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Introduction

The Castelnuovo-Mumford regularity is a very important invariant of graded
modules which arises naturally in the study of finite free resolutions. There
have been several results which establish bounds for the Castelnuovo-Mumford
regularity of projective schemes in terms of numerical characters. Unfortu-
nately, these invariants are often difficult to handle and the problem of find-
ing good bounds in terms of simpler invariants is a topic featured in much
recent research.

The notion of regularity has been used by S. Kleiman in the construction
of bounded families of ideals or sheaves with given Hilbert polynomial, a
crucial point in the construction of Hilbert or Picard scheme. In a related
direction, Kleiman proved that if I is an equidimensional reduced ideal in a
polynomial ring S over an algebraically closed field, then the coefficients of



the Hilbert polynomial of R = S/I can be bounded by the dimension and
the multiplicity of R (see [10, Corollary 6.11]). Srinivas and Trivedi proved
that the corresponding result does not hold for a local domain. However,
they proved that there exist a finite number of Hilbert functions for a local
Cohen-Macaulay ring of given multiplicity and dimension (see [18]). The
proofs of the above results are very difficult and involve deep results from
Algebraic Geometry.

The aim of this paper is to introduce a unified approach which gives
more general results and easier proofs of the above mentioned results. This
approach is based on a classical result of Mumford on the behaviour of
the geometric regularity by hyperplane sections in [13] which allows us to
bound the regularity once there is a bound for the size of certain component
of the first local cohomology modules or a uniform bound for the Hilbert
polynomials. The finiteness of the Hilbert functions then follows from the
boundness of the regularity. More precisely, we shall see that a class C of
standard graded algebras has a finite number of Hilbert functions if and only
if there are upper bounds for the regularity and the embedding dimension
of the members of C.

In Section 1 we will prepare some preliminary facts on Castelnuovo-
Mumford regularity and related notions such as weak regularity and geo-
metric regularity. In Section 2 we will clarify the relationship between the
boundedness of Castelnuovo-regularity (resp. geometric regularity) and the
finiteness of the Hilbert functions (resp. Hilbert polynomials). The main
technique is the theory of Gröbner basis.

In Section 3 we will show that the boundedness of the regularity of classes
of graded algebras with positive depth can be deduced from the boundedness
of the dimension of the zero-graded component of the first local cohomology
modules. As a consequence, Kleiman’s result follows from the well-known
fact that for equidimensional reduced schemes, the dimension of the first
sheaf cohomology module is equal to the number of the connected compo-
nents minus one. We also give an example showing that Kleiman’s result
does not hold if the graded algebras are not equidimensional.

The local case is studied in Section 4. First we present a local version of
Mumford’s Theorem, which allows us to reduce the problem of bounding the
regularity of the tangent cone to the problem of bounding the Hilbert poly-
nomial. Such a bound for the Hilbert polynomials was already established
in [16], [21]. From this we can easily deduce Srinivas and Trivedi’s result on
the finiteness of the Hilbert functions of Cohen-Macaulay local rings with
given dimesion and multiplicity. This approach can be used to prove the
more general result that the number of numerical functions which can arise
as the Hilbert functions of local rings with given dimension and extended
degree is finite (see [15] for details).



1 Variations on Castelnuovo-Mumford regularity

Throughout this paper let S = k[x1, . . . , xr] be a polynomial ring over a field
k.
Let M = ⊕tMt be a finitely generated graded S-module and let

0 −→ Fs −→ · · · −→ F1 −→ F0 −→ M −→ 0

be a minimal graded free resolution of M as S-module. Write bi for the
maximum of the degrees of the generators of Fi. Following [6], Section 20.5,
we say that M is m-regular for some integer m if bj − j ≤ m for all j.

The Castelnuovo-Mumford regularity reg(M) of M is defined to be the
least integer m for which M is m-regular, that is,

reg(M) = max{bi − i| i = 0, . . . , s}.

