary ideal of a local Cohen–Macaulay ring (R,m) of dimension d > 0
and with infinite residue field. The Hilbert–Samuel function of I is the numerical function
that measures the growth of the length ofR/In for all n!1. For n?0 this function !(R/In)
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is a polynomial in n of degree d

!(R/In) = e0

(
n + d − 1

d

)
− e1

(
n + d − 2

d − 1

)
+ · · · + (−1)ded

and e0, e1, . . . , ed are called the Hilbert coefficients of I .
It is well known that e0 = !(R/J ) for any minimal reduction J of I and that the integral

closure Ī of I can also be characterized as the largest ideal containing I with the same
multiplicity e0 [21]. More generally, Ratliff and Rush introduced the ideal Ĩ , which turns
out to be the largest ideal containing I with the same Hilbert coefficients as I [24]. In
particular one has the inclusions I ⊆ Ĩ ⊆ Ī , where equalities hold if I is integrally closed.
A very useful technique—that we also exploit—is to consider the generating functions of
!(R/Ĩ n) or !(R/In) instead of the one of !(R/In): They clearly coincide if I is normal
(that is, all powers of I are integrally closed).
Little is known about the higherHilbert coefficients of I , unlesswe are in presence of good

depth properties of the associated graded ring grI (R)=⊕
n!0 In/In+1 of I . For example,

if the depth of grI (R) is at least d − 1 then all the Hilbert coefficients of I are positive [18].
Conversely, numerical information on the ei’s has been used to obtain information on the
depth of grI (R). For instance, Northcott showed that the bound !(R/I)!e0 − e1 always
holds [20]. Later Huneke [14] and Ooishi [22] showed that the equality !(R/I) = e0 − e1
holds if and only if I 2 = JI. In particular, grI (R) is Cohen–Macaulay.
Translating information from the Hilbert coefficients of I into good depth properties

of grI (R) has also been a constant theme in the work of Sally [28–34]. The most recent
results along this line of investigation can be found in [3,5–7,10,13,17,23,25,27,38–40].
The general philosophy is that an ‘extremal’ behavior of some of the ei’s controls the depth
of the associated graded ring of I , or of some of its powers, and at the same time determines
its Hilbert–Samuel function. We remark that these results are somewhat unexpected since
the Hilbert coefficients give asymptotic information on the Hilbert–Samuel function.
It is clear that e0 and e1 are positive integers. As far as the higher Hilbert coefficients

of I are concerned, it is a famous result of Narita that e2!0 [19]. In this case the minimal
value for e2 does not imply the Cohen–Macaulayness of grI (R). In the very same paper, he
also showed that if d = 2, then e2 = 0 if and only if In has reduction number one for some
n? 0. In particular, grIn(R) is Cohen–Macaulay. Examples show that the result cannot be
extended to higher dimension. In [3] an elementary proof of the positivity of e2 has been
given by using the structure of the so-called Sally module SJ (I ).
Unfortunately, the well-behavior of the Hilbert coefficients stops with e2. Indeed, in [19]

Narita showed that it is possible for e3 to be negative. However, a remarkable result of Itoh
says that if I is a normal ideal then e3!0 [16]. A recent proof of this result was given by
Huckaba andHuneke [12]. In general, it seems that the integral closedness (or the normality)
of the ideal I yields non-trivial consequences on theHilbert coefficients of I and, ultimately,
on the depth of grI (R).
To be more specific, our goal is to characterize a sufficiently high depth of the associated

graded ring of I in terms of conditions on the first Hilbert coefficients, and in particular on
e2 and e3. Our approach is to study the interplay between the integral closedness (or the
normality) of the ideal I and (upper or lower) bounds on the Hilbert coefficients of I and
relate it to the depth of the corresponding associated graded ring of I . Among our tools,
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we make systematic use of the standard technique of modding out a superficial sequence
in order to decrease the dimension of the ring. This explains why some of our results are
formulated for rings of small dimension.
We first establish in Theorem 3.1 a general upper bound on the second Hilbert coefficient

which is reminiscent of a similar bound on the first Hilbert coefficient due to Huckaba and
Marley [13] and Vaz Pinto [39]. Namely, we show that e2"

∑
n!1 n!(In+1/JIn), for any

minimal reduction J of I . Furthermore, the upper bound is attained if and only if depth
grI (R)!d − 1. Next, we characterize in Theorem 3.3 the depth of the associated graded
ring of ideals whose second Hilbert coefficient has value ‘close enough’ to the upper bound
established in Theorem 3.1. That is, the condition e2!

∑
n!1 n!(In+1/JIn)−2 implies that

depth grI (R)!d − 2. Noteworthy is the fact that the same conclusion holds whenever I is
an integrally closed ideal satisfying the less restrictive bound e2!

