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1. Introduction

Let (A, m) be an Artinian local or graded K-algebra where K is any arbitrary field 
unless otherwise specified. Let Soc(A) = (0 : m) be the socle of A. We denote by s
the socle degree of A, that is the maximum integer j such that mj ̸= 0. The type of 
A is τ := dimK Soc(A). Recall that A is said to be level of type τ if Soc(A) = ms

and dimK ms = τ . If A has type 1, equivalently dimK Soc(A) = 1, then A is Goren-
stein. In the literature local rings with low socle degree, also called short local rings, 
have emerged as a testing ground for properties of infinite free resolutions (see [1], [2], 
[10], [20], [32], [35]). They have been also extensively studied in problems related to the 
irreducibility and the smoothness of the punctual Hilbert scheme Hilbd(Pn

K) parame-
terizing zero-dimensional subschemes in Pn

K of degree d, see among others [7], [8], [16], 
[31]. In this paper we study the structure of level K-algebras of socle degree 4, hence 
m5 = 0. One of the most significant information on the structure is given by the Hilbert 
function.

By definition, the Hilbert function of A,

hi = hi(A) := dimK mi/mi+1,

is the Hilbert function of the associated graded ring grm(A) := ⊕i≥0mi/mi+1. We also 
say that h = (h0, h1, . . . , hs) is the h-vector of A. In [29] Macaulay characterized the 
possible sequences of positive integers hi that can occur as the Hilbert function of A. 
Since then there has been a great interest in commutative algebra in determining the 
h-vectors that can occur as the Hilbert function of A with additional properties (for 
example, complete intersection, Gorenstein, level, etc). A sequence of positive integers 
h = (h0, h1, . . . , hs) satisfying Macaulay’s criterion, that is h0 = 1 and hi+1 ≤ h⟨i⟩

i for 
i = 1, . . . , s − 1, is called an O-sequence. A sequence h = (1, h1, . . . , hs) is said to be a 
level (resp. Gorenstein) O-sequence if h is the Hilbert function of some Artinian level 
(resp. Gorenstein) K-algebra A. Remark that h1 is the embedding dimension and, if A
is level, hs is the type of A. Notice that a level O-sequence is not necessarily the Hilbert 
function of an Artinian level graded K-algebra. This is because the Hilbert function of 
the level ring (A, m) is the Hilbert function of grm(A) which is not necessarily level. From 
now on we say that h is a graded level (resp. Gorenstein) O-sequence if h is the Hilbert 
function of a level (resp. Gorenstein) graded standard K-algebra. For instance it is well 
known that the h-vector of a Gorenstein graded K-algebra is symmetric, but this is no 
longer true for a Gorenstein local ring. Characterizing level O-sequences is a wide open 
problem in commutative algebra. The problem is difficult and very few results are known 
even in the graded case as evidenced by [18]. In the following table we give a summary 
of known results:
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Characterization of Graded Local
Gorenstein O-sequences with 
h1 = 2

[27,28] [27,28]1

level O-sequences with h1 = 2 [27]2 [27]3

Gorenstein O-sequences with 
h1 = 3

[6] (see also [36, 
Theorem 4.2], [19])

Open

level O-sequences with h1 = 3
and τ ≥ 2

Open. In [18] authors 
gave a complete list with 
s ≤ 5 ors = 6 and τ = 2

Open

level O-sequences with s ≤ 3 Open (see [18] for h1 = 3
and [12] for discussion)

[12, Theorem 4.3]

In this paper we fill the above table by characterizing the Gorenstein and level O-
sequences with a particular attention to socle degree 4 and embedding dimension h1 = 3.
In our setting we can assume that A = R/I where R = K❏x1, . . . , xr❑ is the formal 
power series ring or R = K[x1, . . . , xr] the polynomial ring with standard grading and 
I an ideal of R. We say that A is graded when it can be presented as R/I where I is 
a homogeneous ideal in R = K[x1, . . . , xr]. Without loss of generality we assume that 
h1 = dimK m/m2 = r.

Recall that the socle type of A = R/I is the sequence E = (0, e1, . . . , es), where

ei := dimK((0 : m) ∩ mi/(0 : m) ∩ mi+1).

It is known that for all i ≥ 0,

hi ≤ min{dimK Ri, ei dimK R0 + ei+1 dimK R1 + · · · + es dimK Rs−i} (1.1)

(see [21]). Hence a necessary condition for h to be a level O-sequence is that hs−1 ≤
h1hs where es = hs and ei = 0 otherwise. In the following theorem we prove that this 
condition is also sufficient for h = (1, 3, h2, h3, h4) to be a level O-sequence, provided 
h4 ≥ 2. However, if h4 = 1, we need an additional assumption for h to be a Gorenstein 
O-sequence. We remark that the result for h4 = 2 can not be extended to h1 > 3 (see 
Example 3.9).

Theorem 1. Let h = (1, 3, h2, h3, h4) be an O-sequence.

1 The characterization of local Gorenstein sequences was also obtained by Briançon in [5] and a later 
self-contained proof using symmetric decomposition was presented by Iarrobino in [22, Chapter 2].
2 We refer the reader to [21, Theorem 4.6A] and [23] for more readable writing.
3 See also [21, Theorem 4.6B] and [4, Theorem 2.6].
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(a) Let h4 = 1. Then h is a Gorenstein O-sequence if and only if h3 ≤ 3 and h2 ≤(h3+1
2

)
+ (3 − h3).

(b) Let h4 ≥ 2. Then h is a level O-sequence if and only if h3 ≤ 3h4.

The proof of the above result is effective in the sense that in each case we construct 
a local level K-algebra with a given h-vector verifying the necessary conditions (see 
Theorem 3.8).

Combining Theorem 1(b) and results in [18] we show that there are level O-sequences 
which are not realizable in the graded case (see Section 3, Table 1 and Table 2). A similar 
behaviour was observed in [12] for socle degree 3. Theorem 1(a) is a consequence of the 
following more general result which holds for any embedding dimension:

Theorem 2.

(a) If (1, h1, . . . , hs−2, hs−1, 1) is a Gorenstein O-sequence with s > 3, then

hs−1 ≤ h1 and hs−2 ≤
(
hs−1 + 1

2

)
+ (h1 − hs−1). (1.2)

(b) If h = (1, h1, h2, h3, 1) is a unimodal O-sequence satisfying (1.2), then h is a Goren-
stein O-sequence.

Notice that Theorem 2(a) can be obtained as a consequence of a more general result 
by Iarrobino in [22, Theorem 3.2A].