It is well known that M is m-regular if and only if Exti
S(M,S)n = 0 for

all i and all n ≤ −m − i − 1 (see [6]). This result is hard to apply because
in principle infinitely many conditions must be checked. However, in some
cases, it suffices to check just a few.

We say that M is weakly m-regular if Exti
S(M,S)−m−i−1 = 0 for all i ≥ 0.

Due to a result of Mumford, if depthM > 0 and M is weakly m-regular, then
M is m-regular (see [6, 20.18]). From this we can easily deduce the following
result (see [15, Corollary 1.2]).

Proposition 1.1 Let R = S/I be a standard graded algebra and m a non-
negative integer. If R is weakly m-regular, then R is m-regular.

Using local duality we can characterize these notions of regularity by
means of the local cohomology modules of M.

Let = denote the maximal graded ideal of S and let M be a finitely
generated graded S-module. For any integer i we denote by H i

=(M) the i-th
local cohomology module of M with respect to =. By local duality (see [6],
A4.2) we have

H i
=(M)m

∼= Extr−i
S (M,S)−m−r

for all i and m. Thus, M is m-regular if and only if H i
=(M)n = 0 for all i and

n ≥ m− i + 1, and M is weakly m-regular if and only if H i
=(M)m−i+1 = 0

for all i. In particular, reg(M) is the least integer m for which H i
=(M)n = 0

for all i and n ≥ m− i + 1. Hence the Castelnuovo-Mumford regularity can
be defined for any finite S-module regardless of its presentation.

For any integer i we set ai(M) := max{n| H i
=(M)n 6= 0}, where ai(M) =

−∞ if H i
=(M) = 0. Then

reg(M) = max{ai(M) + i| i ≥ 0}.



A relevant remark is that the Castelnuovo-Mumford regularity controls
the behaviour of the Hilbert function. We recall that the Hilbert function
of M is the numerical function

hM (t) = dimk(Mt).

The Hilbert polynomial pM (X) of M is the polynomial of degree d− 1 such
that we have hM (t) = pM (t) for t >> 0.

The Hilbert function hM (n) and the Hilbert polynomial pM (n) are re-
lated by the formula hM (n) = pM (n) for n > reg(M). This is a consequence
of the Serre formula which holds for every integer n:

hM (n)− pM (n) =
∑
i≥0

(−1)i dimk H i
=(M)n.

For a proof, see for example [3, Theorem 4.4.3].

Inspired by the notion of regularity for sheaves on projective spaces, it
is natural to introduce the following weaker notion of regularity.

We say that M is geometrically m-regular if H i
=(M)n = 0 for all i > 0

and n ≥ m− i + 1, and we define the geometric regularity g-reg(M) of M to
be the least integer m for which M is geometrically m-regular.

It is clear that

g-reg(M) = max{ai(M) + i| i > 0}.

Hence we always have

g-reg(M) = reg(M/H0
=(M)) ≤ reg(M).

In particular, reg(M) = g-reg(M) if depthM > 0.
For a standard graded algebra R = S/I, a theorem of Gotzmann gives

an upper bound for the geometric regularity in term of an integer which can
be computed from the Hilbert polynomial of R.

Theorem 1.2 (see [8]) Assume that

pR(n) =
(

n + a1

a1

)
+

(
n + a2 − 1

a2

)
+ · · ·+

(
n + as − (s− 1)

as

)
with a1 ≥ a2 ≥ · · · ≥ as ≥ 0. Then

g-reg(R) = reg(S/Isat) ≤ s− 1.

For example, if R has dimension 1 and multiplicity e, then its Hilbert
polynomial is

pR(n) = e =
(

n

0

)
+

(
n− 1

0

)
+ · · ·+

(
n− (e− 1)

0

)



so that g-reg(R) ≤ e−1. In particular, if R is Cohen-Macaulay of dimension
1 and multiplicity e, then reg(R) ≤ e− 1.

