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Abstract. The main result of this paper shows that the Castelnuovo-Mumford
regularity of the tangent cone of a local ring A is effectively bounded by the
dimension and any extended degree of A. From this it follows that there are only
a finite number of Hilbert-Samuel functions of local rings with given dimension
and extended degree.

Introduction

The Castelnuovo-Mumford regularity is a kind of universal bound for important
invariants of graded algebras such as the maximum degree of the syzygies and the
maximum non-vanishing degree of the local cohomology modules (see Section 1).
It has been used as a measure for the complexity of computational problems in
algebraic geometry and commutative algebra (see e.g. [EG], [BM], [V2]). One has
often tried to find upper bounds for the Castelnuovo-Mumford regularity in terms of
simpler invariants. The simplest invariants which reflect the complexity of a graded
algebra are the dimension and the multiplicity. However, the Castelnuovo-Mumford
regularity can not be bounded in terms of the multiplicity and the dimension.

Extended degree was recently introduced by Vasconcelos et al [DGV], [V1], [V2]
in order to capture the size of a module along with some of the complexity of its
structure. It is a numerical function on the category of finitely generated modules
over local or graded rings which generalizes the usual notion of multiplicity and
degree (see Section 2). These invariants tend to have a homological character but
are still amenable to explicit computation by computer algebra systems. It has been
shown by Doering, Gunston and Vasconcelos [DGV] that the Castelnuovo-Mumford
regularity of a graded algebra is less than any extended degree.

In this paper we show that the Castelnuovo-Mumford regularity of the tangent
cone of a local ring is bounded above by an exponential function of the dimension
and any extended degree. This bound is neither a consequence nor a simple gener-
alization of the result of [DGV] since there is no relationship between the extended
degrees of a local ring and those of its tangent cone.

As an application we give upper bounds for the coefficients of the Hilbert-Samuel
function in terms of any extended degree. It follows that there are only a finite num-
ber of Hilbert-Samuel functions for local rings with given dimension and extended
degree. This application covers three recent results on the finiteness of Hilbert
functions. The first result is due to Srinivas and Trivedi [ST2] who showed that
there exist only a finite number of Hilbert functions of Cohen-Macaulay local rings
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with given dimension and multiplicity (see also [KL] [ST1], [Tri1]). This result was
extended by Trivedi [Tri2] to the class of generalized Cohen-Macaulay rings by in-
volving the lengths of local cohomology modules. The last result is due to Rossi,
Valla and Vasconcelos [RVV] who showed that there exist only a finite number of
Hilbert functions of graded algebras with given dimension and extended degree.

Let (A, m) be a local ring with infinite residue field and d = dim A. We will
denote by reg(G) the Castelnuovo-Mumford regularity of the associated graded ring
G = ⊕n≥0m

n/mn+1 and we will write the Hilbert-Samuel polynomial of A in the
form

PA(X) :=
d∑

i=0

(−1)iei(A)

(
X + d − i

d − i

)
.

By definition PA(n) = (A/mn+1) for n � 0. Moreover, we set e(A) = e0(A) and
I(A) = D(A)− e(A), where D(A) is a given extended degree of A. We always have
I(A) ≥ 0 with I(A) = 0 if and only if A is a Cohen-Macaulay ring.

Our main results can be formulated as follows.

Theorem 3.3. Let D(A) be an arbitrary extended degree of A. Then

(i) reg(G) ≤ e(A) + I(A) − 1 if d = 1,

(ii) reg(G) ≤ e(A)(d−1)!−1[e(A)2 + e(A)I(A)+2I(A)− e(A)](d−1)! − I(A) if d ≥ 2.

Theorem 4.1. Let D(A) be an arbitrary extended degree of A. Then

(i) |e1(A)| ≤ e(A)[e(A) − 1]

2
+ I(A),

(ii) |ei(A)| ≤ e(A)i!−i[e(A)2 + e(A)I(A) + 2I(A)]i! − 1 if i ≥ 2.

Though these bounds are far from being optimal, they provide the means to make
a priori estimates in local algebra, following the philosophy of [DGV] and [V2].

The starting point of our approach is the observation that the regularity of the
tangent cone can be estimated by means of the geometric regularity (Proposition 3.1
and Propositon 3.2). Due to a result of Mumford [M], the problem of bounding the
geometric regularity can be reduced to the problem of bounding the Hilbert polyno-
mial (Theorem 1.4). This idea has been used in [ST2] and [Tri2]. But unlike [ST2]
and [Tri2] which refer to deep results from algebraic geometry such as Grothendieck’s
formal function theorem, we use standard algebraic methods to solve this problem.
The key point is a uniform bound for the Hilbert-Samuel function in terms of any
extended degree (Theorem 2.1). By induction, this bound allows us to estimate the
regularity of the tangent cone. The coefficients of the Hilbert-Samuel polynomial
can be bounded then by a device due to Vasconcelos.