∑
n!1 n!(In+1/JIn)−4.

Still in the case of integrally closed idealswe improveNarita’s positivity result on e2. Indeed,
in Theorem 3.6 we show that for any integrally closed ideal I one has e2!!(I 2/JI) for
any minimal reduction J of I . The interesting fact is that equality holds in the previous
formula if and only if I 3 = JI2 if and only if !(R/I) = e0 − e1 + !(I 2/JI). In this case
grI (R) is Cohen–Macaulay and theHilbert–Samuel function is determined. This result fully
generalizes the ones of Itoh [17], who handled the cases e2"2.
In [34] Sally proved that if d = 2 then e2!e1 − e0 + !(R/Ĩ ). Starting from Sally’s

inequality, Itoh proved that if d !1 and I is integrally closed then e2!e1 − e0 + !(R/I)

[17]. It was not known which conditions are forced on the ideal I if the equality e2 = e1 −
e0 + !(R/I) holds whenever I is integrally closed. In the particular case of the maximal
idealm of R, Valla had conjectured in [37] that the reduction number ofm is at most two,
which in turn would imply the Cohen–Macaulayness of grm(R).A recent example ofWang
shows, though, that Valla’s conjecture is false in general. In Theorem 3.12 we proveValla’s
conjecture for normal ideals. In particular, if I is normal and !(R/I) = e0 − e1 + e2 then
e2 = !(I 2/JI) and I 3 = JI2 for some minimal reduction J of I . In particular, grI (R) is
Cohen–Macaulay and the Hilbert function is known. The key to the result is a theorem of
Itoh on the normalized Hilbert coefficients of ideals generated by a system of parameters.
As far as the third Hilbert coefficient of I is concerned, our first result in Section 4 is

a generalization of Itoh’s result on the positivity of e3 in case d = 3. The thrust of our
calculation is to replace the normality assumption on I with the weaker requirement of
the integral closedness of In for some large n (see Theorem 4.1). The proof reduces to
comparing the Hilbert coefficients of I and those of a large power of I . Combining this
result with Theorem 3.12 we are able to characterize when e3=0 for asymptotically normal
ideals. If this is the case, then for n? 0 we have that In has reduction number at most two,
which in turn yields that grIn(R) is Cohen–Macaulay. This result is reminiscent of Narita’s
characterization of e2 = 0 when d = 2.

2. Preliminaries

Thus far we have described the Hilbert–Samuel function associated with the I -adic filtra-
tionF= {In}n!0. It is important to observe that the theory also applies to other filtrations
of ideals of R: The so-called Hilbert filtrations (see [13,8]). Let (R,m) be a local ring of
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dimension d . A filtration of R-idealsF = {Fn}n!0 is called an Hilbert filtration if F1 is
an m-primary ideal and the Rees algebra R(F) is a finite R(F1)-module. As in the case
of the I -adic filtration we can define the Hilbert–Samuel function ofF to be !(R/Fn). For
n?0 one also has that !(R/Fn) is a polynomial in n of degree d

!(R/Fn) =
d∑

j=0
(−1)j ej (F)

(
n + d − j − 1

d − j

)
,

where the ej (F)’s are called the Hilbert coefficients ofF.
Another related object is the Hilbert series ofF, which is defined as

PF(t) =
∑

n!1
!(Fn−1/Fn)t

n−1.

The numerical function !(Fn−1/Fn) is called Hilbert function with respect to the filtration
F. It is well known that there exists a unique polynomial fF(t) ∈ Z[t], called the h-
polynomial ofF, with degree s(F), fF(1) %= 0 and such that

PF(t) = fF(t)

(1− t)d
.

We recall that ej (F)=f
(j)
F (1)/j !, where f

(j)
F (t) denotes the j th formal derivative of fF(t),

and we also point out that it is useful to consider the Hilbert coefficients ej (F) even when
j > d. Finally, we denote by grF(R) = ⊕

n!0 Fn/Fn+1 the associated graded ring with
respect toF.
If I is anm-primary ideal andF= {In}n!0 is the usual I -adic filtration we write ej (I )

instead of ej (F) or simply ej if there is not confusion on the ideal under consideration and
we denote by grI (R) the corresponding associated graded ring. Of particular interest is the
filtrationF={In}n!0 given by the integral closure of the powers of anm-primary ideal I of
an analytically unramified local ring. It is customary to denote with ē0(I ), ē1(I ), . . . , ēd (I )

the Hilbert coefficients with respect to this filtrationF.We also recall that if J is a reduction
of I (that is J ⊂ I and In+1 = JIn for some integer n), then J n = In for every n because
J n is a reduction of In. It follows that if I is normal then ej (I ) = ēj (J ). Another crucial
example is the Ratliff–Rush filtration of the powers of anm-primary ideal I of a local ring.
We recall that [24]

Ĩ n =
⋃

k !1
I k+n : I k .