If A is a Gorenstein local K-algebra with symmetric h-vector, then grm(A) is Goren-
stein, see [22, Proposition 1.7]. It is a natural question to ask, in this case, whether A
is analytically isomorphic to grm(A). Accordingly with the definition given in [17, Page 
408] and in [14], recall that an Artinian local K-algebra (A, m) is said to be canonically 
graded if there exists a K-algebra isomorphism between A and its associated graded ring 
grm(A).

For instance J. Elias and M. E. Rossi in [14] proved that every Gorenstein K-algebra 
with symmetric h-vector and m4 = 0 (s ≤ 3) is canonically graded under the assumption 
that K is an algebraically closed field of characteristic zero. A local K-algebra A of socle 
type E is said to be compressed if equality holds in (1.1) for all 1 ≤ i ≤ s, equivalently the 
h-vector is maximal given the socle type and embedding dimension (see [21, Definition 
2.3]). Compressed Gorenstein local K-algebras enjoy nice homological properties, see for 
instance [33]. In [15, Theorem 3.1] Elias and Rossi proved that if A is any compressed 
Gorenstein local K-algebra of socle degree s ≤ 4, then A is canonically graded under 
the assumption that K is an algebraically closed field of characteristic zero. In Section 4
we prove that if the socle degree is 4, then the assumption can not be relaxed. More 
precisely only the maximal h-vector forces every corresponding Gorenstein K-algebra 
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to be canonically graded. We prove that if h is unimodal and not maximal, then there 
exists a Gorenstein K-algebra with Hilbert function h which is not canonically graded 
(for arbitrary field K). To prove that a local K-algebra is not canonically graded is in 
general a very difficult task. See also [25] for interesting discussions.

Theorem 3. Assume K is an algebraically closed field of characteristic zero. Let h =
(1, h1, h2, h3, 1) be an O-sequence with h2 ≥ h3. Then every local Gorenstein K-algebra 
with Hilbert function h is necessarily canonically graded if and only if h1 = h3 and 
h2 =

(h1+1
2

)
.

An analogue of the above result is no longer true for socle degree 5. We prove that there 
exists a non-canonically graded Gorenstein K-algebra (for arbitrary K) with Hilbert 
function h = (1, h1, h2, h2, h1, 1) for every pair (h1, h2) satisfying 2 ≤ h1 ≤ h2 ≤

(h1+1
2

)

(even in the compressed case), see Theorem 4.3.

The main tool of the paper is Macaulay’s inverse system [28] which gives a one-to-one 
correspondence between ideals I ⊆ R such that R/I is an Artinian local ring and finitely 
generated R-submodules of a polynomial ring. In Section 2 we gather preliminary results 
needed for our purpose. We prove Theorems 1 and 2 in Section 3, and Theorem 3 in 
Section 4.

We have used Singular [11], [13] and CoCoA [9] for various computations and exam-
ples.

Acknowledgments We thank Juan Elias for providing us the updated version of
Inverse-syst.lib for computations. The authors are also grateful to the referee for 
several suggestions which greatly improved the presentation of the paper. In particular 
the discussions concerning socle degree 5 are encouraged by the referee.

2. Preliminaries

2.1. Macaulay’s inverse system

In this subsection we recall some results on Macaulay’s inverse system which we will 
use in the subsequent sections. This theory is well-known in the literature, especially in 
the graded setting (see for example [28, Chapter IV] and [24]). However, the local case 
is not so well explored. We refer the reader to [17], [22] for an extended treatment.

It is known that the injective hull of K as an R-module is isomorphic to a divided 
power ring P := KDP [X1, . . . , Xr] which has a structure of R-module by means of the 
following action:

◦ : R× P −→ P

(xα, Xβ) −→ xα ◦Xβ =
{
Xβ−α if α ≤ β

0 if α ! β
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where α = (α1, . . . , αr), β = (β1, . . . , βr) ∈ Nr, xα = xα1
1 . . . xαr

r , Xβ = Xβ1
1 . . . Xβr

r , and 
by α ≤ β we mean that αi ≤ βi for all i = 1, . . . , r. For the sake of simplicity from now on 
we will use xi instead of the capital letters Xi. If {f1, . . . , ft} ⊆ P is a set of polynomials, 
we will denote by ⟨f1, . . . , ft⟩R the R-submodule of P generated by f1, . . . , ft, i.e., the 
K-vector space generated by f1, . . . , ft and by the corresponding derivatives of all orders. 
We consider the exact pairing of K-vector spaces:

⟨ , ⟩ : R× P −→ K

(f, g) −→ (f ◦ g)(0).

For any ideal I ⊂ R we define the following R-submodule of P called Macaulay’s inverse 
system:

I⊥ := {g ∈ P | ⟨f, g⟩ = 0 ∀f ∈ I }.

Conversely, for every R-submodule M of P we define

AnnR(M) := {g ∈ R | ⟨g, f⟩ = 0 ∀f ∈ M}

which is an ideal of R. If M is generated by polynomials f := f1, . . . , ft, with fi ∈ P , 
then we will write AnnR(M) = AnnR(f) and Af = R/ AnnR(f).

By using Matlis duality one proves that there exists a one-to-one correspondence 
between ideals I ⊆ R such that R/I is an Artinian local ring and R-submodules M
of P which are finitely generated. More precisely, Emsalem in [17, Proposition 2] and 
Iarrobino in [22, Lemma 1.2] stated the following result.

Proposition 2.1. There is a one-to-one correspondence between ideals I such that R/I

is an Artinian level local ring of socle degree s and type τ and R-submodules of P gen-
erated by τ polynomials of degree s having linearly independent forms of degree s. The 
correspondence is defined as follows:
⎧
⎨

⎩

I ⊆ R such that R/I
is an Artinian level local ring of

socle degree s and type τ

⎫
⎬

⎭
1−1←→

⎧
⎨

⎩

M ⊆ P submodule generated by
τ polynomials of degree

s with linearly independent leading forms

⎫
⎬

⎭

I −→ I⊥

AnnR(M) ←− M

The action ⟨ , ⟩ induces the following isomorphism of K-vector spaces (see [17, Propo-
sition 2(a)],):

(R/I)∗ ≃ I⊥, (2.2)



S.K. Masuti, M.E. Rossi / Journal of Algebra 507 (2018) 525–546 531

(where (R/I)∗ denotes the dual with respect to the pairing ⟨ , ⟩ induced on R/I). Hence 
dimK R/I = dimK I⊥. As in the graded case, it is possible to compute the Hilbert 
function of A = R/I via the inverse system. We define the following K-vector space:

(I⊥)i := I⊥ ∩ P≤i + P<i

P<i
.