We would like to mention that Trivedi [Tri1], [Tri2] has dealt with the Hilbert
function of Cohen-Macaulay and generalized Cohen-Macaulay modules with respect
to m-primary ideals. Our approach shows that the results of this paper can be also
extended to this general situation. But it is not our intention to go so far.

The paper is organized as follows. In Section 1 we prepare some facts and results
on the regularity of graded algebras. In Section 2 we estimate the geometric reg-
ularity in terms of any extended degree. In Section 3 and Section 4 we prove the
bound for the regularity of the tangent cone and the bounds for the coefficients of
the Hilbert-Samuel polynomial, respectively.
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1. Regularity of graded algebras

Throughout this section let S = k[x1, . . . , xr] be a polynomial ring over a field k.
Let M be a finitely generated graded S-module. Let

0 −→ Fs −→ · · · −→ F1 −→ F0 −→ M −→ 0

be a minimal graded free resolution of M . Write bi for the maximum of the degrees
of the generators of Fi. Following [E, Section 20.5] we say that M is m-regular for
some integer m if bj − j ≤ m for all j. The Castelnuovo-Mumford regularity reg(M)
of M is defined to be the least integer m for which M is m-regular, that is,

reg(M) = max{bi − i| i = 0, . . . , s}.

It is well known that M is m-regular if and only if Exti
S(M, S)n = 0 for all i and

all n ≤ −m − i − 1 (see [EG] and [E, Proposition 20.16]). This result is hard to
apply because in principle infinitely many conditions must be checked. However, in
some cases, it suffices to check just a few.

We say that M is weakly m-regular if Exti
S(M, S)−m−i−1 = 0 for all i [E, Section

20.5]. Concerning this weaker notion of regularity, we have the following result of
Mumford.

Theorem 1.1. (see [E, Theorem 20.17]) If M is weakly m-regular and L is the
maximal submodule of M having finite length, then M/L is m-regular.

If M has positive depth, then L = 0 so that m-regularity and weak m-regularity
coincide. It is less known that this is also the case for homogeneous quotient rings
of S (not necessarily of positive depth).

Corollary 1.2. Let R = S/I, where I is an homogeneous ideal. If R is weakly
m-regular, then R is m-regular.

Proof. By Theorem 1.1, R/L is m-regular, where L is the largest ideal of R of finite
length. Hence m ≥ 0 by the definition of regularity. From the short exact sequence

0 −→ I −→ S −→ R −→ 0

we get

Ext0
S(I, S)−m−1 � Ext1

S(R, S)−m−1 = 0,

Exti
S(I, S)−m−i−1 � Exti+1

S (R, S)−m−i−1 = 0, i ≥ 1,

so that I is weakly (m+1)-regular. Since I has positive depth, I is (m+1)-regular by
Theorem 1.1. Looking at the minimal graded free resolution of I, we can conclude
that R is m-regular.

Let R be a standard graded algebra over a field k. Let M now be a finitely
generated graded R-module. For any integer i we denote by H i

R+
(M) the i-th local

cohomology module of M , where R+ is the maximal graded ideal of R.

If R = S/I, where I is a homogeneous ideal, then H i
R+

(M) = H i
S+

(M). By local
duality (see [E, A4.2]) we have

H i
S+

(M)m
∼= Extr−i

S (M, S)−m−r
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for all i and m. Thus, M is m-regular if and only if H i
R+

(M)n = 0 for all i and

n ≥ m − i + 1, and M is weakly m-regular if and only if H i
R+

(M)m−i+1 = 0 for all

i. In particular, reg(M) is the least integer m for which H i
R+

(M)n = 0 for all i and
n ≥ m − i + 1. Hence the Castelnuovo-Mumford regularity can be defined for any
finite R-module regardless of its presentation.

We can use the Castelnuovo-Mumford regularity to control the behavior of the
Hilbert function. Let hM(n) the Hilbert function of M and pM(n) the Hilbert
polynomial of M which is by definition the unique polynomial ∈ Q[X] for which
pM(n) = hM(n) for all n � 0. Their difference is determined by the following
classical formula of Serre (see e.g. [BH, Theorem 4.4.3]):

hM(n) − pM(n) =
∑
i≥0

(−1)i dimk H i
R+

(M)n.