Unlike the regularity, the geometric regularity does not behave well under
generic hyperplane sections. Take for example R = k[x, y, z]/(x2, xy). Then
g-reg(R) = reg(R) = 1 while g-reg(R/zR) = 0, reg(R/zR) = 1.

However the following result of Mumford (see [13, page 101, Theorem])
gives us the possibility to control this behaviour. It will be the basic re-
sult for our further investigation on the Castelnuovo-Mumford regularity of
a standard graded algebra R. A ring theoretic proof can be found in [15,
Theorem 1.4].

Theorem 1.3 Let R = S/I be a standard graded algebra and z ∈ R1 a
regular linear form in R. If g-reg(R/zR) ≤ m, then

(a) for every s ≥ m + 1,

dimk H1
=(R)m = dimk H1

=(R)s +
s∑

j=m+1

dimk H0
=(R/zR)j ,

(b) reg(R) ≤ m + dimk H1
=(R)m,

(c) dimk H1
=(R)t = pR(t)− hR(t) for every t ≥ m− 1.

2 Finiteness of Hilbert Functions

The aim of this section is to clarify how the finiteness of Hilbert functions
for a given class of standard graded algebras is related to the Castelnuovo-
Mumford regularity of the members of the class.

In the following we let R = S/I where S = k[x1, . . . , xr] is a polynomial
ring over an infinite field k of any characteristic and I an homogeneous ideal
of S. We will denote by embdim(R) its embedding dimension, that is hR(1).

It is well-known that

hS/I(t) = hS/in(I)(t)

for all t ≥ 0 where in(I) denotes the initial ideal of I with respect to some
term order. Therefore, we can pass to our study to Hilbert function of factor
rings by initial ideal.

On the other hand, we have the following basic result of Bayer and Still-
man on the behaviour of the regularity when passing to initial ideals.



Proposition 2.1 (see [1]) Let R = S/I be a standard graded algebra. Then

reg(R) = reg(S/gin(I)),

where gin(I) is the generic initial ideal of I with respect to the reverse lexi-
cographic order.

Moreover, it follows from a result of Bigatti and Hulett (for char(k) = 0)
and of Pardue (for char(k) > 0) that among all the ideals with the same
Hilbert functions, the lex-segment ideal has the largest regularity. Recall
that the lex-segment ideal Lex(I) of I is the monomial ideal which is gen-
erated in every degree t by the first hI(t) monomials in the lexicographical
order.

Proposition 2.2 (see [2], [9], [14]) Let R = S/I be a standard graded alge-
bra. Then

reg(R) ≤ reg(S/Lex(I)).

In the following we will employ the following notations.
Let C be a class of standard graded algebras. We say:

• C is HF-finite if the number of numerical functions which arise as the
Hilbert functions of R ∈ C is finite,

• C is HP-finite if the number of polynomials which arise as the Hilbert
polynomials of R ∈ C, is finite,

• C is reg-bounded if there exists an integer t such that reg(R) ≤ t for all
R ∈ C,

• C is g-reg-bounded if there exists an integer t such that g-reg(R) ≤ t
for all R ∈ C,

• C is embdim-bounded if if there exists an integer t such that embdim(R) ≤
t for all R ∈ C.

Moreover, we will denote by C the class of graded algebras of the form
R̄ := R/H0

=(R) for R ∈ C. Note that

hR(t) = hR̄(t)

for t � 0 and that

g-reg(R) = g-reg(R̄) = reg(R̄).

Then C is HP-finite if and only if C is HP-finite and C is g-reg-bounded if
and only if C is reg-bounded.



Theorem 2.3 Let C be a class of standard graded algebras. Then
(a) C is HF-finite if and only if C is reg-bounded and embdim-bounded,
(b) C is HP-finite if and only if C is g-reg-bounded and C is embdim-

bounded.