Then, by (2.2), it is known that

hi(R/I) = dimK(I⊥)i. (2.3)

2.2. Q-decomposition

It is well-known that the Hilbert function of an Artinian graded Gorenstein K-algebra 
is symmetric, which is not true in the local case. The problem comes from the fact that, in 
general, the associated algebra G := grm(A) of a Gorenstein local algebra A is no longer 
Gorenstein. However, in [22] Iarrobino proved that the Hilbert function of a Gorenstein 
local K-algebra A admits a “symmetric” decomposition. To be more precise, consider a 
filtration of G by a descending sequence of ideals:

G = C(0) ⊇ C(1) ⊇ · · · ⊇ C(s) = 0,

where

C(a)i := (0 : ms+1−a−i) ∩ mi

(0 : ms+1−a−i) ∩ mi+1 .

Let

Q(a) = C(a)/C(a + 1).

Then

{Q(a) : a = 0, . . . , s− 1}

is called Q-decomposition of the associated graded ring G. We have

hi(A) = dimK Gi =
s−1∑

a=0
dimK Q(a)i.

Iarrobino [22, Theorem 1.5] proved that if A = R/I is a Gorenstein local ring then 
for all a = 0, . . . , s − 1, Q(a) is a reflexive graded G-module, up to a shift in de-
gree: HomK(Q(a)i, K) ∼= Q(a)s−a−i. Hence the Hilbert function of Q(a) is symmetric 
about s−a

2 . Moreover, since each partial sum 
∑j

a=0 dimK Q(a) is the Hilbert function of 
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G/C(j + 1), 
∑j

a=0 dimK Q(a) is also an O-sequence (see [22, Page 69]). Iarrobino also 
showed that Q(0) = G/C(1) is the unique (up to isomorphism) socle degree s graded 
Gorenstein quotient of G. Let f = f [s] + ... lower degree terms be a polynomial in P
of degree s where f [s] is the homogeneous part of degree s of f and consider Af the 
corresponding Gorenstein local K-algebra. Then, Q(0) ∼= R/ AnnR(f [s]) (see [17, Propo-
sition 7] and [22, Lemma 1.10]).

Therefore a necessary condition for an O-sequence to be Gorenstein is that it admits 
a symmetric Q-decomposition by which we mean that (cf. [3]):

Definition 2.4. An O-sequence h is said to admit a symmetric Q-decomposition if there 
exist numerical sequences h(a) = (h(a)0, h(a)1, . . . , h(a)s) for a = 0, . . . , s − 1 such that
(1) each h(a) is symmetric about s−a

2 ;
(2) h =

∑s−1
a=0 h(a);

(3) each partial sum 
∑j

a=0 h(a) for j = 0, . . . , s − 1 is an O-sequence.
If this is the case we also say that {h(a) : a = 0, . . . , s − 1} is an “admissible symmetric 
Q-decomposition” for h.

3. Characterization of level O-sequences

In this section we characterize Gorenstein and level O-sequences of socle degree 4 and 
embedding dimension 3. First if h = (1, h1, . . . , hs) is a Gorenstein O-sequence (in any 
embedding dimension), we obtain an upper bound on hs−2 in terms of hs−1. This result 
(the first part of the following theorem) can be obtained as a consequence of a more 
general result proved by Iarrobino in [22, Theorem 3.2A]. For the sake of completeness 
we include a direct proof here.

Theorem 3.1.

(a) If (1, h1, . . . , hs−2, hs−1, 1) is a Gorenstein O-sequence with s > 3, then

hs−1 ≤ h1 and hs−2 ≤
((

hs−1 + 1
2

)
+ (h1 − hs−1)

)
. (3.2)

(b) If h = (1, h1, h2, h3, 1) is an O-sequence such that h2 ≥ h3 and it satisfies (3.2), then 
h is a Gorenstein O-sequence.

Proof. (a): From (1.1) it follows that hs−1 ≤ h1. Let A be a Gorenstein local K-algebra 
with the Hilbert function h and {Q(a) : a = 0, . . . , s − 1} be Q-decomposition of 
grm(A). Since Q(i)s−1 = 0 for i > 0, dimK Q(0)s−1 = hs−1. Hence dimK Q(0)1 =
dimK Q(0)s−1 = hs−1 and dimK Q(0)s−2 = dimK Q(0)2 ≤ h⟨1⟩

s−1. This in turn implies 
that dimK Q(1)s−2 = dimK Q(1)1 ≤ h1 − hs−1. Therefore
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hs−2 = dimK Q(0)s−2 + dimK Q(1)s−2

≤
(
hs−1 + 1

2

)
+ (h1 − hs−1).

(b): Suppose h2 ≤ h1. Set

f = x4
1 + · · · + x4

h3 + x3
h3+1 + · · · + x3

h2 + x2
h2+1 + · · · + x2

h1 .

Then Af has the Hilbert function h. Now assume h2 > h1. Denote h3 := n and define 
monomials gi ∈ KDP [x1, . . . , xn] as follows:

gi =

⎧
⎪⎪⎨

⎪⎪⎩

x2
i if 1 ≤ i ≤ n

xi−nxi−n+1 if n + 1 ≤ i ≤ 2n− 1
xnx1 if i = 2n.

For i = (i1, . . . , in) ∈ Nn, let xi := xi1
1 . . . xin

n . Let T be the set of monomials xi of degree 
2 in KDP [x1, . . . , xn] such that

xi /∈ {gi : 1 ≤ i ≤ 2n}.

Then |T | =
(n+1

2
)
− 2n. We write T = {gi : 2n < i ≤

(n+1
2
)
}. Define

f =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

i=1
x2
i gi +

h2−h1∑

i=1
x2
i gn+i + x3

n+1 + · · · + x3
h1 if h2 − h1 ≤ n

n∑

i=1
x2
i gi +

n∑

i=1
x2
i gn+i +

h2−h1+n∑

i=2n+1
g2
i + x3

n+1 + · · · + x3
h1 if h2 − h1 > n.

Then h3 = dimK

(
∂f
∂x1

, . . . , ∂f
∂xn

)
= n and

h2 = dimK

(
{gi : 1 ≤ i ≤ h2 − h1 + n}

⋃
· {x2

n+1, . . . , x
2
h1}

)
.

Thus Af has the Hilbert function (1, h1, h2, h3, 1). ✷

Remark 3.3. If h3 = h1, then f in the proof of Theorem 3.1(b) is homogeneous and hence 
Af is a graded Gorenstein K-algebra.

