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1 Introduction

A standard graded algebra is a graded ring G =
⊕

n≥0 Gn, finitely generated over G0 by
its elements of degree 1, G = G0[G1]. When G0 is an Artinian local ring, we denote the
Hilbert function of G by HG(n) = �(Gn), and its Hilbert–Poincaré series by

PG(t) =
∑
n≥0

HG(n)tn.

This is a rational function PG(t) = h(t)
(1−t)d , where h(1) = deg(G), d = dimG are respectively

the degree or multiplicity of G and its dimension. We note by PG(t) the corresponding
Hilbert polynomial

PG(t) = e0

(
t + d − 1

d − 1

)
− e1

(
t + d − 2

d − 2

)
+ · · · + (−1)d−1ed−1.
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There are also iterated versions of these functions and we will make use of H1
G(n) =∑

i≤n HG(i) and the corresponding Hilbert series P 1
G(t) = PG(t)

1−t and Hilbert polynomial
P1

G(t).

There is a great deal of interest on the structure of the set H of these functions. Our
approach to them takes into account the underlying ordering:

PG(t) ≥ PG′(t) ⇔ HG(n) ≥ HG′(n), ∀n.

Thus for a given a condition C on Hilbert functions, we define H(C) to be the partially
ordered set of all Hilbert functions satisfying C. Two of the main questions are to search
for the extremal members of H(C) to ascertain when it is finite. Among these sets we will
consider H(d, e0), defined by all algebras with a given dimension d and multiplicity e0, and
its subset H(d, e0, e1).

One of the most significant classes of these algebras arise as associated graded rings
of filtrations of Noetherian local rings, particularly of the following kind. Let (R, m) be a
Noetherian local and let I be an m–primary ideal. The Hilbert function of the associated
graded ring

grI(R) =
⊕
n≥0

In/In+1

is significant for its role as a control of the blowup process of Spec(R) along the subvariety
V (I). A challenging problem consists in relating PI(t) = PgrI(R)(t) directly to R and I as
grI(R) may fail to inherit some of the arithmetical (e.g. Cohen–Macaulayness) properties
of R.

We will now describe some of our results. Each deals with one of the general aspects
mentioned above of the set of Hilbert functions of algebras of a fixed dimension. Section 2
deals with general bounds for the set H(d, e0). It is centered on estimates of the following
kind:

Theorem 2.3 Let (R, m) be a Noetherian local ring of dimension d ≥ 1 and let I be an
m−primary ideal in R. If J = (x1, . . . , xd) is a system of parameters in I, then

PI(t) ≤
�(R/I) + �(I/J)t

(1 − t)d
.

When R is Cohen–Macaulay, �(R/J) = e0(I), which gives the formula above a conve-
nient expression. In this case it shows that H(d, e0) has a unique maximal element.

The next section considers H(d, e0, e1). One difficulty here is that there may exist hidden
relationships between d, e0 and e1. After a general comparison between e0 and eP 1, we turn
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to an examination of H(d, e0, e1), but restricted to tangent cones of Cohen–Macaulay local
rings. The maximal Hilbert function in H(d, e0, e1) (Theorem 3.2) is then

P 1
R(t) ≤ 1 + bt + (e − b − 2)t2 + tδ+2

(1 − t)d+1
,

where b and δ are certain functions of e and e1.

Finally, in Section 4 we give a bound on the number of Hilbert functions that have a given
dimension and given extended multiplicity. This notion is however a strong requirement in
comparison to the ordinary multiplicity. In counterpoint it provides effective bounds on the
corresponding Hilbert coefficients:

Theorem 4.3 Let Deg(·) be an extended degree function on graded algebras. Given two
positive integers A, d, there exist only a finite number of Hilbert functions associated to
standard graded algebras G over Artinian rings such that dimG = d and Deg(G) ≤ A.
Furthermore, there are integers bi dependent only on dimG such that ei(G) ≤ biDeg(G)i+1.

2 Boundedness of Hilbert Functions

In this section we develop general bounds for the Hilbert functions of algebras of a given
dimension d and a given multiplicity.