If I contains a non-zero divisor then Ĩ n = In for n?0 and henceF={Ĩ n}n!0 is an Hilbert
filtration. In particular ej (F) = ej (I ) for j = 0, . . . , d.
The advantage of considering grF(R)with the above filtrations rather than grI (R) is that

they are graded rings with positive depth. Unfortunately, they are not standard algebras.
A classical technique for studying the Hilbert coefficients of any filtrationF is to reduce

the dimension of the ring by modding out a superficial sequence for F. We recall that
an element x ∈ F1 is called a superficial element for F if there exists an integer c such
that (Fn : x) ∩ Fc = Fn−1 for all n > c. A sequence x1, . . . , xk is then called a superficial
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sequence for F if x1 is superficial for F and xi is superficial for the quotient filtration
F/(x1, . . . , xi−1)={Fn+(x1, . . . , xi−1)/(x1, . . . , xi−1)} for 2" i"k. Now, if gradeF1!k

and x1, . . . , xk is a superficial sequence forF it can be showed that ej (F) = ej (F), for
0"j "d − k, where F = F/(x1, . . . , xk) = {Fn + (x1, . . . , xk)/(x1, . . . , xk)} (see for
instance [13]).

3. Results on the second Hilbert coefficient

Our first result is an upper bound on e2 which is reminiscent of the one on e1 established
by Huckaba and Marley [13, 4.7] and by Vaz Pinto [39, 1.1], which characterizes when the
depth of the associated graded ring is at least d − 1.

Theorem 3.1. Let (R,m) be a local Cohen–Macaulay ring of dimension d !1 and let I be
anm-primary ideal of R. Then

e2"
∑

n!1
n!(In+1/JIn)

for any minimal reduction J of I. Furthermore, equality holds for some minimal reduction
J of I if and only if depth grI (R)!d − 1.

Proof. If d = 1 the result follows from [8, 1.9]. Let us assume then d !2. Let J be a
minimal reduction of I and let x1, . . . , xd−1 be a superficial sequence for I contained in
J . Let H and K denote the ideals I/(x1, . . . , xd−2) and I/(x1, . . . , xd−1), respectively. By
Elias et al. [6, 1.2(a),(b)] and Guerrieri and Rossi [8, 1.9] we get e2(I ) = e2(H)"e2(K) =∑

n!1 n!(Kn+1/JKn)"∑
n!1 n!(In+1/JIn), which establishes the desired inequality.

If depth grI (R)!d − 1 the equality follows from [8, 1.9]. Conversely, if equality holds
one has that e2(H) = e2(K), which in turn forces depth grH (R/(x1, . . . , xd−2))!1 by
Elias et al. [6, 1.2(c)]. Hence by Huckaba and Marley [13, 2.2] we conclude that depth
grI (R)!d − 1. #

The following example, due to Huckaba and Huneke [12, 3.12], provides an instance in
which the bound in Theorem 3.1 is attained. This example will also play a role in the next
section.

Example 3.2. Let k be a field of characteristic %= 3 and set R = k!X, Y, Z", whereX, Y, Z

are indeterminates. LetN=(X4, X(Y 3+Z3), Y (Y 3+Z3), Z(Y 3+Z3)) and set I=N+m5,
wherem is themaximal ideal ofR. The ideal I is a normalm-primary idealwhose associated
graded ring grI (R) has depth d − 1, where d(=3) is the dimension of R. We checked that

PI (t) = 31+ 43t + t2 + t3

(1− t)3
,

thus yielding e2 = 4. Moreover, we also checked that !(I 2/JI) = 2, !(I 3/JI2) = 1 and
I 4 = JI3, for any minimal reduction J of I . Hence the bound in Theorem 3.1 is sharp.
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Since I is, in particular, integrally closed we have that J ∩ I 2 = JI by Huneke [14, 2.1]
and Itoh [15, 1]. Thus depth grI (R)!2 also follows from the main result of [3,5,11,26].

Theorem 3.3 below deals with the depth property of the associated graded ring of ideals
whose second Hilbert coefficient is close enough to the upper bound established in Theo-
rem 3.1.

Theorem 3.3. Let (R,m) be a local Cohen–Macaulay ring of dimension d !1. Let I be an
m-primary ideal and let J denote a minimal reduction of I. If any of the following conditions
holds:

(a) e2!
∑

n!1 n!(In+1/JIn) − 2;

(b) I is an integrally closed ideal and e2!
∑

n!1 n!(In+1/JIn) − 4,

then depth grI (R)!d − 2.