If the socle degree is 4 and h1 ≤ 12, then the converse holds in 3.1(a).

Corollary 3.4. An O-sequence h = (1, h1, h2, h3, 1) with h1 ≤ 12 is a Gorenstein 
O-sequence if and only if h satisfies (3.2).
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Proof. By Theorem 3.1, it suffices to show that h2 ≥ h3 if h1 ≤ 12. Let A be a 
local Gorenstein K-algebra with the Hilbert function h. Considering the symmetric 
Q-decomposition of grm(A), we observe that in this case Q(0) has the Hilbert function 
(1, h3, h2 − k, h3, 1) for some non-negative integer k. Since h1 ≤ 12, by (3.2) h3 ≤ 12. As 
Q(0) is a graded Gorenstein K-algebra, by [30, Theorem 3.2] we conclude that h2−k ≥ h3
since Q(0) has unimodal Hilbert function, hence h2 ≥ h3. ✷

Remark 3.5. A Gorenstein O-sequence (1, h1, h2, h3, 1) does not necessarily satisfy h2 ≥
h3. For example, consider the sequence h = (1, 13, 12, 13, 1). By [36, Example 4.3] there 
exists a graded Gorenstein K-algebra with h as h-vector.

It would be interesting to know which Gorenstein sequences appearing in Theo-
rem 3.1(b) are admissible for complete intersections. In [26], jointly with J. Jelisiejew, 
we discuss this problem in codimension 3 for any socle degree.

Remark 3.6. We do not know a characterization of the Gorenstein O-sequences of socle 
degree 5, even if h is unimodal.

Clearly, (3.2) is not sufficient for an O-sequence to be Gorenstein when s = 5. For 
instance, h = (1, 3, 3, 4, 3, 1) satisfies (3.2), but it is not admissible for a Gorenstein 
K-algebra because it does not admit symmetric Q-decomposition (see Definition 2.4). 
Hence an extension of Theorem 3.1(b) to s = 5 is not straightforward. As the referee 
suggests, the information given by [22, Theorem 3.2A] could be useful. But we feel 
that Q-decomposition is not enough to characterize Gorenstein sequences of higher socle 
degree and new ideas will be needed.

Discussion 3.7. Let h = (1, h1, h2, h3, 1) be an O-sequence as in Theorem 3.1(b). It can 
be verified that following is a complete list of admissible symmetric Q-decompositions 
(see Definition 2.4) for h:

Q(0) = (1, h3, α, h3, 1)
Q(1) = (0, h2 − α, h2 − α, 0, 0)
Q(2) = (0, h1 − h3 − h2 + α, 0, 0, 0)
h = (1, h1, h2, h3, 1)

where h2 + (h3 − h1) ≤ α ≤ min{h2, 
(h3+1

2
)
}. We claim that if Q(0) is an admissible 

graded Gorenstein algebra, then each Q-decomposition is realizable. Indeed, suppose 
that Q(0) is admissible for graded Gorenstein algebra. Then there exists a homogeneous 
polynomial F ∈ KDP [x1, . . . , xh3 ] of degree 4 such that AF has the Hilbert function 
(1, h3, α, h3, 1). Define

f = F + x3
h3+1 + · · · + x3

h3+h2−α + x2
h3+h2−α+1 + · · · + x2

h1 .
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Then Af has the Hilbert function h and Q-decomposition as above (see [22, Section 4C]). 
Notice that f in the proof of Theorem 3.1(b) corresponds to the Q-decomposition where

α =
{
h3 if h2 ≤ h1

h2 + (h3 − h1) if h2 > h1.

However, there are admissible symmetric Q-decompositions that are not realizable. 
For instance, consider h = (1, 16, 14, 13, 1). Then

Q(0) = (1, 13, 11, 13, 1)
Q(1) = (0, 3, 3, 0, 0)
h = (1, 16, 14, 13, 1)

is an admissible symmetric Q-decomposition for h. But this Q-decomposition is not 
realizable since (1, 13, 11, 13, 1) does not occur as a graded Gorenstein O-sequence by 
[30, Theorem 3.2]. However, since (1, 13, 12, 13, 1) is a graded Gorenstein O-sequence 
by [36, Example 4.3], the above argument shows that the following Q-decomposition is 
realizable for h = (1, 16, 14, 13, 1):

Q(0) = (1, 13, 12, 13, 1)
Q(1) = (0, 2, 2, 0, 0)
Q(2) = (0, 1, 0, 0, 0)
h = (1, 16, 14, 13, 1)

✷

In the following theorem we characterize the h-vector of local level algebras of socle 
degree 4 and embedding dimension 3. We remark that the first part of the following 
theorem was already known due to [22, Page 91].

Theorem 3.8. Let h = (1, 3, h2, h3, h4) be an O-sequence.

(a) Let h4 = 1. Then h is a Gorenstein O-sequence if and only if h3 ≤ 3 and h2 ≤(h3+1
2

)
+ (3 − h3).

(b) Let h4 ≥ 2. Then h is a level O-sequence if and only if h3 ≤ 3h4.

Proof. (a): Follows from Corollary 3.4.
(b): The “only if” part follows from (1.1). The converse is constructive and we prove it 
by induction on h4. First we consider the cases h4 = 2, 3, 4 and then h4 ≥ 5. In each case 
we define the polynomials f := f1, . . . , fh4 ∈ P = KDP [x1, x2, x3] of degree 4 such that 
Af has the Hilbert function h. We set g′1 = x3

3, g
′
2 = x2

2x3, g′3 = x2
1x2, g′4 = x1x2

3.

For short, in this proof we use the following notation: m := h2 and n := h3.
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Case 1: h4 = 2.

In this case n ≤ 6 as h3 ≤ 3h4 by assumption. Suppose m = 2. Then h is an O-sequence 
implies that n = 2. In this case, let f1 = x4

1 + x2
3 and f2 = x4

2. Then Af has the Hilbert 
function (1, 3, 2, 2, 2). Now assume that m ≥ 3.

Subcase 1: m ≥ n. We set gi =

⎧
⎪⎪⎨

⎪⎪⎩

x4−ig′i if 1 ≤ i ≤ n− 2
g′i if n− 1 ≤ i ≤ m− 2
0 if m− 1 ≤ i ≤ 4.

(Here x0 = x3). Define

f1 = x4
1 + g1 + g2 and f2 = x4

2 + g3 + g4.