Proof: We may assume that the base field is infinite by tensoring it with a
transcendental extension.

(a) If C is HF-finite, then C is embdim-bounded. By Proposition 2.2, for
every S/I ∈ C we have reg(S/I) ≤ reg(S/Lex(I)). Since there are a finite
number of possible Hilbert functions for S/I, there are also a finite number
of lex-segment ideals for I, so that C is reg-bounded by Proposition 2.2.

Conversely, assume C is reg-bounded and embdim-bounded. By Propo-
sition 2.1, for all R = S/I ∈ C we have

reg(S/I) = reg(S/gin(I)) ≥ D − 1,

where D is the maximum degree of the monomials in the standard set of
generators of gin(I). Since the embedding dimension is bounded, the number
of monomials of degree smaller than or equal to D in S are finite. Thus,
there are only a finite number of possibilities for gin(I) and hence also for
the Hilbert functions of S/I because hS/I(t) = hS/gin(I)(t).

(b) By Theorem 1.2 we have g-reg(S/I) ≤ s − 1 where the integer s
depends only on the Hilbert polynomial of S/I. Therefore, if C is HP-finite,
then C is g-reg-bounded. As remarked above, C is reg-bounded. Further-
more, for every R ∈ C we have hR(1) ≤ hR(n) = pR(n) for n = reg(R). Since
C is HP-finite, there are only a finite number of Hilbert polynomials pR(n).
Let t = max{pR(n)|n = reg(R), R ∈ C}. Then hR(1) ≤ t for all R ∈ C.
Hence C is embdim-bounded.

Conversely, if C is g-reg-bounded, then C is reg-bounded. If moreover
C is embdim-bounded, then C is HF-finite by (a). This implies that C is
HP-finite.

Corollary 2.4 Let C be a class of standard graded algebras. Then C is
HP-finite if and only if C is HF-finite.

The following example shows that C is embdim-bounded does not imply
C is embdim-bounded.

Let C be the class of algebras of the form

Rn = k[x1, ..., xn]/(x2
1, ..., x

2
n−1, x1xn, ..., xn−1xn)

for n > 0. Then Rn
∼= k[xn]. Hence C is embdim-bounded while C is not

because embdimRn = n.



3 Reg-bounded algebras and Kleiman’s Theorem.

The aim of this section is to present a relevant class of algebras which are
reg-bounded and HF-finite. As an application, we give a proof of a theorem
of Kleiman (see [10, Corollary 6.11]), which says that the class of graded
reduced and equidimensional algebras with given multiplicity and dimension
is reg-bounded and HF-finite. The main tool is the afore mentioned result
of Mumford (Theorem 1.3).

For every integer p ≥ 1 we define recursively the following polynomials
Fp(X) with rational coefficients. We let

F1(X) := X

and, if p ≥ 2, then we let

Fp(X) := Fp−1(X) + X

(
Fp−1(X) + p− 1

p− 1

)
.

Theorem 3.1 Let C be a class of standard graded algebras with the following
properties:

1. depth(R) > 0 for every R ∈ C,

2. for every R ∈ C with dim R ≥ 2, there exists some regular linear form
x ∈ R such that R/(x)sat ∈ C,

3. there exists an integer t such that dimk H1
=(R)0 ≤ t for every R ∈ C.

Then for every R ∈ C with d = dim R we have

reg(R) ≤ Fd(t).

It would be interesting the problem of finding the complexity of the
regularity bound. Explicit bounds can be found in [15].

We need the following observation for the proof of the above theorem.

Lemma 3.2 Let C be a class of standard graded algebras as in the above
theorem. Then for all j ≥ 0 and for all R ∈ C we have

dimk H1
=(R)j ≤ t

(
j + d− 1

d− 1

)
.