The algebras considered throughout will be either Noetherian local rings or graded
algebras G =

⊕
n≥0 Gn where G0 is an Artinian local ring. For simplicity only of expression

we will drop ‘Noetherian’. It will be harmlessly assumed that the residue fields of these
local rings are infinite. This is achieved, without changing the Hilbert functions, in the
usual manner: replacing the local ring (R, m) by R[X]mR[X], where X is an indeterminate
over R.

Let (R, m) be a local ring of dimension d and let I be an m−primary ideal in R. We
denote by

HI(n) = �(In/In+1)

the Hilbert function of I. In the case I = m, we write HR(n). If we let

H1
I (n) =

n∑
j=0

HI(j) = �(R/In+1)

then H1
I (n) − H1

I (n − 1) = HI(n).

Let PI(t) =
∑

n≥0 HI(n)tn be the Hilbert series of I, then

P 1
I (t) =

∑
n≥0

H1
I (n)tn =

PI(t)
(1 − t)

.
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Lemma 2.1 (Singh’s inequality) Let (R, m) be a local ring and let I be an m−primary ideal
in R. If x ∈ I and I = I/(x), then

HI(n) = H1
I
(n) − �(In+1 : x/In)

for every n ≥ 0.

Proof. We let R = R/xR, then from the exact sequence

0 → (In+1 : x)/In −→ R/In −→ R/In+1 −→ R/I
n+1 → 0,

induced by multiplication by x we get the desired equality. ✷

Proposition 2.2 Let (R, m) be a local ring and let I be an m−primary ideal in R. If x ∈ I
and I = I/(x), then

PI(t) ≤
PI(t)
(1 − t)

Proof. Since
PI(t)
(1 − t)

= P 1
I
(t) =

∑
n≥0

H1
I
(n)tn,

the conclusion follows by Singh’s inequality. ✷

Theorem 2.3 Let (R, m) be a local ring of dimension d ≥ 1 and let I be an m−primary
ideal in R. If J = (x1, . . . , xd) is a system of parameters in I, then

PI(t) ≤
�(R/I) + �(I/J)t

(1 − t)d
.

Proof. We induct on d. Let d = 1 and J = (x) where x is a parameter in I. Since

�(R/I) + �(I/J)t
(1 − t)

=
�(R/I) + (�(R/J) − �(R/I))t

(1 − t)
=

�(R/I) + �(R/J)t + �(R/J)t2 + · · · + �(R/J)tn + · · ·
and HI(0) = �(R/I), we need only to prove that for every n ≥ 1 HI(n) ≤ �(R/xR). We
remark that

R ⊇ In ⊇ In+1 ⊇ xIn

R ⊇ xR ⊇ xIn,

so that
�(R/xR) + �(xR/xIn) = �(R/In) + �(In/xIn)
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Since �(R/In) ≥ �(xR/xIn), we get

�(R/xR) ≥ �(In/xIn) = HI(n) + �(In+1/xIn) ≥ HI(n).

Suppose d ≥ 2, and let x1 be a parameter in I. We denote by R = R/x1R, I = I/x1R,
J = J/x1R. Then I is a primary ideal in the local ring R which has dimR = d − 1. By
induction we have

PI(t) ≤
�(R/I) + �(I/J)t

(1 − t)d−1
=

�(R/I) + �(I/J)t
(1 − t)d−1

.

Since 1
(1−t) ≥ 0, we get

PI(t)
(1 − t)

≤ �(R/I) + �(I/J)t
(1 − t)d

.

The assertion follows since by Proposition 2.2, PI(t) ≤ PI(t)

(1−t) . ✷

Nearly the same treatment applies to standard graded algebras, which we state for later
reference.

Proposition 2.4 Let G =
⊕

n≥0 Gn be a standard graded algebra over the Artinian local

ring G0. Suppose dimG = d ≥ 1 and h ∈ G1. Setting G = G/(h), one has PG(t) ≤ PG(t)

1−t .

Corollary 2.5 Let (G0,m) be an Artinian local ring and let G =
⊕

n≥0 Gn be a stan-
dard algebra of dimension d ≥ 1. If J is the ideal generated by an homogeneous system of
parameters in G, then

PG(t) ≤ �(G0) + (�(G/J) − �(G0))t
(1 − t)d

.

Proof. Proposition 2.4 could be used to reduce to the dimension 1 case, but instead we
derive the assertion from Theorem 2.3.