Proof. Throughout the proof we use the same notation as in the proof of Theorem 3.1. By
Theorem 3.1 we may assume that depth grI (R) < d −1, which implies that e2(H) < e2(K)

and
∑

n!1
n!(Kn+1/JKn) <

∑

n!1
n!(Hn+1/JHn)"

∑

n!1
n!(In+1/JIn).

Indeed e2(H) = e2(K) implies depth grH (R/(x1, . . . , xd−2)) > 0 by Elias et al. [6, 1.2(c)]
and hence depth grI (R)!d − 1 by Huckaba and Marley [13, 2.2]. If

∑

n!1
n!(Kn+1/JKn) =

∑

n!1
n!(Hn+1/JHn),

then !(Kn+1/JKn) = !(Hn+1/JHn) for every n so that

e1(H) = e1(K) =
∑

n!0
!(Kn+1/JKn) =

∑

n!0
!(Hn+1/JHn),

hence again depth grH (R/(x1, . . . , xd−2)) > 0 by Huckaba and Marley [13, 4.7(b)] and, as
before, depth grI (R)!d − 1.
Let us assume that (a) holds. We have

∑

n!1
n!(In+1/JIn) − 2"e2(I ) = e2(H)

"e2(K) − 1

=
∑

n!1
n!(Kn+1/JKn) − 1

"
∑

n!1
n!(In+1/JIn) − 2.
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Hence we obtain that
∑

n!1
n!(Kn+1/JKn) =

∑

n!1
n!(In+1/JIn) − 1,

which implies that !(K2/JK)=!(I 2/JI)−1 and !(Kn+1/JKn)=!(In+1/JIn) for all n!2.
Hence

e1(I ) = e1(K) =
∑

n!0
!(Kn+1/JKn) =

∑

n!0
!(In+1/JIn) − 1,

from which it follows that depth grI (R)!d − 2 by Polini [23] and Wang [40].
Let us assume now that (b) holds. Since I is integrally closed I 2 ∩ J = JI by Huneke

[14, 4.7(b)] and Itoh [15, 1], hence !(H 2/JH) = !(K2/JK) = !(I 2/JI). We claim that our
assumption on e2 forces !(Hn+1/JHn)=!(In+1/JIn) for alln!0 and∑

n!0 !(Kn+1/JKn)

= ∑
n!0 !(In+1/JIn) − 1. Thus we conclude, as before, that

e1(I ) =
∑

n!0
!(In+1/JIn) − 1,

which forces depth grI (R)!d − 2.
Notice that if !(Hn+1/JHn) %= !(In+1/JIn) for some n(!2) then

∑

n!1
n!(Hn+1/JHn) − 2"

∑

n!1
n!(In+1/JIn) − 4

"e2(I ) = e2(H)

"e2(K) − 1

=
∑

n!1
n!(Kn+1/JKn) − 1

= !(H 2/JH) +
∑

n!2
n!(Kn+1/JKn) − 1

"!(H 2/JH) +
∑

n!2
n!(Hn+1/JHn) − 3

which is impossible. Hence we may assume that !(In+1/JIn) = !(Hn+1/JHn) for all n.
Since e2(H)"e2(K) − 1, we have to consider two cases.
If e2(H)=e2(K)−1, byElias et al. [6, 1.2(b)]wehave that∑n!1 !((Hn+1 : xd−1)/Hn)=

1. This implies (by using, for example, the exact sequence in the proof of 1.7 [25]) that∑
n!1 !(Hn+1/JHn) = ∑

n!1 !(Kn+1/JKn) + 1. This proves our claim.
If e2(H)"e2(K) − 2, then we have

e2(H)"e2(K) − 2

=
∑

n!1
n!(Kn+1/JKn) − 2

"
∑

n!1
n!(Hn+1/JHn) − 4,
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which implies
∑

n!2 n!(Kn+1/JKn) = ∑
n!2 n!(Hn+1/JHn) − 2. This proves again our

claim. #

Remark 3.4. From the proof of Theorem 3.3 we conclude that e2(I ) can never be equal
to

∑
n!1 n!(In+1/J In) − 1. Moreover, if I is an integrally closed ideal we also conclude

that it can be neither
∑

n!1 n!(In+1/JIn) − 1 nor
∑

n!1 n!(In+1/JIn) − 2.

We illustrate Theorem 3.3 with the following example which has been slightly modified
from one suggested to us by Wang.

Example 3.5. Let R be the three-dimensional local Cohen–Macaulay ring

k!X, Y, Z, U, V, W"/(Z2, ZU, ZV , UV , YZ − U3, XZ − V 3),

with k a field and X, Y, Z, U, V, W indeterminates. Let x, y, z, u, v, w denote the corre-
sponding images ofX, Y, Z, U, V, W inR. One has that the associated graded ring grm(R)

ofm= (x, y, z, u, v, w) has depth d − 2, where d(=3) is the dimension of R. Indeed, we
checked that

Pm(t) = 1+ 3t + 3t3 − t4

(1− t)3
,

so that e2=3.Moreover!(m2/Jm)=2, !(m3/Jm2)=2 andm4=Jm3,whereJ=(x, y, w).
Thus Theorem 3.3 applies.