Hence we immediately obtain the following consequence.

Lemma 1.3. hR(n) = pR(n) for n > reg(R).

The regularity in algebraic geometry is defined a bit differently. Let F be a
coherent sheaf on P

r. Then F is called m-regular if H i(Pr,F(m − i)) = 0 for
all i > 0, where H i(Pr,F) denotes the ith sheaf cohomology of F [Mu, p. 99,
Definition]. This regularity is related to the Castelnuovo-Mumford regularity by the
Serre-Grothendieck correspondence which says that if F is the sheaf associated to
the R-module M , then H i(Pr,F(n)) ∼= H i+1

R+
(M)n for all n and i ≥ 1.

Due to a result of Mumford in [Mu], the regularity of an ideal sheaf can be
estimated in terms of that of a generic hyperplane section by means of the Hilbert
polynomial. We present here an algebraic version of this result, for which we shall
need the following notations.

Definition. We say that M is geometrically m-regular if H i
R+

(M)n = 0 for all i > 0
and n ≥ m− i + 1, and we define the geometric regularity g-reg(M) of M to be the
least integer m for which M is geometrically m-regular.

We always have g-reg(M) ≤ reg(M) and g-reg(M) = reg(M) if depth M > 0.

Following [Tru2] we call a homogeneous element z of R filter-regular if z �∈ Q for
any relevant associated prime ideal Q of R. Filter-regular linear forms always exist
if k is an infinite field.

The following theorem follows from the proof of [Mu, pp. 101, Theorem]. We
insert here a proof for completeness. Note that R = S/I is geometrically n-regular
if and only if the sheafification of I is (n + 1)-regular.

Theorem 1.4. Let R be a standard graded algebra with dim R ≥ 1. Let z be a filter-
regular linear form of R. If R/zR is geometrically m-regular, then R is geometrically
(m + pR(m)− hR/L(m))-regular, where L denotes the largest ideal of finite length of
R.

Proof. Since H i
R+

(L) = 0 for i > 0, we get H i
R+

(R) ∼= H i
R+

(R/L) for i > 0. Hence
g-reg(R) = g-reg(R/L). Similarly, since L + zR/zR is an ideal of finite length in
R/zR, we also have

g-reg(R/zR) = g-reg((R/zR)/L(R/zR)) = g-reg((R/L)/z(R/L)).
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Further it is clear that pR(X) = pR/L(X) thus, by replacing R/L with R, we may
assume that z is a regular element in R. With this assumption we have g-reg(R) =
reg(R) = reg(R/zR). We need to show that if R/zR is geometrically m-regular,
then R/zR is (m + pR(m) − hR(m))-regular.

Since R/zR is geometrically m-regular, we have H i(R/zR)n−i+1 = 0 for every
n ≥ m, i > 0. If we can prove H0

R+
(R/zR)n+1 = 0 for some n ≥ m, then R/zR

is weakly n-regular, hence n-regular by Corollary 1.2. So it is sufficient to show
that if R/zR is geometrically m-regular, there exists an integer j with m + 1 ≤ j ≤
m + pR(m) − hR(m) + 1 such that H0

R+
(R/zR)j = 0.

From the short exact sequence 0 −→ R(−1)
z−→ R −→ R/zR −→ 0 we get a

long exact sequence of local cohomology modules:

0 −→ H0
R+

(R/zR)n −→ H1
R+

(R)n−1 −→ H1
R+

(R)n −→ H1
R+

(R/zR)n −→ · · ·
−→ H i

R+
(R/zR)n −→ H i+1

R+
(R)n−1 −→ H i+1

R+
(R)n −→ · · ·

for every integer n. Since R/zR is geometrically m-regular, we have H i
R+

(R/zR)n =
0 for ever i > 0 and n ≥ m − i + 1. Putting this into the above exact sequence
yields, with the assumption n ≥ m,

dimk H1
R+

(R)n−1 − dimk H1
R+

(R)n = dimk H0
R+

(R/zR)n (1)

and the injectivity of the map H i+1
R+

(R)n−1 −→ H i+1
R+

(R)n for i ≥ 1. Because

H i+1
R+

(R)t = 0 for t � 0, it follows that H i+1
R+

(R)t = 0 for i ≥ 1 and t ≥ m − 1.

Since H0
R+

(R) = 0, this implies

hR(m) − pR(m) =
∑
i≥0

(−1)i dimk H i
R+

(R)m = − dimk H1
R+

(R)m.