Then

h3 = dimK{x3
1, x

3
2, g

′
1, . . . , g

′
n−2} = n and

h2 = dimK{x2
1, x

2
2,

g′i
x4−i

: 1 ≤ i ≤ m− 2} = m

and hence Af has the required Hilbert function h.
Subcase 2: m < n. The only possible ordered tuples (m, n) with m < n ≤ 6 such that h
is an O-sequence are {(3, 4), (4, 5), (5, 6)}. For each 2-tuple (m, n) we define f1, f2 as:
a.(m, n) = (3, 4): f1 = x4

1 + x2
1x

2
2 + x2

3; f2 = x4
2 + x2

1x
2
2.

b.(m, n) = (4, 5): f1 = x4
1 + x2

1x
2
2 + x4

3; f2 = x4
2 + x2

1x
2
2.

c.(m, n) = (5, 6): f1 = x4
1 + x2

1x
2
2 + x4

3; f2 = x4
2 + x2

1x
2
2 + x3

2x3.

Case 2: h4 = 3.

In this case n ≤ 9. We consider the following subcases:
Subcase 1: n ≤ 6. Let f′ = f1, f2 be polynomials defined as in Case 1 such that Af′ has 

the Hilbert function (1, 3, m, n, 2). Now define f3 =
{
x4

3 if m ≥ n

x2
1x

2
2 if m < n.

Then Af has the required Hilbert function h.
Subcase 2: 7 ≤ n ≤ 9. Let f′ = f1, f2 be polynomials defined as in Case 1 such that Af′
has the Hilbert function (1, 3, m, 6, 2). We set p1 = x2

2x
2
3, p2 = x2

1x
2
2 and p3 = x2

1x
2
3. Since 

h is an O-sequence and n ≥ 7, we get m ≥ 5. Now define f3 =
{∑n−6

i=1 pi if m = 6
x2

2x
2
3 if m = 5.

Then Af has the required Hilbert function h.

Case 3: h4 = 4.

Since h is an O-sequence, n ≤ 10. We consider the following subcases:
Subcase 1: n ≤ 9. Let f′ = f1, f2, f3 be polynomials defined as in Case 2 such that Af′
has the Hilbert function (1, 3, m, n, 3). Define
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f4 =
{
x3

2x3 if {m ≥ n and n ≤ 6} OR {n ≥ 7 and m = 6}
x3

1x2 if {m < n ≤ 6} OR {(m,n) = (5, 7)}.

Then Af has the Hilbert function (1, 3, m, n, 4).
Subcase 2: n = 10. As h is an O-sequence, we conclude that m = 6. Let f′ = f1, f2, f3
be polynomials defined as in Case 2 such that Af′ has the Hilbert function (1, 3, 6, 9, 3). 
Define f4 = x2

1x2x3. Then Af has the Hilbert function (1, 3, 6, 10, 4).

Case 4: h4 ≥ 5.

Since h is an O-sequence, n ≤ 10 and h4 ≤ 15.
Subcase 1: n ≥ h4 OR h4 ≥ 11. Let f′ = f1, f2, f3, f4 be defined as in Case 3 such that 
Af′ has the Hilbert function (1, 3, m, n, 4). For 5 ≤ i ≤ 15, define fi as follows:

f5 =
{
x3

1x2 if {m ≥ n and n ≤ 6} OR {n ≥ 7 and m = 6}
x1x3

2 if {m < n ≤ 6} OR {(m,n) = (5, 7)},

f6 =
{
x1x3

3 if {m ≥ n and n ≤ 6} OR {n ≥ 7 and m = 6}
x4

3 if {m < n ≤ 6} OR {(m,n) = (5, 7)},

f7 =
{
x4

3 if n ≥ 7 and m = 6
x3

2x3 if {(m,n) = (5, 7)}.

(Note that in the last case, h4 ≥ 7 implies that n ≥ 7). If h4 ≥ 8, then n ≥ 8 which 
implies that m = 6. We set

f8 = x2
1x

2
2, f9 = x2

1x
2
3, f10 = x2x

3
3, f11 = x1x

3
2, f12 = x3

1x3, f13 = x3
2x3,

f14 = x1x
2
2x3, f15 = x1x2x

2
3.

Now Af has the Hilbert function (1, 3, m, n, h4).
Subcase 2: n < h4 ≤ 10. The smallest ordered tuple (n, h4) such that h is an O-sequence 
and n < h4 is (4, 5). (Here smallest ordered tuple means smallest with respect to the 
order ≤ defined as: (n1, n2) ≤ (m1, m2) if and only if n1 ≤ m1 and n2 ≤ m2). Let

q1 =
{
x2

3 if m = 3
x3

3 if m ≥ 4,
q2 =

{
0 if m < 5
x2

2x3 if m ≥ 5
and q3 =

{
0 if m < 6
x1x2

3 if m = 6.

We define

f1 = x4
1 + q1 + q2, f2 = x4

2 + q3, f3 = x3
1x2, f4 = x1x

3
2, f5 = x2

1x
2
2.

Then Af has the Hilbert function (1, 3, m, 4, 5).
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Let h4 ≥ 6. We set

f6 = x4
3, f7 = x3

2x3, f8 = x2x
3
3, f9 =

{
x2

2x
2
3 if n = 7

x1x3
3 if n ≥ 8,

f10 =
{
x2

2x
2
3 if n = 8

x3
1x3 if n = 9.

Then Af has the Hilbert function (1, 3, m, n, h4). ✷

Using [18, Appendix D] and Theorem 3.8(b) we list in Table 1 all the O-sequences 
with h1 = 3, s = 4 and h4 ≥ 2 which are realizable for local level K-algebras, but not 
for graded level K-algebras.

Table 1
Non-graded level O-sequences with s = 4 and h1 = 3.

(1, 3, 2, 2, 2) (1, 3, 3, 2, 2) (1, 3, 4, 2, 2) (1, 3, 5, 2, 2) (1, 3, 6, 2, 2) (1, 3, 5, 3, 2)
(1, 3, 6, 3, 2) (1, 3, 3, 4, 2) (1, 3, 4, 3, 3) (1, 3, 5, 3, 3) (1, 3, 6, 3, 3) (1, 3, 3, 4, 3)
(1, 3, 6, 4, 3) (1, 3, 3, 4, 4) (1, 3, 5, 4, 4) (1, 3, 6, 4, 4) (1, 3, 3, 4, 5) (1, 3, 4, 4, 5)
(1, 3, 5, 4, 5) (1, 3, 6, 4, 5) (1, 3, 6, 5, 5) (1, 3, 5, 5, 6) (1, 3, 6, 5, 6) (1, 3, 6, 6, 7)
(1, 3, 6, 7, 9)

Analogously, by Theorem 3.8(a), the following are all the Gorenstein O-sequences with 
h1 = 3 and s = 4 that are not graded Gorenstein sequences since they are not symmetric. 
This list agrees with the list [22, 5F.i.b. and 5F.i.c in Page 91]. If an O-sequence h is 
symmetric with h1 = 3 then h is also a graded Gorenstein O-sequence by Corollary 3.4.

