PRIMARY IDEALS WITH GOOD ASSOCIATED GRADED RING

M. E. Rossi
Dipartimento di Matematica
Universita’ di Genova
Via Dodecaneso 35
16146-Genova, Italy
E-mail: rossim@dima.unige.it

Abstract

Let (A, \mathcal{M}) be a local Cohen-Macaulay ring of dimension d. Let I be an $\mathcal{M}-$ primary ideal and let J be the ideal generated by a maximal superficial sequence for I. Under these assumptions Valabrega and Valla [VV] proved that the associated graded ring G of I is Cohen-Macaulay if and only if $I^{n} \cap J=J I^{n-1}$ for every integer n.

In this paper we consider the class of the \mathcal{M}-primary ideals I such that, for some positive integer k, we have $I^{n} \cap J=J I^{n-1}$ for $n \leq k$ and $\lambda\left(I^{k+1} / J I^{k}\right) \leq 1$. In this case G need not be Cohen-Macaulay. In Theorem 2.2 . we show that G is Cohen-Macaulay unless the ideals we are considering are of maximal CohenMacaulay type. One can use the ideas of [RV2] and [RV3] to prove that, for the ideals we consider, the depth of G is at least $d-1$ and that its h-vector has no negative components. We characterize the possible Hilbert function of G.

Our approach gives a proof of an extended version of a conjecture of J. Sally (proved in [RV2] and independently in [W] in the case $I=\mathcal{M}$). Several results proved in [S2], [H], [RV1], [RV2], [RV3] are unified and generalized.

Introduction

Let (A, \mathcal{M}) be a local Cohen-Macaulay ring of dimension d and let I be an \mathcal{M}-primary ideal. We denote the associated graded ring of I by

$$
G:=g r_{I}(A)=\oplus_{n \geq 0} I^{n} / I^{n+1}
$$

In the literature there are several papers which discuss the depth of the associated graded ring in terms of certain numerical invariants of I.

If J is an ideal generated by a maximal superficial sequence for I, then Valabrega and Valla in [VV] proved that G is Cohen-Macaulay if and only if $I^{n} \cap J=J I^{n-1}$ for every integer n. If this is the case one says that J is generated by a standard base (see [RoV]).

In this paper we consider the \mathcal{M} - primary ideals such that, for some integer k, $I^{n} \cap J=J I^{n-1}$ for $n \leq k$. A primary ideal which satisfies this condition for some integer k is called $k-$ standard.
It is clear that if I is k-standard and $I^{k+1}=J I^{k}$ then, by Valabrega-Valla's condition, G is Cohen-Macaulay.

It is natural to consider the k-standard ideals I such that $\lambda\left(I^{k+1} / J I^{k}\right)=1$, where $\lambda()$ denote the length as A-module. In this case G is not necessarily Cohen-Macaulay.

For example, if we consider the \mathcal{M}-primary ideals I of multiplicity

$$
e(I)=\lambda\left(I / I^{2}\right)+(1-d) \lambda(A / I)+1
$$

then $\lambda\left(I^{2} / J I\right)=1$ and we are in the above situation for $k=1$.
In this case, if $I=\mathcal{M}$, Sally proved that G is Cohen-Macaulay unless the local rings of maximal type (see [S2]). If this is the case, in [RV2] and, with a different method, in [W] it was proved that depth $G \geq d-1$.
The question about depth G was still open for a general \mathcal{M}-primary ideal. Corollary 2.3. and Corollary 3.8. give a complete answer to this problem.

By following the method used in [RV2], Huckaba proved that if $I^{2} \cap J=J I$ and $\lambda\left(I^{3} / J I^{2}\right) \leq 1$, then depth $G \geq d-1$ (see $\left.[\mathrm{H}]\right)$. In particular the author gives a positive answer to the Sally conjecture for an \mathcal{M}-primary ideal in the integrally closed case. In this case I is $2-$ standard.

If (A, \mathcal{M}) is a Cohen-Macaulay local ring of embedding dimension N, multiplicity e and initial degree $t \geq 2$, it is well known that

$$
e \geq\binom{ N-d+t-1}{t-1}
$$

and, if the equality holds, then G is Cohen-Macaulay.
If $e=\binom{N-d+t-1}{t-1}+1$, then $I^{n} \cap J=J I^{n-1}$ for every $n \leq t$ and $\lambda\left(I^{t} / J I^{t-1}\right)=1$. In this case I is t-standard.
Once more, it is known that depth $G \geq d-1$ ([RV3]) and, if the the Cohen-Macaulay type of A is not maximal, then G is Cohen-Macaulay ([RV1]).