Put s = 1 + m + pR(m) − hR(m) = 1 + m + dimk H1
R+

(R)m and assume by

contradiction that H0
R+

(R/zR)j �= 0 for every integer j with m + 1 ≤ j ≤ s. By (1)
we get

dimk H1
R+

(R)m =
s∑

j=m+1

dimk H0
R+

(R/zR)j+dimk H1
R+

(R)s ≥ s−m > dimk H1
R+

(R)m.

The proof of Theorem 1.4 is now complete.

2. Extended degree versus geometric regularity

Let (A, m) be a local ring with infinite residue field. Let M(A) denote the class
of finitely generated A-modules. Following [DGV] and [V2], an extended degree (or
cohomological degree) on M(A) is a numerical function D(·) on M(A) such that
the following properties hold for every module M ∈ M(A):

(i) D(M) = D(M/L) + (L), where L is the maximal submodule of M having
finite length,

(ii) D(M) ≥ D(M/xM) for a generic element x of m,

(iii) D(M) = e(M) if M is a Cohen-Macaulay A-module, where e(M) denotes the
multiplicity of M with respect to m.
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Example. The prototype of a extended degree is the homological degree hdeg(M)
introduced and studied by Vasconcelos in [V1] (see also [V2]).

If A is a homomorphic image of a Gorenstein ring S with dim S = n and M ∈
M(A) with dim M = r, we define

hdeg(M) := e(M) +
r−1∑
i=0

(
r − 1

i

)
hdeg(Extn−i

S (M, S)).

This is a recursive definition on the dimension since dim Extn−i
S (M, S) < r for i =

0, . . . , r − 1.

If A is not a homomorphic image of a Gorenstein ring, we only need to put

hdeg(M) := hdeg(M ⊗A Â),

where Â denotes the m-adic completion of A.

In particular, if M is a generalized Cohen-Macaulay module, that is, (H i
m(M)) <

∞ for i < r = dim M , where H i
m(M) denotes the i-th local cohomology module of

M with support m, then

hdeg(M) = e(M) +
r−1∑
i=0

(
r − 1

i

)
(H i

m(M)).

This class of modules is rather large. In fact, if A is a quotient ring of a Cohen-
Macaulay ring, then M is a generalized Cohen-Macaulay module if and only if
M is locally Cohen-Macaulay on the punctured spectrum of A and Supp(M) is
equidimensional.

Any extended degree D(M) will satisfy D(M) ≥ e(M) with equality holding if
and only if M is a Cohen-Macaulay module. Following [DGV] we call the difference

I(M) := D(M) − e(M).

a Cohen-Macaulay deviation of M . It is obvious that I(M) satisfies the following
conditions:

(i’) I(M) = I(M/L) + (L),

(ii”) I(M) ≥ I(M/xM) for a generic element x of m.

The Hilbert-Samuel function can be bounded in terms of any extended degree as
follows.

Theorem 2.1. Assume that d = dim A ≥ 1. Let I(A) be an arbitrary Cohen-
Macaulay deviation of A. For all n ≥ 0 we have

(A/mn+1) ≤ e(A)

(
n + d − 1

d

)
+ I(A)

(
n + d − 2

d − 1

)
+

(
n + d − 1

d − 1

)
.

Proof. Let x1, . . . , xd be a system of generic elements of m such that e(A) is the
multiplicity of A with respect to the ideal q = (x1, . . . , xd). We have

(A/mn+1) ≤ (A/mqn) = (A/qn) + (qn/mqn).

Since x1, . . . , xd are analytically independent,

(qn/mqn) =

(
n + d − 1

d − 1

)
.
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It remains to show that

(A/qn) ≤ e(A)

(
n + d − 1

d

)
+ I(A)

(
n + d − 2

d − 1

)
.

If d = 1, A/L is a Cohen-Macaulay ring, where L is the largest ideal of finite
length. Hence (A/qn + L) = e(A)n and I(A) = (L). From this it follows that

(A/qn) ≤ (A/qn + L) + (L) = e(A)n + I(A).

If d > 1, we put Ā = A/(x1) and q̄ = q/(x1). Then dim Ā = d − 1 ≥ 1,
e(Ā) = e(A) and I(Ā) ≤ I(A). By induction we may assume that

(Ā/q̄i) ≤ e(A)

(
i + d − 2

d − 1

)
+ I(A)

(
i + d − 3

d − 2

)
.

for all i ≥ 1. From the exact sequence

0 −→ qi−1 : x1/q
i−1 −→ A/qi−1 x1−→ A/qi −→ Ā/q̄i −→ 0

we can deduce that

(qi−1/qi) = (A/qi) − (A/qi−1) ≤ (Ā/q̄i).