Proof: If j = 0, the conclusion holds by the assumption. If d = 1, then
R is a one-dimensional standard graded algebra of positive depth. Hence
H0
=(R) = 0 so that by Serre formula we get for every j,

dimk H1
=(R)j = pR(j)− hR(j) = e− hR(j),

where e denotes the multiplicity of R. In particular, if R ∈ C and j ≥ 0, we
have

dimk H1
=(R)j = e− hR(j) ≤ e− 1 = dimk H1

=(R)0 ≤ t.

Hence the conclusion holds for every R ∈ C of dimension 1.
Now let j ≥ 1 and R ∈ C of dimension d ≥ 2. We may identify R

with the graded flat extension R′ of Theorem 3.1 (2). Then there exists
a regular element x ∈ R1 such that B = R/(x)sat ∈ C. It is clear that
H i(R/xR) = H i(B) for every i > 0. From the short exact sequence

0 −→ R(−1) x−→ R −→ R/xR −→ 0

we get for every j an exact sequence

· · · −→ H1
=(R)j−1 −→ H1

=(R)j −→ H1
=(R/xR)j −→ · · ·

Hence

dimk H1
=(R)j ≤ dimk H1

=(R)j−1+dimk H1
=(R/xR)j = dimk H1

=(R)j−1+dimk H1
=(B)j .

Since dim B = d− 1, we can use the inductive assumption and we get

dimk H1
=(R)j ≤ t

(
j + d− 2

d− 1

)
+ t

(
j + d− 2

d− 2

)
= t

(
j + d− 1

d− 1

)
.

Proof: of Theorem 3.1. If R ∈ C is one-dimensional, then R is Cohen-
Macaulay. Using Theorem 1.2 and the proof of Lemma 3.2 we have

reg(R) = g-reg(R) ≤ e− 1 = dimk H1
=(R)0 ≤ t = F1(t).

If R ∈ C is of dimension d ≥ 2, we replace R by the graded flat extension R′ of
(2). Then there exists a regular element x ∈ R1 such that B = R/(x)sat ∈ C.
We have depth(B) ≥ 1 and if we let m := reg(B), then

m = g-reg(B) = g-reg(R/xR).

By Theorem 1.3 and Lemma 3.2, this implies

reg(R) ≤ m + dimk H1
=(R)m ≤ m + t

(
m + d− 1

d− 1

)
.



Since dim B = d− 1, by induction we have m ≤ Fd−1(t). Thus,

reg(R) ≤ Fd−1(t) + t

(
Fd−1(t) + d− 1

d− 1

)
= Fd(t).

We want to apply now the above result to the class C of reduced equidi-
mensional graded algebras with given multiplicity e and dimension d ≥ 1.

It is clear that every R ∈ C has positive depth. Moreover, we have the
following easy lemma.

Lemma 3.3 If R is a reduced equidimensional graded algebra over an alge-
braically closed field with multiplicity e, then dimk H1

=(R)0 ≤ e− 1.

Proof: If dim R = 1, then R is Cohen-Macaulay and, as above, dimk H1
=(R)0 =

e − 1. If dim R ≥ 2, then dimk H1
=(R)0 = N − 1 where N is the number of

the connected components of the corresponding scheme [12, Theorem 1.2.6
(b)]. Since N ≤ e, we get dimk H1

=(R)0 ≤ e− 1.

We can prove now that Kleiman’s result is a particular case of our theo-
rem.

Theorem 3.4 [10, Corollary 6.11] Let C be the class of reduced equidimen-
sional graded algebras over an algebraically closed field with given multiplicity
e and dimension ≤ d, d ≥ 1. Then C is HF-finite.

Proof: By Bertini theorem [7, Corollary 3.4.14], if dim R ≥ 2, there exists
a regular linear form x ∈ R such that R/(x)sat is a reduced equidimensional
algebra with dim R/(x)sat = dim R − 1. Therefore, we may apply Theorem
3.1 and Lemma 3.3 to get reg(R) ≤ Fd(e− 1) for every R in the class C. So
C is reg-bounded. Now we need only to prove that C is embdim-bounded
since by Theorem 2.1 (a), these conditions will imply that C is finite.