In this paper in order to extend the above facts, we consider the \mathcal{M} - primary ideals which are $k-$ standard for some integer k. If $\lambda\left(I^{k+1} / J I^{k}\right) \leq 1$, we study the depth of the associated graded ring and the Hilbert function of I.

We denote by $\tau(I)$ the Cohen-Macaulay type of I, which is defined as

$$
\tau(I):=\lambda(J: I / J)
$$

One remarks that if $I=\mathcal{M}$, then $\tau(I)$ coincides with the Cohen-Macaulay type of A.

In Theorem 2.2. we give a condition in terms of $\tau(I)$ in order to get G CohenMacaulay. In any case we characterize the Hilbert function of I or equivalently the h-polynomial of I.

More generally in Theorem 3.2. we estimate the depth of G and we characterize the possible Hilbert functions of G.

After this paper was completed, I came to know that J. Elias in [E], A.Corso, C.Polini and M.Vaz Pinto in [CPV] obtained results which partially overlap the content of the last section of this paper.

1. Preliminaries

Let (A, \mathcal{M}) be a local ring of dimension d and let I be an \mathcal{M}-primary ideal. For all $n \geq 0, I^{n} / I^{n+1}$ is a finite $A / I-$ module and we denote by $\lambda\left(I^{n} / I^{n+1}\right)$ the corrispondent length.

The Hilbert function of I is by definition the Hilbert function of the associated graded ring of I which is the homogeneous A / I-module

$$
G:=g r_{I}(A)=\oplus_{n \geq 0} I^{n} / I^{n+1}
$$

Hence

$$
H_{I}(n)=H_{G}(n)=\lambda\left(I^{n} / I^{n+1}\right)
$$

The generating function of this numerical function is the power series

$$
P_{I}(z)=\sum_{n \in \mathbb{N}} H_{I}(n) z^{n}
$$

which is called the Hilbert Series of I. This series is rational and there exists a polynomial $h(z) \in \mathbb{Z}[z]$ such that

$$
P_{I}(z)=\frac{h(z)}{(1-z)^{d}}
$$

where $h(1) \geq 1$.
The polynomial $h(z)=h_{0}+h_{1} z+\cdots+h_{s} z^{s}$ is called the h-polynomial of I and the vector $\left(h_{0}, h_{1}, \ldots, h_{s}\right)$ the h-vector of I.

For every $i \geq 0$, the Hilbert coefficients of I can be characterized as follows

$$
e_{i}(I):=\frac{h^{(i)}(1)}{i!}
$$

where $h^{(i)}$ denotes the i-th derivative of $h(z)$. In particular $e_{0}(I)=h(1):=e(I)$ is the multiplicity of I (see [BH],Chap.4).

We recall that an element x in I is called superficial for I if there exists an integer $c>0$ such that

$$
\left(I^{n}: x\right) \cap I^{c}=I^{n-1}
$$

for every $n>c$.
It is easy to see that a superficial element x is not in I^{2} and that x is superficial for I if and only if $x^{*}:=\bar{x} \in I / I^{2}$ does not belong to the relevant associated primes of G. Hence, if the residue field is infinite, superficial elements always exist. By passing, if needed, to the local ring $A[X]_{(\mathcal{M}, X)}$ we may assume that the residue field is infinite.

Further if depth $A \geq 1$ every superficial element for I is also a regular element in A.

A sequence x_{1}, \ldots, x_{r} in the local ring (A, \mathcal{M}) is called a superficial sequence for I, if x_{1} is superficial for I and $\overline{x_{i}}$ is superficial for $I /\left(x_{1}, \ldots, x_{i-1}\right)$ for $2 \leq i \leq r$.

If depth $A \geq r$, every superficial sequence x_{1}, \ldots, x_{r} for I is also a regular sequence in A.