Next, we present an improvement of Narita’s positivity result on e2, which holds for
any integrally closed ideal. We give a more concrete lower bound and we characterize the
integrally closed ideals for which the minimal value of e2 is attained.

Theorem 3.6. Let (R,m) be a local Cohen–Macaulay ring of dimension d !1. Let I be an
m-primary integrally closed ideal. Then

e2!!(I 2/JI),

where J is any minimal reduction of I.
In addition, the following conditions are equivalent:

(a) e2 = !(I 2/JI);
(b) I 3 = JI2;
(c) !(R/I) = e0 − e1 + !(I 2/JI).

Moreover, if anyof the previous equivalent conditions holds thengrI (R) isCohen–Macaulay
and

PI (t) = !(R/I) + (e0 − !(R/I) − !(I 2/JI))t + !(I 2/JI)t2

(1− t)d
.
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Proof. Let J be a minimal reduction of I . By Huckaba and Marley [13, 4.7(a)] we have the
inequality

e1!
∑

n!0
!(In+1/J ∩ In) = e0 − !(R/I) +

∑

n!1
!(In+1/J ∩ In).

Since I is integrally closed, by Itoh [17, 12] we also have that e2!e1 − e0 + !(R/I). If we
now take into account the above inequality on e1 we conclude that

e2!
∑

n!1
!(In+1/J ∩ In).

On the other hand, I being integrally closed implies that J ∩ I 2= JI by Huneke [14, 4.7(b)]
and Itoh [15, 1]. Hence we have that

e2!!(I 2/JI) +
∑

n!2
!(In+1/J ∩ In+1)!!(I 2/JI),

which is the desired inequality.
Let us prove the equivalences. If e2 = !(I 2/JI), then for every n!2 we have that

!(In+1/J ∩ In+1) = 0 and e1 = ∑
n!0 !(In+1/J ∩ In) = e0 − !(R/I) + !(I 2/JI).

This proves (c). If (c) holds, by Huckaba and Marley [13, 4.7(a)] we have that grI (R)

is Cohen–Macaulay. In particular, we obtain that J ∩ In+1 = JIn for every n. Hence
In+1=J ∩ In+1= JIn for n!2. This yields (b). Suppose now that (b) holds. Then we have
that

∑
n!2 n!(In+1/JIn)=0.NowTheorem3.1 also gives us the upper bound e2"!(I 2/JI),

so that (a) follows.
As far as the Hilbert series is concerned, since grI (R) is Cohen–Macaulay it follows that

PI (t)=PI/J (t)/(1− t)d . In particular,PI/J (t) is a polynomial of degree 2 because I 3 ⊆ J .
If we write PI/J (t) = h0 + h1t + h2t2, then we necessarily conclude that h0 = !(R/I) and
h2 = e2 = !(I 2/JI). #

Remark 3.7. We observe that the lower bound on e2 given in Theorem 3.6 is well de-
fined, as !(I 2/JI) is always independent of the minimal reduction J of I [36]. Also, Theo-
rem 3.6 recovers previous results by Itoh, who treated the cases in which e2 = 0, 1, 2: In
such instances grI (R) always turns out to be Cohen–Macaulay [17, 5,6,7]. In addition to
fully treating the general case, we also describe the Hilbert series of I .
We point out that if e2 = 3 then grI (R) is not necessarily Cohen–Macaulay even if I is

the maximal ideal of a local Cohen–Macaulay ring (see Example 3.10).
Finally, we observe that in Theorem 3.6 the assumption on the ideal I being ‘integrally

closed’ cannot be weakened. The following example shows that e2 = 0 does not imply the
Cohen–Macaulayness of grI (R).

Example 3.8. Let R be the three-dimensional regular local ring k!X, Y, Z", with k a field
andX, Y, Z indeterminates.The ideal I=(X2−Y 2, Y 2−Z2, XY , XZ, YZ) is not integrally
closed and

PI (t) = 5+ 6t2 − 4t3 + t4

(1− t)3
.
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In particular, e2 = 0 and grI (R) has depth zero. In fact, computing PI/(XY)(t) we can see
that XY is a superficial element for I whose initial form is a zero-divisor in grI (R).

By using the techniques of this paper, we can also give here a short proof of a result
of Narita who characterized e2 = 0 for any m-primary ideal of a two-dimensional local
Cohen–Macaulay ring.

Proposition 3.9. Let (R,m) be a local Cohen–Macaulay ring of dimension two and let I
be an m-primary ideal. Then e2 = 0 if and only if Inhas reduction number one for some
positive integer n. Under these circumstances then grIn(R) is Cohen–Macaulay.