Set I = G+ =
⊕

n≥1 Gn, and note that I is primary for the irrelevant maximal ideal
M of G, grI(G) � G, and that J is generated by a system of parameters. Note also that
the associated graded rings and lengths are not changed if G or the localization GM are
considered. Theorem 2.3 can now be applied directly. ✷

These results show that the Hilbert function of I is bounded by the rational function

�(R/I) + (�(R/J) − �(R/I))t
(1 − t)d

for any ideal J generated by a system of parameters that yields minimal length for R/J . It
is however not clear which number this turns out to be except when R is Cohen–Macaulay
when we have:
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Corollary 2.6 Let (R, m) be a Cohen-Macaulay local ring of dimension d ≥ 1 and multi-
plicity e. If I is an m−primary ideal in R and J = (x1, . . . , xd) is the ideal generated by a
superficial sequence for I, then

PI(t) ≤
�(R/I) + (e − �(R/I))t

(1 − t)d
. (1)

Proof. Under our assumptions, if x1, . . . , xd is a superficial sequence for I, then it is a
system of parameters in I and �(R/J) = e(R/J) = e. ✷

This formula, in case I = m, was obtained in [2] through different means. We shall now
explain the difference between the two sides of (1). Let J be a minimal reduction of the ideal
I. Since R has an infinite residue field, J is generated by a regular sequence. Now consider
the construction of the Sally module of I relative to J : it is simply the R[Jt]–module SJ(I)
defined by the natural exact sequence

0 → I · R[Jt] −→ I · R[It] −→ SJ(I) → 0.

SJ(I) = 0 exactly when I2 = JI, that is when I has so–called minimal multiplicity. In all
the other cases dim SJ(I) = dimR = d.

A calculation in [15] shows that

PI(t) =
�(R/I) + (e(I) − �(R/I))t

(1 − t)d
− (1 − t)PSJ (I)(t). (2)

In particular this formula gives the following equivalence of the inequality (1):

Corollary 2.7 The Hilbert function HS(t) of SJ(I) is non–decreasing.

This answers a question raised in [14, p. 385].

Remark 2.8 One application of this formula is to employ the technique of [2] to obtain
estimates for the reduction number of the ideal I. In other words, to find find a minimal
reduction L of I and an integer r for which an equality Ir+1 = LIr holds.

For simplicity of notation, set a := �(R/I) and b := �(I/J). From the inequality of
Hilbert functions

PI(t) ≤
�(R/I) + �(I/J)t

(1 − t)d
,

we have that for each positive integer n,

�(In/mIn) ≤ �(In/In+1) ≤ a

(
n + d − 1

d − 1

)
+ b

(
n + d − 2

d − 1

)
.

6



According to [3], if for some integer n we bound the right hand side of this inequality by(
n+d

d

)
, we have found a reduction L of I with reduction number < n. This is easy to work

out since the inequality is quadratic:

(n + d)(n + d − 1) > ad(n + d − 1) + bdn,

will be satisfied for (set c = a + b = �(R/J)):

r ≤ cd − 2d + 1 +
√

(a − 1)(d − 1)d.

The inequality r ≤ cd − 2d + 1 is the bound in [2] for the Cohen–Macaulay case, so that√
(a − 1)(d − 1)d is a penalty for the lack of that condition.

3 Maximal Functions of H(d, e, e1)

Throughout this section (R, m) will be a Cohen–Macaulay local ring of dimension d > 0.
We denote by e and e1 the first two coefficients of the Hilbert polynomial of R. We will
now consider the set H(d, e, e1) of the Hilbert functions defined by these parameters.

A first difficulty presents itself by the fact that e and e1 are loosely related ([8]):

e − 1 ≤ e1 ≤
(

e − 1
2

)
.

Actually there are more strict relations when Hilbert functions of primary ideals are
considered. Here is an instance:

Proposition 3.1 Let (R, m) be a Cohen–Macaulay local ring, let I be an m–primary ideal
and let e(I) and e1(I) be the first two coefficients of the Hilbert polynomial of I. If e(I) =
e(m) then

e1(I) ≤
(

e(I) − 2
2

)
.