The following well known properties of the superficial sequences will be needed.
In particular if $J=\left(x_{1}, \ldots, x_{r}\right), \bar{I}=I / J$ and $B=A / J$, then

- $e_{i}(I)=e_{i}(\bar{I})$ for $i=0, \ldots, d-r$.
- $\operatorname{depth}\left(g r_{I}(A)\right) \geq r \Longleftrightarrow x_{1}^{*}, \ldots, x_{r}^{*}$ is a regular sequence in $g r_{I}(A) \Longleftrightarrow$
$P_{I}(z)=\frac{P_{T}(z)}{(1-z)^{r}} \Longleftrightarrow I^{j} \cap J=J I^{j-1}$ for every $j \geq 1$.
- $\operatorname{depth}\left(g r_{I}(A)\right) \geq r+1 \Longleftrightarrow \operatorname{depth}\left(g r_{\bar{I}}(B)\right) \geq 1$.

This last property is the so called Sally's machine which is a very important trick to reduce dimension in questions relating to depth properties of $g r_{I}(A)$ (see Lemma 2.2 in [HM]).
Moreover if x is a superficial element for I, in [ERV] and [GR] it was proved :

- $e_{d}(I)=e_{d}(I /(x)) \Longleftrightarrow \operatorname{depth}\left(g r_{I}(A)\right) \geq 1$

If A is Cohen-Macaulay, we denote by $J=\left(x_{1}, \ldots, x_{d}\right)$ the ideal generated by a maximal superficial sequence and, for every $j \geq 0$, we denote by v_{j} the following integer

$$
v_{j}:=\lambda\left(I^{j+1} / J I^{j}\right)
$$

We recall that, if A is a one-dimensional Cohen-Macaulay local ring we have $H_{I}(j)=e(I)-v_{j}$ and then

$$
\begin{aligned}
& e_{1}(I)=\sum_{j=0}^{s-1} v_{j} \\
& e_{2}(I)=\sum_{j=1}^{s-1} j v_{j}
\end{aligned}
$$

where s is the reduction number of I, such that the least integer n such that $v_{n}=0$.
Similar formulas can be found in the two dimensional case by using the following construction due to Ratliff and Rush (see [RR]).

Let (A, \mathcal{M}) be a Cohen-Macaulay local ring and I an \mathcal{M}-primary ideal. For every n we consider the chain of ideals

$$
I^{n} \subseteq I^{n+1}: I \subseteq I^{n+2}: I^{2} \subseteq \cdots \subseteq I^{n+k}: I^{k} \subseteq \cdots
$$

This chain stabilizes at an ideal which was denoted by Ratliff and Rush as

$$
\widetilde{I^{n}}:=\bigcup_{k \geq 1}\left(I^{n+k}: I^{k}\right)
$$

We define for every $n \geq 0$

$$
\rho_{n}:=\lambda\left(\widetilde{I^{n+1}} / \widetilde{I^{n}}\right) .
$$

If $\operatorname{dim} A=2$, the following formulas have been proved in [HM] Corollary 4.13 by using a homological approach and, with a different proof, in [GR] Corollary 1.10.

$$
e_{1}(I)=\sum_{j \geq 0} \rho_{j}
$$

and

$$
e_{2}(I)=\sum_{j \geq 1} j \rho_{j}
$$

2. k-standard \mathcal{M}-primary ideals

We recall that since we are assuming A to be Cohen-Macaulay of positive dimension d, we can always find a maximal superficial sequence x_{1}, \ldots, x_{d} for I.

Definition 2.1. Let (A, \mathcal{M}) be a Cohen-Macaulay local ring of dimension $d>0$, k a positive integer and I an \mathcal{M}-primary ideal. We say that I is k-standard if there exists an ideal J generated by a maximal superficial sequence such that

$$
I^{n} \cap J=I^{n-1} \quad J \quad \forall n \leq k
$$

In the following if I is k-standard, we denote by J an ideal generated by a maximal superficial sequence such that $I^{n} \cap J=I^{n-1} J \quad \forall n \leq k$.

Notice that:

- If I is k-standard with $k>1$, then I is $(k-1)$ - standard .
- Every \mathcal{M}-primary ideal I is 1 - standard .
- If I is integrally closed, then I is $2-$ standard .

Let (A, \mathcal{M}) be a Cohen-Macaulay local ring with embedding dimension N.