Let R ∈ C be arbitrary. Write R = S/I where S is a polynomial ring
over an algebraically closed field and I =

⋂r
i=1 pi is an intersection of equidi-

mensional ideals pi. It is obvious that embdimR ≤
∑r

i=1 embdimS/pi and
r ≤ e. On the other hand, we know that embdimS/pi ≤ ei + d− 1, where ei

is the multiplicity of S/pi. Therefore,

embdimR ≤
r∑

i=1

ei + d− 1 = e + r(d− 1) ≤ ed.



Theorem 3.1 does not hold if we delete the assumption that every element
of the class is reduced. Take for example the class C of the graded algebras

Rn := k[x, y, z, t]/(y2, xy, x2, xzn − ytn) (n ≥ 1).

Note that (y2, xy, x2, xzn − ytn) is a primary ideal. We have dim(Rn) = 2
and e(Rr) = 2. The minimal free resolution of Rr over S = k[x, y, z, t] is
given by

0 −→ S(−n−3) −→ S(−3)2⊕S(−n−2)2 −→ S(−2)3⊕S(−n−1) −→ S −→ Rn −→ 0.

Hence reg(Rn) = n. Therefore, C is not reg-bounded and hence not HF-
finite.

Theorem 3.1 does not hold if we consider reduced graded algebras which
are not necessarily equidimensional. Let us consider the class of standard
graded algebras

Rn := k[x, y, z1, . . . , zr]/(x) ∩ (y, fn)

where fn ∈ k[z1, . . . , zr] is an irreducible form of degree n. We have dim Rn =
r + 1, e(Rn) = 1, but reg(Rn) = n.

4 The local version of Mumford Theorem

Let (A,m) be a local ring of dimension d and multiplicity e. Let

G = grm(A) = ⊕n≥0(mn/mn+1)

be the associated graded ring of A. The Hilbert function and the Hilbert
polynomial of A is by definition the Hilbert function and the Hilbert polyno-
mial of the standard graded algebra G, namely hA(t) := hG(t) = λ(mt/mt+1)
and pA(t) := pG(t).

We will need also the first iterated of these functions and polynomials.
So we let

h1
A(t) := h1

G(t) =
t∑

j=0

hG(j) = λ(A/mt+1)

and we denote by p1
G(t) the corresponding polynomial, that is the polynomial

which verifies the equality h1
G(t) = p1

G(t) for t � 0.
Let x be a superficial element in m and let

Ḡ := grm/xA(A/xA)



be the associated graded ring of the local ring A/xA. Let x∗ = x ∈ (m/m2)
be the initial form of x in G. We can consider the standard graded algebra
G/x∗G and compare it with G. These two algebras are not the same, unless
x∗ is a regular element in G, but they have the same geometric regularity,
namely

g-reg(G/x∗G) = g-reg(Ḡ).

This has been proved in [15, Lemma 2.2].
If A has positive depth, then it is well known that x is a regular element

in A and furthermore
pG(t) = p1

G
(t).

In that case, one can prove (see [15, Lemma 3.2]) that reg(G) = g-reg(G)
(even when G does not necessarily have positive depth).

With the above notations we present now a local version of Mumford’s
Theorem 1.3.

Theorem 4.1 Let (A, m) be a local ring of dimension d ≥ 2 and positive
depth. Let x be a superficial element in m and m := reg(G). Then

reg(G) ≤ m + h1
G
(m).

Proof: We have

m = reg(G) ≥ g-reg(G) = g-reg(G/x∗G) = g-reg(G/(H0
G+

(G) + x∗G)),

where the last equality follows because (H0
G+

(G) + x∗G)/x∗G) has finite
length in G/x∗G. Now we remark that x∗ is a regular element in G/H0

G+
(G),

hence, by using Mumford theorem, we get

reg(G) = g-reg(G) = g-reg(G/(H0
G+

(G)) ≤ m + pG/H0
G+

(G)(m)

= m + pG(m) = m + p1
G
(m) = m + h1

G
(m)

where the equality p1
G
(m) = h1

G
(m) is a consequence of the fact that m =

reg(G).