Proof. The condition e(I) = e(m) means, by the theorem of Rees (see [9]), that m is not
the integral closure of I. This implies that for each positive integer n, In+1 = mIn, and
therefore �(In/In+1) < �(In/mIn).

We may assume dim R = 1. If (x) is a minimal reduction of I, the Hilbert function of
I can be written

HI(n) = �(In/In+1) = e(I) − �(In+1/xIn),

Ir+1 = xIr. We claim that for all n ≤ r, �(In/In+1) ≥ n + 2. Indeed otherwise we would
have �(In/mIn) ≤ n, which by the main theorem of [3] would lead to an equality In = yIn−1,
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contradicting the definition of r. This means that we have

e1(I) =
r∑

n=0

(e(I) − �(In/In+1))

≤ e(I) − �(R/I) +
r∑

n=1

(e(I) − (n + 2))

= e(I) − �(R/I) + r(e(I) − 2) −
(

r + 1
2

)
.

Since r ≤ e(I) − 1 (as we may assume that e(I) ≥ 3 as otherwise I = (x)), substituting we
have the desired inequality. ✷

In case I = m there is another relationship between e = e(m) and e1 = e1(m) that
improves the basic inequality of Corollary 2.6. the following inequalities hold (see [6] and
[4])

2e − h − 2 ≤ e1 ≤
(

e

2

)
−

(
h

2

)
We define

b = max{n :
(

n

2

)
≤

(
e

2

)
− e1}

δ = e1 − 2e + b + 2.

Since
(
h
2

)
≤

(
e
2

)
− e1, we have b ≥ h. In particular δ = e1 − 2e + b + 2 ≥ e1 − 2e + h + 2 ≥ 0.

Theorem 3.2 Let (R, m) be a Cohen–Macaulay local ring of dimension d ≥ 1. We denote
by e and e1 the first two coefficients of the Hilbert polynomial of R, and b and δ the integers
defined above. Then

P 1
R(t) ≤ 1 + bt + (e − b − 2)t2 + tδ+2

(1 − t)d+1
.

Proof. We induct on d ≥ 1. Suppose d = 1 and we prove that

P 1
R(t) ≤ 1 + bt + (e − b − 2)t2 + tδ+2

(1 − t)2

= 1 +
∑
n≥1

[(n − 1)e + b + 2 − min{n − 1, δ}]tn.

We recall that if y is a superficial element for R, then for every n

HR(n) = e − vn
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where vn = �(mn+1/ymn). In particular v0 = e − 1, v1 = e − h − 1. Moreover vn ≥ 0 for
every n, and if vj = 0 for some integer j, then vn = 0 for every n ≥ j.

We have H1
R(0) = 1, H1

R(1) = h + 2 ≤ b + 2 and for every n ≥ 2

H1
R(n) = (n + 1)e −

n∑
j=0

vj = (n − 1)e + h + 2 −
n∑

j=2

vj

We have to prove that for every n ≥ 2

h −
n∑

j=2

vj ≤ b − min{n − 1, δ} = b − min{n − 1, e1 − 2e + b + 2}

We recall that
e1 =

∑
j≥0

vj = 2e − h − 2 +
∑
j≥2

vj ,

and we remark that

h −
n∑

j=2

vj ≤ b − min{n − 1, e1 − 2e + b + 2} = b − min{n − 1, b − h +
∑
j≥2

vj},

or equivalently

b − h +
n∑

j=2

vj ≥ min{n − 1, b − h +
∑
j≥2

vj}.

In fact if vn = 0, then
∑n

j=2 vj =
∑

j≥2 vj ≥ n−1. Otherwise min{n−1, b−h+
∑

j≥2 vj} =
n − 1 ≤ b − h +

∑n
j=2 vj .

Suppose now d ≥ 2 and let x be a superficial element in R, then R = R/xR is a local
Cohen-Macaulay ring of dimension d − 1. In particular

e(R) = e(R), e1(R) = e1(R), h(R) = h(R).