- If the initial degree $\operatorname{indeg}(A):=\min \left\{j: \operatorname{dim}_{k}\left(\mathcal{M}^{j} / \mathcal{M}^{j+1}\right)<\binom{N+j-1}{j}\right\} \geq$ t, then \mathcal{M} is t-standard (see [RV3], Proposition 2.2)
- If A is a stretched ring with Cohen-Macaulay type $\tau<N-d$ and multiplicity $e=N-d+3$, then \mathcal{M} is $3-$ standard (see [RV4]).

It is clear that if I is k-standard and $I^{k+1}=J I^{k}$, then $I^{n} \cap J=J I^{n-1}$ for every integer n and so G is Cohen- Macaulay.
If $\lambda\left(I^{k+1} / J I^{k}\right)=1$, the following examples point out the different situations.

- $A=k\left[\left[t^{4}, t^{5}, t^{11}\right]\right], I=\mathcal{M}$ and $J=\left(t^{4}\right), \lambda\left(I^{2} / J I\right)=1$ and depth $G=0$.
- $A=k[[x, y, z, u]], I=\left(x^{2}, y^{2}, z^{2}, u^{2}, x y+z u\right)$ and $J=\left(x^{2}, y^{2}, z^{2}, u^{2}\right), \lambda\left(I^{2} / J I\right)=$ 1 and depth $G=3$.
- $A=k\left[\left[t^{7}, t^{10}, t^{12}, t^{15}, t^{18}\right]\right], I=\mathcal{M}$ and $J=\left(t^{7}\right)$, then I is $2-$ standard, $\lambda\left(I^{3} / J I^{2}\right)=1$ and in this case G is Cohen-Macaulay.
- $A=k\left[\left[t^{7}, t^{8}, t^{12}, t^{13}, t^{18}\right]\right], I=\mathcal{M}$ and $J=\left(t^{7}\right), I$ is $2-$ standard,,$\lambda\left(I^{3} / J I^{2}\right)=$ 1 and $\operatorname{depth} G=0$.

Let (A, \mathcal{M}) be a Cohen-Macaulay local ring of dimension d, embedding dimension N and multiplicity e.
Sally proved that if $e=N-d+2$ (or equivalently $\lambda\left(\mathcal{M}^{2} / J \mathcal{M}\right)=1$) the exceptions to the Cohen-Macaulayness of G come from the Cohen-Macaulay local rings of maximal Cohen-Macaulay type (see [S2]).

In order to extend this fact, we define

$$
\tau(I):=\lambda(J: I / J)
$$

and we call it the Cohen-Macaulay type of I.
Theorem 2.2. Let (A, \mathcal{M}) be a d-dimensional Cohen-Macaulay local ring, k a positive integer and I a k-standard \mathcal{M}-primary ideal.
Suppose $\lambda\left(I^{k+1} / J I^{k}\right) \leq 1$ and $\tau(I)<\lambda\left(I^{k} / J I^{k-1}\right)-1$, then

1) G is Cohen-Macaulay
2) the h-polynomial of I is

$$
h(z)=\sum_{n=0}^{k} \lambda\left(I^{n} /\left(I^{n+1}+J I^{n-1}\right)\right) z^{n}+c z^{k+1}
$$

where $c=\lambda\left(I^{k+1} / J I^{k}\right)$.
Proof. We have

$$
J I^{k} \subseteq I^{k+1} \cap J \subseteq I^{k+1}
$$

If $J I^{k} \neq I^{k+1} \cap J$, then $I^{k+1} \subseteq J$ and so $I^{k} \subseteq J: I$. It follows $\tau(I) \geq \lambda\left(I^{k}+J / J\right)=$ $\lambda\left(I^{k} / J I^{k-1}\right)$. Then

$$
J I^{k}=I^{k+1} \cap J
$$

If one proves

$$
I^{k+2}=J I^{k+1}
$$

then G is Cohen-Macaulay since $I^{n} \cap J=J I^{n-1}$ for every integer n.