Using this local version of Mumford’s theorem we can easily deduce the
result of Srinivas and Trivedi which says that the number of Hilbert functions
of Cohen-Macaulay local rings with fixed dimension and multiplicity is finite
(see [18]). For that we need the following inequality proved in [16] and [21].

Proposition 4.2 Let (A,m) be a local ring of dimension d ≥ 1 and J an
ideal generated by a system of parameters in m. Then

HA(n) ≤ `(A/J)
(

n + d− 2
d− 1

)
+

(
n + d− 2

d− 2

)
.



If A is a d-dimensional Cohen-Macaulay ring of multiplicity e, then from
the above Proposition we immediately get the inequality

HA(n) ≤ e

(
n + d− 2

d− 1

)
+

(
n + d− 2

d− 2

)
.

For every d ≥ 1 we define recursively the following polynomials Qd(X)
with rational coefficients. We let

Q1(X) := X − 1

and, if d ≥ 2, then we let

Qd(X) := Qd−1(X) + X

(
Qd−1(X) + d− 2

d− 1

)
+

(
Qd−1(X) + d− 2

d− 2

)
.

Theorem 4.3 Let (A, m) be a Cohen-Macaulay local ring of dimension d ≥
1 and multiplicity e. Then

reg(G) ≤ Qd(e).

Proof: If d = 1, then reg(G) ≤ e − 1 = Q1(e). Let d ≥ 2 and x be a
superficial element in m. Then A/xA is a Cohen-Macaulay local ring of
dimension d− 1 and multiplicity e. By Proposition 4.2 we get

H1
G
(n) ≤ e

(
n + d− 2

d− 1

)
+

(
n + d− 2

d− 2

)
.

By Theorem 4.1 it follows that, if m = reg(G), then

reg(G) ≤ m + h1
G
(m) ≤ m + e

(
m + d− 2

d− 1

)
+

(
m + d− 2

d− 2

)
.

By induction we have m ≤ Qd−1(e), so that

reg(G) ≤ Qd−1(e) + e

(
Qd−1(e) + d− 2

d− 1

)
+

(
Qd−1(e) + d− 2

d− 2

)
= Qd(e).

Corollary 4.4 The number of numerical functions which can arise as the
Hilbert functions of Cohen-Macaulay local rings with given dimension and
multiplicity is finite.



Proof: By a classical result of Abhyankar we have v(m) ≤ e + d− 1, where
v(m) is the embedding dimension of G. Now we need only to apply Propo-
sition 2.3 and the above theorem.

The analogous of Kleiman result does not hold in the local case. Srinivas
and Trivedi gave the following example showing that classes of local domains
of fixed dimension and multiplicity need not to be HF-finite.

Let

Ar := k[[x, y, z, t]]/(zrtr − xy, x3 − z2ry, y3 − t2rx, x2tr − y2zr).

It is easy to see that Ar is a local domain and the associated graded ring of
Ar is the standard graded algebra

Gr = k[x, y, z, t]/(xy, x3, y3, x2tr − y2zr).

We have reg(Gr) = r + 1 and

HAr(n) =
{

5n− 1 for n ≤ r,
4n + r for n > r.

Finally, we remark that the above approach can be used to prove that
the number of numerical functions which can arise as the Hilbert functions
of local rings with given dimension and extended degree is finite. Note that
extended degree coincide with the usual multiplicity for Cohen-Macaulay
local rings. We refer to [15] for details. Furthermore, one can prove similar
results for Hilbert functions of finitely generated modules over local rings
with respect to m-primary ideals (see [19, 20, 11]).
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