Then

PR(t) ≤ 1 + bt + (e − b − 2)t2 + tδ+2

(1 − t)d

and the assertion follows by Proposition 2.2. ✷

Corollary 3.3 Let (R, m) be a Cohen-Macaulay local ring of dimension d ≥ 2. We denote
by e and e1 the first two coefficients of the Hilbert polynomial. Then

PR(t) ≤ 1 + bt + (e − b − 2)t2 + tδ+2

(1 − t)d
.
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Proof. Let x be a superficial element for R, then R/xR is a local Cohen-Macaulay ring of
dimension d − 1 ≥ 1, in particular e(R) = e(R/xR), e1(R) = e1(R/xR), h(R) = h(R/xR)
and, by Proposition 2.2, we have

PR(t) ≤ P 1
R/xR(t)

The assertion follows by Theorem 3.2. ✷

Remark 3.4 If we apply Corollary 2.6 with I = m, we obtain

PR(t) ≤ 1 + (e − 1)t
(1 − t)d

We remark that, if d ≥ 2, Corollary 3.3 improves this bound. To prove this, note that
1

(1−t)d−2 ≥ 0, so that we only need to prove that

1 + bt + (e − b − 2)t2 + tδ+2

(1 − t)2
≤ 1 + (e − 1)t

(1 − t)2

that is
(n − 1)e + b + 2 − min{n − 1, δ} ≤ ne + 1

or equivalently
e − b − 1 + min{n − 1, δ} ≥ 0

Since
(
b
2

)
≤

(
e
2

)
− e1 we have e ≥ b + 1 and the assertion follows.

Remark 3.5 Corollary 3.3 does not hold if (R, m) is a Cohen–Macaulay local ring of di-
mension one.

We recall that if e1 = e + 1, then by [5, Proposition 2.4] there are only two possible
Hilbert series

1 + (e − 3)t + 2t2

(1 − t)d
or

1 + (e − 2)t + t3

(1 − t)d

Note that e ≥ 4, hence b = e− 2 and δ = 1. If d = 1, these series are not comparable, while

P 1
R(t) ≤ 1 + (e − 2)t + t3

(1 − t)2
.

With the usual notations, for every Cohen–Macaulay local ring R of dimension d ≥ 1 it is
possible to prove that

PR(t) ≤ 1 + bt + (e − b − 1)t2

(1 − t)d

If e1 = e + 1, we get

PR(t) ≤ 1 + (e − 2)t + t2

(1 − t)d

but this is not satisfactory since e1 of the above series is not necessarily the given e1.
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4 Finiteness of Hilbert Functions

Let (R, m) be a Cohen–Macaulay local of dimension d and let I be an m–primary ideal of
multiplicity e0 = e(I). Denote by H(d, e0) the set of all Hilbert functions of the algebras
grI(R). In [10] and [11] it is proved that H(d, e0) is a finite set. Its difficult proof is
accomplished by providing very large bounds on the coefficients of the Hilbert polynomials
and on the Castelnuovo–Mumford regularity of the algebra grI(R) in terms of e0. As their
authors point out, the assertion fails if R is not Cohen–Macaulay.

Our result in this section shows that using a different notion of multiplicity one obtains
a weaker finiteness theorem which applies to arbitrary graded algebras.

We recall the notion of extended multiplicity introduced in [2]. Let S be either a graded
algebra generated by its elements of degree 1 or a local ring. An extended degree is a function
Deg(·) on finitely generated S–modules (graded in the case of the former ring) satisfying
the following conditions:

(i) If L = Γm(M) is the submodule of elements of M which are annihilated by a power of
the maximal ideal (maximal irrelevant ideal in the graded case) and M = M/L, then

Deg(M) = Deg(M) + �(L),

where �(·) is the ordinary length function.

(ii) (Bertini’s rule) If S has positive depth and h ∈ S is a generic hyperplane section on
M , then

Deg(M) ≥ Deg(M/hM).

(iii) (The calibration rule) If M is a Cohen–Macaulay module, then

Deg(M) = deg(M),

where deg(M) is the ordinary multiplicity of the module M .

In [13] an instance of such functions was constructed:

Definition 4.1 Let M be a finitely generated graded module over the graded algebra A
and let S be a Gorenstein graded algebra mapping onto A, with maximal graded ideal m.
Assume that dim S = r, dimM = d. The homological degree of M is the integer

hdeg(M) = deg(M) +
r∑

i=r−d+1

(
d − 1

i − r + d − 1

)
· hdeg(Exti

S(M, S))
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This expression becomes more compact when dim M = dimS = d > 0:

hdeg(M) = deg(M) +
d∑

i=1

(
d − 1
i − 1

)
· hdeg(Exti

S(M, S)).