Table 2
Non-graded Gorenstein O-sequences with s = 4 and h1 = 3.

(1, 3, 1, 1, 1) (1, 3, 2, 1, 1) (1, 3, 3, 1, 1) (1, 3, 2, 2, 1) (1, 3, 3, 2, 1) (1, 3, 4, 2, 1)

We remark that in Table 2 (1, 3, 3, 2, 1) is the only sequence with two admissible 
symmetric decompositions. By Discussion 3.7 we know that each Q-decomposition is 
realizable. Among the Gorenstein sequences appearing in Table 2 it is easy to see that 
(1, 3, 1, 1, 1), (1, 3, 2, 1, 1), (1, 3, 2, 2, 1) are not admissible for complete intersections. It is 
not difficult to show that even the sequences (1, 3, 4, 2, 1), (1, 3, 5, 3, 1), (1, 3, 6, 3, 1) are 
not admissible for complete intersections and the sequence (1, 3, 4, 3, 1) is admissible for a 
complete intersection (for instance, consider R/I where I = (x2

1, x
2
2, x

3
3)). In [26] we show 

that any O-sequence of the form (1, 3, 3, h3 . . . , . . .) with h3 ≤ 3 is admissible for local 
complete intersection and hence in particular, the sequences (1, 3, 3, 1, 1), (1, 3, 3, 2, 1), 
(1, 3, 3, 3, 1) are admissible for complete intersections.

The following example shows that Theorem 3.8(b) can not be extended to h1 ≥ 4
because the necessary condition h3 ≤ h1hs is no longer sufficient for characterizing level 
O-sequences of socle degree 4.

Example 3.9. The O-sequence h = (1, 4, 9, 2, 2) is not a level O-sequence.
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Proof. Let A = R/I be a local level K-algebra with the Hilbert function h. The lex-ideal 
L ∈ S := K[x1, . . . , x4] with the Hilbert function h is

L = ( x2
1, x1x

2
2, x1x2x3, x1x2x4, x1x

2
3, x1x3x4, x1x

2
4, x

3
2, x

2
2x3, x

2
2x4, x2x

2
3, x2x3x4, x2x

2
4,

x3
3, x

2
3x4, x3x

4
4, x

5
4).

A minimal graded S-free resolution of S/L is:

0 −→ S(−6)7 ⊕ S(−8)2 −→ S(−5)26 ⊕ S(−7)6 −→ S(−4)33 ⊕ S(−6)6

−→ S(−2) ⊕ S(−3)14 ⊕ S(−5)2 −→ S −→ 0.

By [34, Theorem 4.1] the Betti numbers of A can be obtained from the Betti numbers 
of S/L by a sequence of negative and zero consecutive cancellations. This implies that 
β4(A) ≥ 3 and hence A has type at least 3, which leads to a contradiction. ✷

4. Canonically graded algebras

It is clear that a necessary condition for a Gorenstein local K-algebra A being canon-
ically graded is that the Hilbert function of A must be symmetric. Hence we investigate 
whether a Gorenstein K-algebra A with the Hilbert function (1, h1, h2, h1, 1) is neces-
sarily canonically graded. If h2 =

(h1+1
2

)
(equiv. A is compressed), then by [15, Theorem 

3.1] A is canonically graded. In this section we prove that if h = (1, h1, h2, h1, 1) is an 
O-sequence with h1 ≤ h2 <

(h1+1
2

)
, then there exists a polynomial F of degree 4 such 

that AF has the Hilbert function h and it is not canonically graded (Theorem 4.1). We 
prove that an analogue of this result is no longer true for socle degree 5. In fact, in The-
orem 4.3 we construct a non-canonically graded Gorenstein K-algebra of socle degree 5 
with unimodal and symmetric Hilbert function whenever h1 > 1 (even in the compressed 
case).

Theorem 4.1. Let K be an algebraically closed field of characteristic zero and let h =
(1, h1, h2, h3, 1) be an O-sequence with h2 ≥ h3. Then every local Gorenstein K-algebra 
with Hilbert function h is necessarily canonically graded if and only if h1 = h3 and 
h2 =

(h1+1
2

)
.

Proof. The assertion is clear for h1 = 1. Hence we assume h1 > 1. The “if” part of the 
theorem follows from [15, Theorem 3.1]. We prove the converse, that is we show that if 
h3 < h1 or h2 <

(h1+1
2

)
, then there exists a polynomial G of degree 4 such that AG has 

the Hilbert function h and it is not canonically graded. If h3 < h1, then the result is 
clear by Theorem 3.1(b). Hence we assume that h3 = h1. For simplicity in the notation 
we put h1 := n and h2 := m.
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First we prove the assertion for n ≤ 3. We define

F =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x3
1x2 if n = m = 2

x4
1 + x4

2 + x3
2x3 if n = 3 and m = 3

x4
1 + x4

2 + x3
2x3 + x3

1x2 if n = 3 and m = 4
x4

1 + x4
2 + x3

2x3 + x3
1x2 + x1x2

2x3 if n = 3 and m = 5.

Let G = F + x3
n. It is easy to check that AG has the Hilbert function h. We claim 

that AG is not canonically graded. Suppose that AG is canonically graded. Then AF
∼=

grm(A) ∼= AG. Let ϕ : AF −→ AG be a K-algebra automorphism. Since x2
n ◦ F = 0, 

x2
n ∈ AnnR(F ). This implies that ϕ(xn)2 ∈ AnnR(G) and hence ϕ(xn)2 ◦ G = 0. For 

i = (i1, . . . , in) ∈ Nn, let |i| = i1 + · · · + in. Suppose

ϕ(xn) = u1x1 + · · · + unxn +
∑

i∈Nn, |i|≥2
aix

i

where ui for i = 1, . . . , n and ai ∈ K for all i ∈ Nn such that |i| ≥ 2. Comparing the 
coefficients of the monomials of degree ≤ 2 in ϕ(xn)2 ◦ G = 0, it is easy to verify that 
u1 = · · · = un = 0. This implies that ϕ(xn) has no linear terms and thus ϕ is not an 
automorphism, a contradiction.

Suppose n > 3. First we define a homogeneous polynomial F ∈ P of degree 4 such 
that AF has the Hilbert function h and x2

n does not divide any monomial in F (in other 
words, if xi is a monomial that occurs in F with nonzero coefficient, then in ≤ 1).