We may suppose $\lambda\left(I^{k+1} / J I^{k}\right)=1$. Then there exist $a \in I$ and $b \in I^{k}$ such that

$$
I^{k+1}=J I^{k}+(a b)
$$

with $a b \mathcal{M} \subseteq J I^{k}$. In particular

$$
I^{k+2}=J I^{k+1}+a I^{k+1}
$$

We have to prove $a I^{k+1} \subseteq J I^{k+1}$.
First we remark that

$$
I^{k}=(b)+(J: \quad a) \cap I^{k}
$$

If $x \in I^{k}$, then $x a \in I^{k+1}=J I^{k}+(a b)$. Hence there exists $c \in A$ such that $(x-c b) a \in J I^{k}$, in particular $x-c b \in(J: a) \cap I^{k}$ and the equality follows.
We have

$$
J I^{k-1} \subseteq(J: I) \cap I^{k} \subseteq(J: a) \cap I^{k} \subseteq I^{k}
$$

Since $b \mathcal{M} \subseteq(J: a)$, we have $\lambda\left(I^{k} /(J: a) \cap I^{k}\right)=1$. Moreover
$\lambda\left((J: I) \cap I^{k} / J I^{k-1}\right)=\lambda\left((J: I) \cap I^{k} / J \cap I^{k}\right)=\lambda\left((J: I) \cap I^{k}+J / J\right) \leq \tau(I) \leq$ $\lambda\left(I^{k} / J I^{k-1}\right)-2$, then

$$
(J: I) \cap I^{k} \neq(J: a) \cap I^{k} .
$$

We find an element $p \in(J: a) \cap I^{k}, p \notin J: I$. We can write

$$
I^{k+1}=J I^{k}+p I
$$

and so

$$
a I^{k+1} \subseteq J I^{k+1}+a p I \subseteq J I^{k+1}
$$

as required.
In particular the h-polynomial of I concides with that of its artinian reduction. We only remark that $\lambda\left(I^{n}+J / I^{n+1}+J\right)=\lambda\left(I^{n} / I^{n+1}+J I^{n-1}\right)$ if $n \leq k$, moreover $I^{k+2} \subseteq J$ and so $\lambda\left(I^{k+1}+J / I^{k+2}+J\right)=\lambda\left(I^{k+1} / J I^{k}\right)=c$.

- Actually one remarks that in the above Theorem we get the same result with the weaker assumption $\lambda\left((J: I) \cap I^{k} / J I^{k-1}\right)<\lambda\left(I^{k} / J I^{k-1}\right)-1$.
Notice that if $A=k[[x, y, z, u]], I=\left(x^{2}, y^{2}, z^{2}, u^{2}, x y+z u\right)$ and $J=\left(x^{2}, y^{2}, z^{2}, u^{2}\right)$, then $\lambda((J: I) \cap I / J)=5$, while $\tau(I)=10$.

We recall that if (A, \mathcal{M}) is a d-dimensional Cohen-Macaulay ring and I is an \mathcal{M}-primary ideal, then

$$
e(I) \geq \lambda\left(I / I^{2}\right)+(1-d) \lambda(A / I)
$$

(see [V], Lemma 1). If the equality holds, then $I^{2}=J I$ for every ideal J generated by a maximal superficial sequence and in particular G is Cohen-Macaulay.
If $e(I)=\lambda\left(I / I^{2}\right)+(1-d) \lambda(A / I)+1$, then $\lambda\left(I^{2} / J I\right)=1$ and G is not necessarily Cohen-Macaulay.
If we apply Theorem 2.2 . with $k=1$, we get the following result.

Corollary 2.3. With the above notations, if $e(I)=\lambda\left(I / I^{2}\right)+(1-d) \lambda(A / I)+1$ and $\tau(I)<e(I)-\lambda(A / I)-1$, then

1) G is Cohen-Macaulay
2) the h-polynomial of I is

$$
h(z)=\lambda(A / I)+\left(\lambda\left(I / I^{2}\right)-d \lambda(A / I)\right) z+z^{2}
$$

If $I=\mathcal{M}$, the above result was proved by Sally in [S2].
Let (A, \mathcal{M}) be a Cohen-Macaulay ring of dimension d, embedding dimension N and multiplicity e. If $\operatorname{indeg}(A) \geq t$, then \mathcal{M} is t-standard.
Moreover if $t \geq 2$, then (see [RV1])

$$
e \geq\binom{ N-d+t-1}{t-1}
$$

If the equality holds, then $\mathcal{M}^{t}=J \mathcal{M}^{t-1}$ for every ideal J generated by a maximal superficial sequence and in particular G is Cohen-Macaulay.
Suppose $e=\binom{N-d+t-1}{t-1}+1$, then $\lambda\left(\mathcal{M}^{t} / J \mathcal{M}^{t-1}\right)=1$. If we apply Theorem 2.2. with $I=\mathcal{M}$ and $k=t-1$, we recover the following result which was proved in [RV1]