Using these formulas for i = 1, . . . , n − 1 we get

(A/qn) =
n∑

i=1

(qi−1/qi) ≤
n−1∑
i=1

(Ā/q̄i)

≤
n∑

i=1

[
e(A)

(
i + d − 2

d − 1

)
+ I(A)

(
i + d − 3

d − 2

)]

= e(A)

(
n + d − 1

d

)
+ I(A)

(
n + d − 2

d − 1

)
.

Remark. From earlier results on the Hilbert functions of local rings [Tru1, Corollary
2.2], [DGV, Theorem 4.6], [RVV, Theorem 2.2] one can only derive the bound:

(A/mn+1) ≤ D(A)

(
n + d − 1

d

)
+

(
n + d − 1

d − 1

)
.

This bound is much weaker than the bound of Theorem 2.1.

We will use the above uniform bound for the Hilbert-Samuel function to give
a local version of Mumford’s Theorem 1.4. For this we shall need the following
observations.

Let G denote the associated graded ring
⊕

n≥0 mn/mn+1 of A. Let x be a generic
element of m. Without restriction we may assume that the initial form x∗ of x in G
is a filter-regular element. Let Ḡ denote the associated graded ring of A/(x).

Lemma 2.2. (cf. [ST2, Lemma 1]) g-reg(G/(x∗)) = g-reg(Ḡ).

Proof. We have

G/(x∗) =
⊕

n≥0 mn/(mn+1 + xmn−1),

Ḡ =
⊕

n≥0(m
n + (x))/(mn+1 + (x)) =

⊕
n≥0 mn/(mn+1 + (x) ∩ mn).
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Hence there is a natural graded epimorphism from G/(x∗) to Ḡ whose kernel is

E =
⊕
n≥0

(mn+1 + (x) ∩ mn)/(mn+1 + xmn−1).

Since x is a superficial element, mn+1 : x = mn + (0 : x) for all large n [N, Theorem
(22.6)]. Thus, (x) ∩ mn+1 = xmn so that En = 0 for all large n. This implies
H i

G+
(G/(x∗)) = H i

G+
(Ḡ) for i > 0. Hence g-reg(G/(x∗)) = g-reg(Ḡ).

For n ≥ reg(Ḡ), we can bound pG(n) by means of the Hilbert-Samuel function of
A/(x). Note that reg(Ḡ) ≥ g-reg(Ḡ).

Lemma 2.3. pG(n) = (A/mn+1 + (x)) − (0 : x) for n ≥ reg(Ḡ).

Proof. By [N, Theorem (22.6)] we have

hG(n) = (mn/mn+1) = (A/mn+1 + (x)) − (0 : x)

for all large n. Write (A/mn+1 + (x)) =
∑n

i=0 hḠ(i). By Lemma 1.3, hḠ(i) = pḠ(i)
for i > reg(Ḡ). Hence (A/mn+1 + (x)) − (0 : x) is a polynomial function for
n ≥ reg(Ḡ). This polynomial must be pG(n).

Now we can deduce from Mumford’s Theorem 1.4 the following local version.

Theorem 2.4. Assume that d = dim A ≥ 2. Let I(A) be an arbitrary Cohen-
Macaulay deviation of A. For n ≥ reg(Ḡ) we have

g-reg(G) ≤ e(A)

(
n + d − 2

d − 1

)
+ I(A)

(
n + d − 3

d − 2

)
.

Proof. By Theorem 1.4 and Lemma 2.2 we have

g-reg(G) ≤ n + pG(n) − hG/L(n),

where L is the largest ideal of finite length of G. Since dim G/L = d,

hG/L(n) ≥
(
n + d − 1

d − 1

)
.

By Lemma 2.3 and Theorem 2.1,

pG(n) ≤ (A/mn+1 + (x))

≤ e(A/(x))

(
n + d − 2

d − 1

)
+ I(A/(x))

(
n + d − 3

d − 2

)
+

(
n + d − 2

d − 2

)
.

Since e(A/(x)) = e(A) and I(A/(x)) ≤ I(A), we finally obtain

g-reg(G) ≤ n + e(A)

(
n + d − 2

d − 1

)
+ I(A)

(
n + d − 3

d − 2

)
+

(
n + d − 2

d − 2

)
−

(
n + d − 1

d − 1

)

≤ e(A)

(
n + d − 2

d − 1

)
+ I(A)

(
n + d − 3

d − 2

)
.
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3. Bounds for the regularity

Let (A, m) be a local ring with infinite residue field and d = dim A. Let G be the
associated graded ring of A. We will apply Theorem 2.4 to compute reg(G). For
that we shall need the following two propositions. The first proposition allows us
to pass to the case depth A > 0, while the second proposition shows that regularity
coincides with geometric regularity in this case.