Let T be a monomial basis of P2. We split the set T \ {x2
n} into a disjoint union of 

monomials as follows. We set

pi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x2
i for 1 ≤ i ≤ n− 1

x2xn for i = n

xi−nxi+1−n for n + 1 ≤ i < 2n
x1xn for i = 2n.

Let E = {pi : 1 ≤ i ≤ n}, B = {pi : n + 1 ≤ i ≤ 2n}, C = {xixj : 1 ≤ i <
j < n such that j − i > 1} and D := {xixn : 3 ≤ i ≤ n − 2}. Then

T \ {x2
n} = E

⋃
· B

⋃
· C

⋃
· D.

Denote by | · | the cardinality, then |C| =
(n+1

2
)
−2n − (n −4) −1 and |D| = n −4. Hence 

we write C = {pi : 2n < i ≤
(n+1

2
)
− (n − 4) − 1} and D = {pi :

(n+1
2
)
− (n − 4) − 1 <

i ≤
(n+1

2
)
− 1}. We set
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gi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x4
i for 1 ≤ i ≤ n− 1

x3
2xn for i = n

x2
i−npi for n + 1 ≤ i < 2n and i ̸= n + 2

x2
2x

2
3 for i = n + 2

x1x2
2xn for i = 2n

p2
i for 2n < i ≤

(n+1
2
)
− (n− 4) − 1

x2
xn

p2
i for

(n+1
2
)
− (n− 4) − 1 < i <

(n+1
2
)
.

Define

F =
m∑

i=1
gi.

Since m ≥ n, dimK(⟨F ⟩R)i = n for i = 1, 3. Also, dimK(⟨F ⟩R)2 = dimK{pi : 1 ≤ i ≤
m} = m. Hence AF has the Hilbert function h.

Let G = F + x3
n. We prove that AG is not canonically graded. Suppose that AG is 

canonically graded. Then, as before, AG
∼= AF . Let ϕ : AF −→ AG be a K-algebra 

automorphism. Since F does not contain a monomial that is multiple of x2
n, x2

n ◦ F = 0
and hence x2

n ∈ AnnR(F ) which implies that ϕ(xn)2 ∈ AnnR(G). Let

ϕ(xn) = u1x1 + · · · + unxn +
∑

i∈Nn, |i|≥2
aix

i

where ui for i = 1, . . . , n and ai ∈ K for all i ∈ Nn such that |i| ≥ 2. We claim that 
u1 = · · · = un−1 = 0.
Case 1: m = n. Comparing the coefficients of x2

1, x2xn, x2
3, . . . , x

2
n−1 in ϕ(xn)2 ◦ G = 0, 

we get u1 = · · · = un−1 = 0.
Case 2: m = n + 1 OR m = n + 2. Comparing the coefficients of x1x2, x2xn, x2

3, . . . , x
2
n−1

in ϕ(xn)2 ◦G = 0, to get u1 = · · · = un−1 = 0.
Case 3: n + 2 < m < 2n. Comparing the coefficients of x1x2, x2xn, x3x4, . . . ,
xm−nxm−n+1, x2

m−n+1, x
2
m−n+2 . . . , x

2
n−1 in ϕ(xn)2 ◦G = 0, we get u1 = · · · = un−1 = 0.

Case 4: m ≥ 2n. Comparing the coefficients of x1x2, x1xn, x3x4, . . . , xn−1xn in ϕ(xn)2 ◦
G = 0, we get u1 = · · · = un−1 = 0.
This proves the claim. Now, comparing the coefficients of xn in ϕ(xn)2 ◦G = 0, we get 
un = 0 (since F does not contain a monomial divisible by x2

n). This implies that ϕ(xn)
has no linear terms and hence ϕ is not an automorphism, a contradiction. ✷

We expect that the Theorem 4.1 holds true without the assumption h2 ≥ h3. The 
problem is that, as far as we know, the admissible Gorenstein non-unimodal h-vectors 
are not classified even if s = 4. However, starting from an example by Stanley, we are 
able to construct a non-canonically graded Gorenstein K-algebra with (non-unimodal) 
h-vector (1, 13, 12, 13, 1).
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Corollary 4.2. Assume that K is an algebraically closed field of characteristic zero. Let 
h = (1, h1, h2, h3, 1) where h3 = h1 ≤ 13 be a Gorenstein O-sequence. Then every 
Gorenstein K-algebra with the Hilbert function h is necessarily canonically graded if and 
only if h2 =

(h1+1
2

)
.

Proof. If a local Gorenstein K-algebra A has Hilbert function h = (1, h1, h2, h1, 1), then 
by considering Q-decomposition of grm(A) we conclude that grm(A) ∼= Q(0). This implies 
that h is also the Hilbert function of a graded Gorenstein K-algebra. By [30, Theorem 
3.2] if h1 ≤ 12, then the Hilbert function of a graded Gorenstein K-algebra is unimodal. 
Hence by Theorem 4.1 the result follows.

If h1 = 13 and h is unimodal, then the assertion follows from Theorem 4.1. Now, by 
[30, Theorem 3.2] the only non-unimodal graded Gorenstein O-sequence with h1 = 13 is 
h = (1, 13, 12, 13, 1). In this case we write P = [x1, . . . , x10, x, y, z]. Let

F =
10∑

i=1
xiµi,

where µ = {x3, x2y, x2z, xy2, xyz, xz2, y3, y2z, yz2, z3} = {µ1, . . . , µ10}. Let G = F +
x3

1 + · · ·+x3
10. Then AG has the Hilbert function h. We claim that AG is not canonically 

graded. Suppose AG is canonically graded. Then AG
∼= AF . Let ϕ : AF −→ AG be a 

K-algebra automorphism. Since x2
1 ∈ AnnR(F ), ϕ(x1)2 ∈ AnnR(G). Let

ϕ(x1) = u1x1 + · · ·+u10x10 +u11x+u12y+u13z+non-linear terms in x1, . . . , x10, x, y, z

where ui ∈ K for i = 1, . . . , 13. Comparing the coefficients of x1x, x7y, x10z in ϕ(x1)2 ◦
G = 0, we get u11 = u12 = u13 = 0. Now, comparing the coefficients of x1, . . . , x10 in 
ϕ(x1)2 ◦G = 0, we get u1 = · · · = u10 = 0. This implies that ϕ(x1) has no linear terms 
and thus ϕ is not an automorphism, a contradiction. ✷

We remark that the “only if” part of Theorem 4.1 holds for any arbitrary field K. 
An analogue of Theorem 4.1 is no longer true for s = 5. Notice that in [15, Example 
3.4] the authors gave an example of a non-canonically graded Gorenstein compressed 
algebra of socle degree 5 and codimension 2. However, by a slight modification of the 
dual polynomial F in the proof of Theorem 4.1 we can show that for a restricted set 
of local Gorenstein sequences of socle degree five, there exist non-canonically graded 
Gorenstein algebras.