Given one such function, [7] proposed a method to construct another extended degree
function where equality holds in the Bertini’s condition (3). We now restate Corollary 2.5
in the language of these functions.

Corollary 4.2 Let G =
⊕

n≥0 Gn be a standard graded algebra over an Artinian ring and
let Deg(·) be any extended degree function defined on G. If dimG = d ≥ 1 then

PG(t) ≤ �(G0) + (Deg(G) − �(G0)) · t
(1 − t)d

.

In other words, for all n ≥ 0

�(Gn) ≤ Deg(G)
(

d + n − 2
d − 1

)
+ �(G0)

(
d + n − 2

d − 2

)
.

Proof. Let J be an ideal that is generated by a system of parameters of degree 1 that is
generic for the function Deg(·) chosen; according to [2, Proposition 2.3], �(G/J) ≤ Deg(G).
Now replace �(G/J) by Deg(G) in the estimate of Corollary 2.5. ✷

Theorem 4.3 Fix an extended degree function Deg(·). Given two positive integers A, d,
there exists only a finite number of Hilbert functions associated to standard graded algebras
G over Artinian rings such that dimG = d and Deg(G) ≤ A. Furthermore, there are
integers bi dependent only on dimG such that ei(G) ≤ biDeg(G)i+1.

Proof. We are first going to show that the number of Hilbert polynomials of these algebras

H1
G(n) = �(G/Gn+1) = e0

(
n + d

d

)
− e1

(
n + d − 1

d − 1

)
+ · · · + (−1)ded, n � 0, (3)

is finite by finding bounds for the ei in terms of Deg(G).
We induct on d. The assertion is clear if d = 0. For d ≥ 1, we set G̃ = G/H0

G+
(G).

Note that G and G̃ have the same Hilbert polynomial and Deg(G̃) ≤ Deg(G). Let h ∈ G̃1

be a generic hyperplane section for the function Deg(·) and set G = G̃/(h). Since

�(G/Gn+1) = e0

(
n + d − 1

d − 1

)
− e1

(
n + d − 2

d − 2

)
+ · · · + (−1)d−1ed−1, n � 0,

12



and Deg(G) ≤ Deg(G̃) ≤ Deg(G), by the induction hypothesis the ei, for i < d, are all
bounded as functions of Deg(G).

We may return to the algebra G. We recall that the difference between the Hilbert
function of G and its Hilbert polynomial is given by ([1, Theorem 4.3.5(b)])

HG(n) − PG(n) =
d∑

i=0

(−1)i�(H i
G+

(G)n). (4)

We now make a key point on the vanishing of H i
G+

(G)n, for n ≥ 0. If we denote by ai(G)
the largest n for which this group does not vanish, we have the well-known description of
the Castelnuovo–Mumford regularity of the algebra G,

reg(G) = sup{ai(G) + i | i ≥ 0}.

However, according to [2] Deg(G) > reg(G) so that HG(n) = PG(n) for n ≥ Deg(G).
From this it is clear how to bound the coefficient ed of the Hilbert polynomial of G. One

way to proceed is to add the terms in (4) up to n = r = Deg(G) to get

�(G/Gr+1) −
d−1∑
i=0

(−1)iei

(
d + r − i

d − i

)
= K,

where we set

K =
d∑

i=0

(−1)i�(H i
G+

(G)≥0).

Note that (−1)ded = K. A crude estimate for K is obtained from the inequality

|K| ≤ |�(G/Gr+1)| + |
d−1∑
i=0

(−1)iei

(
d + r − i

d − i

)
|,

where now we replace �(G/Gr+1) by the estimate given in Corollary 4.2,

�(G/Gr+1) ≤ Deg(G)
(

d + r − 1
d

)
+ �(G0)

(
d + r − 1

d − 1

)
.

It follows that |ed| is bounded by a polynomial (of degree d + 1 when the degrees of the ei

are tracked carefully) in Deg(G).
The finiteness of the number of Hilbert functions now follows from the finiteness of

the possible Hilbert polynomials, the bound on the postulation numbers and of another
application of Corollary 4.2. ✷
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