Proof. We first recall that e2 = e2(Im) for every positive integer m. Assume e2 = 0 and
let n be an integer such that Ĩ n = In. By Sally [34, 2.5], 0 = e2(In)!e1(In) − e0(In) +
!(R/Ĩ n) = e1(In) − e0(In) + !(R/In). Hence e1(In) − e0(In) + !(R/In) = 0 because it
cannot be negative by Northcott’s inequality. The result follows now by Huneke [14, 2.1]
and Ooishi [22, 3.3]. For the converse, if In has reduction number one for some n, then
e2(In) = 0 for example by Guerrieri and Rossi [8, 2.4]. In particular e2(I ) = e2(In) = 0. It
is clear that if In has reduction number one, then grIn(R) is Cohen–Macaulay (see [35]).

#

We remark that Narita’s result cannot be extended to a local Cohen–Macaulay ring of
dimension > 2. The ideal I described in Example 3.8 satisfies e2 = 0, however Im has not
reduction number one for every m. In fact, it is enough to remark that I has not reduction
number one (grI (R) is not Cohen–Macaulay) and Im = (X, Y, Z)2m for m > 1 which has
reduction number two.
In [17, 12] Itoh showed that if I is an integrally closed ideal then e2!e1 − e0 + !(R/I).

Later, it has been conjectured byValla [37, 6.20] that if the equality e2 = e1 − e0 + !(R/I)

holds in the case in which I is the maximal ideal m of R then the associated graded ring
grm(R) is Cohen–Macaulay. Unfortunately, the following example given by Wang shows
that the conjecture is, in general, false.

Example 3.10. Let R be the two-dimensional local Cohen–Macaulay ring

k!X, Y, Z, U, V "/(Z2, ZU, ZV , UV , YZ − U3, XZ − V 3),

with k a field and X, Y , Z, U , V indeterminates. Let I be the maximal ideal m of R. One
has that the associated graded ring grm(R) has depth zero and

PI (t) = 1+ 3t + 3t3 − t4

(1− t)2
.

In particular, one has e2 = e1 − e0 + 1, that is, e2 is minimal according to Itoh’s bound.
However, e2 is not minimal with respect to the bound given in Theorem 3.6.

Thus, the associated graded ring of the maximal ideal of the ring R can have depth zero
even if e2 = e1 − e0 + 1. More generally, a condition such as !(R/I) = e0 − e1 + e2 is not



136 A. Corso et al. / Journal of Pure and Applied Algebra 201 (2005) 126–141

sufficient to guarantee that grI (R) is Cohen–Macaulay even for an integrally closed ideal
I . Motivated by this failure, we observe that the right setting is the one of normal ideals.
The following result is essentially contained in [16], we present it for completeness with

a simpler proof. As a piece of notation, we denote by ē0, ē1, . . . , ēd the Hilbert coefficients
with respect to the filtrationF= {In}n!0 given by the integral closure of the powers of I .

Theorem 3.11. Let (R,m) be a local Cohen–Macaulay ring of dimension d !1. Let I be
an ideal generated by a system of parameters. If !(R/Ī ) = ē0 − ē1 + ē2 then In+2 = InI 2

for all n!0.

Proof. If d = 1, the result follows from [13, 4.6]. Let assume then d !2. Let S be the
ring obtained from R by a purely transcendental residue field extension and by factoring
out d − 2 generic elements a1, . . . , ad−2 of I . Notice that S is a two-dimensional local
Cohen–Macaulay ring and the ideal IS is generated by a system of parameters. By Itoh [16,
1(2) and (3)]

ĪS= IS, (1)

InS = (IS)n for n?0.

This last fact coupled with the genericity of a1, . . . , ad−2 yields that ēi = ēi (I )= ēi (IS) for
i = 0, 1, 2. Also by (1) we have that !(R/Ī ) = !(S/IS). This yields !(S/IS) = ē0(IS) −
ē1(IS) + ē2(IS). Call F = {(IS)n}. As depth gr(F)!1 = dim S − 1, by Guerrieri and
Rossi [8, 1.11(4)] the degree of the h-polynomial s(F)"2. Hence ē3(IS) = 0. Now by
Guerrieri and Rossi [8, 1.9] we obtain that (IS)n+1 = IS(IS)n for n!2, and, in particular,
(IS)n+2 = (IS)n(IS)2 for n!0. Finally, using [16, 17], we have that In+2 = InI 2 for
n!0. #

Theorem 3.12. Let (R,m) be a local Cohen–Macaulay ring of dimension d !1. Let I be
anm-primary normal ideal. The following conditions are equivalent:

(a) !(R/I) = e0 − e1 + e2;
(b) I 3 = JI2 for some minimal reduction J of I;
(c) e2 = !(I 2/JI) for some minimal reduction J of I.