Theorem 4.3. For every 1 < h1 ≤ h2 ≤
(h1+1

2
)

there exists a Gorenstein K-algebra with 
Hilbert function h = (1, h1, h2, h2, h1, 1) which is not canonically graded.
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Proof. For simplicity in the notation we put h1 := n and h2 := m. We define

F =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x4
1x2 if n = m = 2

x3
1x

2
2 if n = 2 and m = 3

x5
1 + x5

2 + x4
2x3 if n = 3 and m = 3

x5
1 + x5

2 + x4
2x3 + x4

1x2 if n = 3 and m = 4
x5

1 + x5
2 + x4

2x3 + x4
1x2 + x1x3

2x3 if n = 3 and m = 5
x5

1 + x5
2 + x4

2x3 + x4
1x2 + x1x3

2x3 + x2
1x2x2

3 if n = 3 and m = 6.

Then AF has the Hilbert function h. Let

G =
{
F + x3

n if AF is not compressed
F + x4

n if AF is compressed.

Then AG also has the Hilbert function h. By a similar argument as in the proof of 
Theorem 4.1 it can be verified that AG is not canonically graded.

Let n > 3 and pi be as in the proof of Theorem 4.1. We modify gi as

gi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x5
i for 1 ≤ i ≤ n− 1

x4
2xn for i = n

x3
i−npi for n + 1 ≤ i < 2n and i ̸= n + 2

x3
2x

2
3 for i = n + 2

x1x3
2xn for i = 2n

x3
jx

2
k for 2n < i ≤

(n+1
2
)
− (n− 4) − 1 where pi = xjxk with j < k

x2
2

xn
p2
i for

(n+1
2
)
− (n− 4) − 1 < i <

(n+1
2
)
.

Define

F =

⎧
⎨

⎩

∑m
i=1 gi if m <

(n+1
2
)

∑(n+1
2

)
−1

i=1 gi + x1x2x3x2
n if m =

(n+1
2
)
.

Then AF has the Hilbert function h. We define

G =
{
F + x3

n if m <
(n+1

2
)

F + x4
n if m =

(n+1
2
)
.

We claim that AG is not canonically graded. Suppose that AG is canonically graded. 
Then, as before, AG

∼= AF . Let ϕ : AF −→ AG be a K-algebra automorphism. Let

ϕ(xn) = u1x1 + · · · + unxn +
∑

i∈Nn, |i|≥2
aix

i
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where ui for i = 1, . . . , n and ai ∈ K for all i ∈ Nn such that |i| ≥ 2. First assume 
that m <

(n+1
2
)
. Then x2

n ◦ F = 0 and hence ϕ(xn)2 ◦ G = 0. We first show that 
u1 = · · · = un−1 = 0.
Case 1: m = n. Comparing the coefficients of x3

1, x
2
2xn, x3

3, . . . , x
3
n−1 in ϕ(xn)2 ◦ G = 0, 

we get u1 = · · · = un−1 = 0.
Case 2: m = n + 1 OR m = n + 2. Comparing the coefficients of x2

1x2, x2
2xn, x3

3, . . . , x
3
n−1

in ϕ(xn)2 ◦G = 0, to get u1 = · · · = un−1 = 0.
Case 3: n + 2 < m < 2n. Comparing the coefficients of x2

1x2, x2
2xn, x2

3x4, . . . ,
x2
m−nxm−n+1, x3

m−n+1, x
3
m−n+2 . . . , x

3
n−1 in ϕ(xn)2 ◦G = 0, we get u1 = · · · = un−1 = 0.

Case 4: 2n ≤ m <
(n+1

2
)
. Comparing the coefficients of x2

1x2, x1x2xn, x2
3x4, . . . , x2

n−1xn

in ϕ(xn)2 ◦G = 0, we get u1 = · · · = un−1 = 0.
Thus

ϕ(xn) = unxn +
∑

1≤i≤j≤n

ai,jxixj +
∑

i∈Nn, |i|≥3
aix

i.

Now to show that un = 0 we argue as follows:
Case 1: n ≤ m < 2n− 1. Comparing the coefficients of x2

2 and xn in ϕ(xn)2 ◦G = 0, we 
get una2,2 = u2

n + (a2,2)2 = 0. Hence un = 0.
Case 2: m = 2n− 1. Comparing the coefficients of x2

2, x
2
n−1 and xn in ϕ(xn)2 ◦ G = 0, 

we get una2,2 = unan−1,n−1 = u2
n + (a2,2)2 + (an−1,n−1)2 = 0. Hence un = 0.

Case 3: 2n ≤ m <
(n+1

2
)
− (n− 4) − 1. Comparing the coefficients of x1x2, x2

n−1 and xn

in ϕ(xn)2◦G = 0, we get una2,2 = unan−1,n−1 = u2
n+(a2,2)2+(an−1,n−1)2+2a1,2a2,2 = 0. 

Hence un = 0.
Case 4:

(n+1
2
)
− (n− 4) ≤ m <

(n+1
2
)
. Comparing the coefficients of x1x2, x2

n−1,

x2xj (3 ≤ j ≤ m −
(n+1

2
)
+ (n − 4) + 3), we get una2,2 = unan−1,n−1 = una2,j = 0. Sup-

pose un ̸= 0. Then a2,2 = an−1,n−1 = · · · = a2,j = 0. Now by comparing the coefficient 
of xn we conclude that un = 0.
This implies that ϕ(xn) has no linear terms and hence ϕ is not an automorphism, a con-
tradiction.

Suppose m =
(n+1

2
)

and n > 4. Then x3
n ◦ F = 0. Hence ϕ(xn)3 ◦ G = 0. Therefore 

comparing the coefficients of x3x4, x4x5, . . . , xn−1xn in ϕ(xn)3◦G = 0, we get u3 = · · · =
un−1 = 0. Now, comparing the coefficient of x1xn, we get u2 = 0. Hence comparing the 
coefficient of x1x2 we conclude that u1 = 0 which on comparing the coefficient of xn

gives that un = 0. Thus AG is not canonically graded. By a similar argument it can be 
verified that AG is not canonically graded also for n = 4. ✷
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