Proposition 3.1. Let G′ denote the associated graded ring of A/L, where L is the
largest ideal of A of finite length. Then

reg(G) ≤ reg(G′) + (L).

Proof. We have

G′ =
⊕
n≥0

(mn + L)/(mn+1 + L) ∼=
⊕
n≥0

mn/(mn+1 + mn ∩ L).

Therefore, there is a natural graded epimorphism from G to G′ with the kernel

K =
⊕
n≥0

(mn+1 + mn ∩ L)/mn+1 ∼=
⊕
n≥0

mn ∩ L/mn+1 ∩ L.

Note that

(K) =
∑
n≥0

(mn ∩ L/mn+1 ∩ L) = (L).

Then K has finite length. This implies H i
G+

(G) ∼= H i
G+

(G′) for i > 0.

Put a = reg(G′) and  = (K). Then there exists an index m with a ≤ m ≤ a + 
such that Km+1 = 0. Since G′ is m-regular, H i

G+
(G)m−i+1 = H i

G+
(G′)m−i+1 = 0

for i ≥ 0. Hence G is weakly m-regular. By Corollary 1.2, G is m-regular so that
reg(G) ≤ m ≤ a + .

Proposition 3.2. Assume that depth A > 0. Then

reg(G) = g-reg(G).

Proof. Note that the result is trivial if depthG > 0. For any integer i we set ai(G) :=
max{n| H i

G+
(G)n �= 0}, where ai(M) = −∞ if H i

G+
(G) = 0. Then

reg(G) = max{ai(G) + i| i ≥ 0},
g-reg(G) = max{ai(G) + i| i > 0}.

By [H, Theorem 5.2] (see also [Ma, Theorem 2.1]), the assumption depthA > 0
implies a0(G) ≤ a1(G). Hence reg(G) = g-reg(G).

Now we are able to give an upper bound for the Castelnuovo-Mumford regularity
of the associated graded ring in terms of any extended degree.

Theorem 3.3. Let I(A) be an arbitrary Cohen-Macaulay deviation of A. Then

(i) reg(G) ≤ e(A) + I(A) − 1 if d = 1,

(ii) reg(G) ≤ e(A)(d−1)!−1[e(A)2 + e(A)I(A) + 2I(A)− e(A)](d−1)! − I(A) if d ≥ 2.
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Proof. Let G′ and L be as in Proposition 3.1. Then reg(G) ≤ reg(G′) + (L). Since
e(A) = e(A/L) and I(A) = I(A/L) + (L), we only need prove the conclusion for
the ring A/L. Replacing A by A/L we may assume that depth A > 0.

If d = 1, then A is a Cohen-Macaulay ring. Hence I(A) = 0. By [Tru2, Theorem
5.1(i) and Theorem 1.2(iii)] we already know that reg(G) ≤ e(A) − 1 (see also the
proof of [ST1, Lemma 5]).

For d ≥ 2 we choose a generic element x of m such that the initial form x∗ of x is
a filter-regular linear form in G. Note that e(A/(x)) = e(A) and I(A/(x)) ≤ I(A).
Let Ḡ denote the associated graded ring of A/xA. Put m = reg(Ḡ). By Proposition
3.2 and Theorem 2.4, we have

reg(G) = g-reg(G) ≤ e(A)

(
m + d − 2

d − 1

)
+ I(A)

(
m + d − 3

d − 2

)
.

Since (
m + d − 2

d − 1

)
≤ md−1,

(
m + d − 3

d − 2

)
≤ md−2,

this implies

reg(G) ≤ e(A)md−1 + I(A)md−2.

If d = 2, we have

m ≤ e(A/xA) + I(A/xA) − 1 ≤ e(A) + I(A) − 1.

From this it follows

reg(G) ≤ e(A)m + I(A) = e(A)[e(A) + I(A) − 1] + I(A)

= [e(A)2 + e(A)I(A) + 2I(A) − e(A)] − I(A).

If d ≥ 3, we have

e(A)md−1 + I(A)md−2 ≤ e(A)[m + I(A)]d−1 − I(A).

Using induction we may assume that

m ≤ e(A)(d−2)!−1[e(A)2 + e(A)I(A) + 2I(A) − e(A)](d−2)! − I(A).