Moreover, if anyof the previous equivalent conditions holds thengrI (R) isCohen–Macaulay
and

PI (t) = !(R/I) + (e0 − !(R/I) − !(I 2/JI))t + !(I 2/JI)t2

(1− t)d
.

Proof. Assume that condition (a) holds and let J =(x1, . . . , xd) be aminimal reduction of I .
Observe thatF={J n}={In}, as J n is still a reduction of In (not minimal) hence ēi (J )=ei .
By Theorem 3.11, applied to J , we have J n+2 = J nJ 2 for n!0, hence In+2 = J nI 2 for
n!0. This yields I 3 = JI2. Now (b) implies (c) and (c) forces (a) by Theorem 3.6 and
the Cohen–Macaulayness of grI (R) and the Hilbert series follow as well from the same
theorem. #
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4. Results on the higher Hilbert coefficients

Itoh showed in [16, 3(1)] that e3!0 for an m-primary normal ideal. Earlier, Narita had
given in [19] an example of a three-dimensional Cohen–Macaulay local ring and an ideal I
with e3< 0.The ring inNarita’s example contains nilpotents, thusMarley subsequently gave
in [18, 4.2] an example of an ideal in a polynomial ring in three variableswith e3< 0. Finally,
the previously mentioned example by Wang provides an example of a Cohen–Macaulay
local ring R in which the maximal ideal has e3< 0.
Let n(I) denote the so-called postulation number of I , that is the smallest integer n such

that !(R/In) is a polynomial.
The following result improves the already known result of Itoh under a weaker assump-

tion:

Theorem 4.1. Let (R,m) be a Cohen–Macaulay local ring of dimension three and with
infinite residue field. Let I be an m-primary ideal of R such that I q is integrally closed for
some q !n(I). Then e3!0.

Proof. For n?0 the Hilbert–Samuel function of I can be written as

!(R/In) = e0

(
n + 2
3

)
− e1

(
n + 1
2

)
+ e2

(n

1

)
− e3. (2)

Let q !n(I) be an integer for which I q = I q . Consider the Hilbert–Samuel function of I q .
For n?0 one has that

!(R/(Iq)n) = "0

(
n + 2
3

)
− "1

(
n + 1
2

)
+ "2

(n

1

)
− "3. (3)

As !(R/(Iq)n) = !(R/Inq), an easy comparison between (2), with nq in place of n, and
(3) yields

e0

(
nq + 2
3

)
− e1

(
nq + 1
2

)
+ e2

(nq

1

)
− e3

= "0

(
n + 2
3

)
− "1

(
n + 1
2

)
+ "2

(n

1

)
− "3.

or, equivalently,

1
6

e0(n
3q3 + 3n2q2 + 2nq) − 1

2
e1(n

2q2 + nq) + e2nq − e3

= 1
6

"0(n3 + 3n2 + 2n) − 1
2

"1(n2q + n) + "2n − "3.

Hence one concludes that

"0 = e0q
3, "1 = e0q

2(q − 1) + e1q
2,

"2 = e0
(q

3

)
+ e1

(q

2

)
+ e2

(q

1

)
, "3 = e3.
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By Itoh [17, 12], the Hilbert coefficients of the ideal I q satisfy the inequality

"2 − "1 + "0 − !(R/Iq)!0,

as qwas chosen so that I q=I q .After substituting the "i’swith the corresponding expressions
in terms of the ei’s we conclude that

"2 − "1 + "0 − !(R/Iq) =
[
e0

(q

3

)
+ e1

(q

2

)
+ e2

(q

1

)]
− [e0q2(q − 1) + e1q

2]
+ e0q

3 − !(R/Iq)

= e0

(
q + 2
3

)
− e1

(
q + 1
2

)
+ e2

(q

1

)
− !(R/Iq)

= e3,

and therefore e3!0, as claimed. #

Remark 4.2. Wenote that in dimension three for alln!2, e2(In) is always strictly positive.
In particular, the reduction number of In is at least two.

An ideal I is said to be asymptotically normal if there exists an integer N !1 such In is
integrally closed for all n!N . An interesting family of examples of asymptotically normal
ideals that are not normal are described in the next remark.