Therefore, the last bound for reg(G) implies

reg(G) ≤ e(A)
{
e(A)(d−2)!−1[e(A)2 + e(A)I(A) + 2I(A) − e(A)](d−2)!

}d−1 − I(A)

≤ e(A)(d−1)!−1[e(A)2 + e(A)I(A) + 2I(A) − e(A)](d−1)! − I(A).

The proof of Theorem 3.3 is now complete.

Corollary 3.4. Let A be a Cohen-Macaulay local ring with d = dim A ≥ 1. Then

(i) reg(G) ≤ e(A) − 1 if d = 1,

(ii) reg(G) ≤ e(A)2((d−1)!)−1[e(A) − 1](d−1)! if d ≥ 2.

Proof. The Cohen-Macaulayness of A implies I(A) = 0. Hence the conclusion fol-
lows from Theorem 3.3.

As one can see from the proof, the bound of Theorem 3.3 can be further improved
if d ≥ 3, but the formula is not so compact.
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4. Finiteness of Hilbert functions

Let (A, m) be a local ring with infinite residue field and d = dim A. We can bound
the coefficients ei(A) in terms of any extended degree as follows.

Theorem 4.1. Let I(A) be an arbitrary Cohen-Macaulay deviation of A. Then

(i) |e1(A)| ≤ e(A)[e(A) − 1]

2
+ I(A),

(ii) |ei(A)| ≤ e(A)i!−i[e(A)2 + e(A)I(A) + 2I(A)]i! − 1 if i ≥ 2.

Proof. Let L be the largest ideal of finite length of A. Note that

(A/mn+1) = (A/mn+1 + L) + (mn+1 + L/mn+1)

= (A/mn+1 + L) + (L/mn+1 ∩ L) = (A/mn+1 + L) + (L)

for n large. Then we have

ei(A) = ei(A/L), i = 0, . . . , d − 1,

|ed(A)| ≤ |ed(A/L)| + (L).

If d = 1, then A/L is a Cohen-Macaulay ring. It is easy to see (see e.g [Ki]) that

|e1(A/L)| ≤ e(A/L)[e(A/L) − 1]

2
.

Since e(A) = e(A/L) and I(A) = (L), we get

|e1(A)| ≤ |e1(A/L)| + (L) ≤ e(A)[e(A) − 1]

2
+ I(A).

If d ≥ 2, we first consider the case depth A > 0. Choose a generic element x of
m such that the initial form z of x is a filter-regular linear form in G. Since x is
a superficial element of m, we have dim A/xA = d − 1, ei(A) = ei(A/x) for i =
0, ..., d − 1 (see e.g. [N, Theorem (22.6)] or [ST2, Lemma 1]) and I(A/(x)) ≤ I(A).
Using the induction hypothesis on A/(x) we may assume that

|e1(A)| ≤ e(A)[e(A) − 1]

2
+ I(A),

|ei(A)| ≤ e(A)i!−i[e(A)2 + e(A)I(A) + 2I(A)]i! − 1, i = 2, ..., d − 1.

It remains to prove the bound for ed(A). We have

(−1)ded(A) = PA(n) −
d−1∑
i=0

(−1)iei(A)

(
m + d − i

d − i

)

for all n > 0. Let G be the associated graded ring of A. Since (A/mn+1) =∑n
i=0 hG(i), Lemma 1.3 yields PA(n) = (A/mn+1) for n ≥ reg(G). Put

m = e(A)(d−1)!−1[e(A)2 + e(A)I(A) + 2I(A)](d−1)! − 1.

Then m ≥ reg(G) by Theorem 3.3. Therefore, using Theorem 2.1 we have

|ed(A)| ≤ I(A)

(
m + d − 2

d − 1

)
+

(
m + d − 1

d − 1

)
+

(
m + d − 1

d

)
e −

(
m + d

d

)
e+

+
d−1∑
i=1

|ei(A)|
(
m + d − i

d − i

)
≤ I(A)

(
m + d − 2

d − 1

)
+

(
m + d − 1

d − 1

)
+

d−1∑
i=1

|ei(A)|
(
m + d − i

d − i

)
.
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Note that (
m + d − 2

d − 1

)
≤ md−1,

(
m + d − i

d − i

)
≤ (d − i + 1)md−i.

A numerical computation shows that

|e1(A)| ≤ e(A)[e(A) − 1]

2
+ I(A) ≤ m − I(A) − d + 1

d
.

Moreover

|ei(A)| ≤ m, i = 2, . . . , d − 1.