Remark 4.3. If I is an asymptotically normal ideal such that e3 = 0 then grI (R) is not
necessarily forced to be Cohen–Macaulay. For example, the ideal I in Example 3.8 is such
that In is integrally closed for every n!2, e3 = 0 but grI (R) has depth zero.
More generally, let I be any m-primary Gorenstein ideal of minimal multiplicity in

R = k!X, Y, Z", where k is a field and X, Y, Z are indeterminates. Since I : m =m2, by
Corso et al. [2, 3.6(a)] we have thatm2 = I : m ⊆ Ī , which forces Ī =m2 %= I .
Furthermore by Herzog [9], I/I 2 has a Cohen–Macaulay deformation which is gener-

ically a complete intersection. Thus by Bruns and Herzog [1, 4.7.11, 4.7.17(a)] it fol-
lows that !(I/I 2) = !(R/I)ht(I ) = 15. Now !(R/I 2) = !(R/m4) yields I 2 = m4. By
Corso et al. [2, 3.6(b)] we also have that mI = m3, which implies, in addition, that
I 3 = I 2I =m4I =m3mI =m6. Hence we conclude that In =m2n for all n!2. Thus I is
asymptotically normal and its Hilbert series is given by

PI (t) = 5+ 6t2 − 4t3 + t4

(1− t)3
.

In particular e3 = 0. On the other hand, grI (R) has depth zero because for any superficial
element a ∈ I one has I 2 : a =m2 %= I .

In the above remark, I 2 is a normal ideal in k!X, Y, Z" with e3(I 2) = 0, grI 2(R)

Cohen–Macaulay and the reduction number is two. It is natural to ask the following question:

Question 4.4. Let I be a normalm-primary ideal of a local Gorenstein ring R.Does e3=0
imply grI (R) Cohen–Macaulay? Does e3 = 0 imply that the reduction number of I is two?
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In [17, 3] Itoh gave a positive answer to Question 4.4 when I is the maximal ideal of
a Gorenstein ring. Notice that if I is asymptotically normal, but not normal, the answer is
negative by Remark 4.3.
In Corollary 4.5 belowwe show that, in a local Cohen–Macaulay ring of dimension three,

the normality of I implies the Cohen–Macaulayness of grIn(R) for all large n whenever
e3 = 0.

Corollary 4.5. Let (R,m) be a local Cohen–Macaulay ring of dimension three and with
infinite residue field. Let I be anm-primary ideal of R such that I is asymptotically normal.
Then e3 = 0 if and only if there exists some n such that the reduction number of In is at
most two. Under these circumstances then grIn(R) is Cohen–Macaulay.

Proof. Let q !n(I) be an integer large enough so that I q is a normal ideal. From the proof
of Theorem 4.1 we have that 0= e3= "2− "1+ "0−!(R/Iq), where the "i’s are the Hilbert
coefficients of I q . The statement now follows from Theorem 3.12. #

Remark 4.6. A different proof of the above result can be obtained in the following way.
Let q be the integer such that I q is normal. By Huckaba and Huneke [12, 3.1], there exists
an integer N such that depth grIN (R)!2 and by Huckaba and Marley [13, 4.6] we get

e3(I ) = e3(I
N) =

∑

n!3

(
n − 1
2

)
!(InN/JInN−N),

for any minimal reduction J of IN . Hence e3(I )=0 if and only if I 3N =JI2N and the result
follows.
The latter proof suggests the following result in dimension four. By Huckaba and Marley

[13, 4.5, 4.1], it is easy to obtain

e4(I ) = e4(I
N)"

∑

n!4

(
n − 1
3

)
!(InN/JInN−N),

for any minimal reduction J of IN .

Remark 4.7. As we already remarked, a connection between the normality of I and the
depth of grIn(R) has been observed in [12]. Indeed Huckaba and Huneke show that if I is
normal then grIn(R) has depth at least 2 for n?0. This result provides a two dimensional
version of the Grauert–Riemenschneider vanishing theorem. More precisely, this is a gen-
eralization (in dimension two) of the following formulation of Grauert–Riemenschneider
due to Sancho de Salas: If R is a reduced Cohen–Macaulay local ring, essentially of finite
type over an algebraically closed field of characteristic zero, and I is an ideal of R such
that Proj(R) is regular, then grIn(R) is Cohen–Macaulay for some n?0. While in dimen-
sion two the regularity of Proj(R) is not necessary (as shown in [12]), in dimension three
the Grauert–Riemenschneider theorem fails if the assumption on Proj(R) being regular is
dropped [4]. In [12] Huckaba and Huneke give another example of this failure.
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Example 4.8. The same ideal I considered in Example 3.2 also shows that Corollary 4.5
is sharp, that is the condition on e3 cannot be relaxed. In fact, we checked that the ideal I
is such that

PI (t) = 31+ 43t + t2 + t3

(1− t)3
.

Thus one has e3 = 1. On the other hand, Huckaba and Huneke show—in [12, 3.11]—that
I is a height 3 normal R-ideal for which grIn(R) is not Cohen–Macaulay for any n!1.
In addition, one also has that e2 = 4 while !(I 2/JI) = 2, for any minimal reduction J of I .
Hence the bound in Theorem 3.6 is strict in this setting.
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