Then we get

|ed(A)| ≤ I(A)md−1 + dmd−1 +
m − I(A) − d + 1

d
· dmd−1 +

d−1∑
i=2

md−i+1(d − i + 1)

= md + dmd−1 + (d − 2)md−2 + · · · + 2m2 ≤ (m + 1)d − 1

= e(A)d!−d[e(A)2 + e(A)I(A) + 2I(A)]d! − 1.

Finally, we consider the case depth A = 0. As shown above, we have

|e1(A/L)| ≤ e(A/L)[e(A/L) − 1]

2
+ I(A/L),

|ei(A/L)| ≤ e(A/L)i!−i[e(A/L)2 + e(A/L)I(A/L) + 2I(A/L)]i! − 1, i = 2, ..., d.

Since e(A) = e(A/L) and I(A) = I(A/L) + (L), this immediately implies

|e1(A)| = |e1(A/L)| ≤ e(A)[e(A) − 1]

2
+ I(A),

|ei(A)| = |ei(A/L)| ≤ e(A)i!−i[e(A)2 + e(A)I(A) + 2I(A)]i! − 1, i = 2, ..., d − 1,

|ed(A)| ≤ |ed(A/L)|+(L) ≤ e(A)d!−d[e(A)2 +e(A)I(A/L)+2I(A/L)]d!−1+(L) ≤
e(A)d!−d[e(A)2 + e(A)I(A) + 2I(A)]d! − 1.

The proof of Theorem 4.1 is now complete.

Corollary 4.2. Let A be a Cohen-Macaulay ring. Then

(i) |e1(A)| ≤ e(A)[e(A) − 1]

2
(see e.g. [Ki]),

(ii) |ei(A)| ≤ e(A)3(i!)−i − 1 if i ≥ 2.

Proof. This follows from the fact that I(A) = 0 for a Cohen-Macaulay ring A.

Remark. If A is a Cohen-Macaulay ring, Srinivas and Trivedi [ST2, Theorem 1]
already gave the bound:

|ei(A)| ≤ (9e(A)5)i!, i = 1, ..., d.

If A is a generalized Cohen-Macaulay ring, this bound has been extended by Trivedi
[Tri2, Theorem 8] to

|ei(A)| ≤ [(3 + c)2e(A)5]i!, i = 1, . . . , d,

for some invariant c ≥ 2I(A), where I(A) =
∑d−1

i=0

(
d−1

i

)
(H i

m(A)) is the Cohen-

Macaulay deviation of the homological degree hdeg(A). These bounds are worse
than the bounds of Theorem 4.1 and Corollary 4.2.
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As an application of our bounds for the Castelnuovo-Mumford regularity and the
coefficients of the Hilbert-Samuel polynomial we obtain the finiteness of Hilbert-
Samuel functions of local rings with given dimension and extended degree.

Corollary 4.3. Given two positive integers d and q there exist only a finite number
of Hilbert-Samuel functions for a local ring A with dim A = d and D(A) ≤ q.

Proof. By Lemma 1.3 it follows that PA(n) = (A/mn+1) for n ≥ reg(G). By
Theorem 2.1, there are only a finite number of possibilities for (A/mn+1) for a fixed
n. Hence the finiteness of the number of the possibilities for the function (A/mn+1)
follows from the finiteness of possibilities for reg(G) and for the polynomial PA(n).
Hence the conclusion follows from Theorem 3.3 and Theorem 4.1.

Obviously, Corollary 4.3 implies the finiteness of the number of Hilbert-Samuel
functions of Cohen-Macaulay rings with given dimension and multiplicity [ST2] and
of generalized Cohen-Macaulay rings with given dimension, multiplicity and lengths
of local cohomology modules [Tri2]. Moreover, our results can be modified to cover
the finiteness of the number of Hilbert-Samuel functions of graded algebras with
given dimension and extended degree [RVV].

To illustrate the above results we consider the following simple example.

Example. Let r ≥ 1 be any integer and consider the one-dimensional local ring
A = k[[x, y]]/(x2, xyr). Then A is a non-Cohen-Macaulay local ring with multiplicity
e(A) = 1 and Hilbert-Samuel function

(A/mn+1) =

{
2n + 1 for n ≤ r,
n + r + 1 for n > r.

This shows that there may be infinite Hilbert-Samuel functions for local rings with
given dimension and multiplicity (see [ST1, Section 4] for a similar example with
two-dimensional local domains). Since L = (x)/(x2, xyr), A is a generalized Cohen-
Macaulay ring with I(A) = (L) = r. Hence D(A) = r + 1.
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E-mail address: nvtrung@thevinh.ncst.ac.vn

Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16132
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