Corollary 2.4. With the above assumptions, if $e=\binom{N-d+t-1}{t-1}+1$ and $\tau(\mathcal{M})<$ $\binom{N-d+t-2}{t-1}$, then

1) G is Cohen-Macaulay
2) the h-polynomial of I is

$$
h(z)=\sum_{i=0}^{t-1}\binom{N-d+i-1}{i} z^{i}+z^{t} .
$$

We now remark that, if A is Gorenstein and $e=N-d+2$, then G is Gorenstein (see [S2]). If A is Gorenstein and $e=N-d+3$, then G is Cohen-Macaulay (see [S3] or for an extended version [RV4]).

We may conclude that, if A is Gorenstein and $e \leq N-d+3$, then G is CohenMacaulay.
If $e \geq N-d+4$ and A is Gorenstein, then G is not necessarily Cohen-Macaulay. In fact, if we consider the Gorenstein ring $\left.A=k\left[t^{6}, t^{7}, t^{15}\right]\right]$ of multiplicity $e=$ $6=N-d+4$, then depth $G=0$ (see [S3]) and the $h-$ polynomial is $h(z)=$ $1+2 z+z^{2}+z^{3}+z^{5}$. Notice that $\lambda\left(\mathcal{M}^{3} / J \mathcal{M}^{2}\right)=2$.

We can prove the following result
Corollary 2.5. Let (A, \mathcal{M}) be a Gorenstein local ring of dimension d, embedding dimension N and multiplicity $e \geq N-d+4$.
If $\lambda\left(\mathcal{M}^{3} / J \mathcal{M}^{2}\right) \leq 1$, then G is Cohen-Macaulay and the h-polynomial is

$$
h(z)=1+(N-d) z+(e-N+d-2) z^{2}+z^{3} .
$$

Proof. We may apply Theorem 2.2. with $I=\mathcal{M}$ and $k=2$. It is enough remark that $\lambda\left(\mathcal{M}^{2} / J \mathcal{M}\right)=e-N+d-1 \geq 3$ and so $\tau(\mathcal{M})=1<\lambda\left(\mathcal{M}^{2} / J \mathcal{M}\right)-1$.

3. Depth of the associated graded ring

In this section we prove that if I a k-standard \mathcal{M}-primary ideal and we assume $\lambda\left(I^{k+1} / J I^{k}\right) \leq 1$, then the associated graded ring has depth at least $d-1$. We need some more results on the k-standard \mathcal{M}-primary ideals.

Proposition 3.1. Let (A, \mathcal{M}) be a two-dimensional Cohen-Macaulay local ring, k a positive integer and I a k-standard \mathcal{M}-primary ideal.

For all $n=1, \ldots, k$ we have

1) $I^{n}: x=I^{n-1}$ for every superficial element x in J.
2) $\rho_{n-1}-v_{n-1}=\lambda\left(\widetilde{I^{n}} / J \widetilde{I^{n-1}}+I^{n}\right)$.

Proof. Since $I^{n} \cap J=J I^{n-1}$, the first assertion is an easy fact. As for the second one, we have

$$
\widetilde{J I^{n-1}} \subseteq \sqrt{I^{n-1}}+I^{n} \subseteq \widetilde{I^{n}}
$$

hence

$$
\lambda\left(\widetilde{I^{n}} / J \widetilde{I^{n-1}}+I^{n}\right)=\rho_{n-1}-\lambda\left(J \widetilde{I^{n-1}}+I^{n} / J \widetilde{I^{n-1}}\right)=\rho_{n-1}-\lambda\left(I^{n} / J \widetilde{I^{n-1}} \cap I^{n}\right)
$$

Since

$$
J I^{n-1} \subseteq J \widetilde{I^{n-1}} \cap I^{n} \subseteq I^{n} \cap J=J I^{n-1}
$$

we get $J I^{n-1}=J \widetilde{I^{n-1}} \cap I^{n}$ and the conclusion follows.

Theorem 3.2. Let (A, \mathcal{M}) be a d-dimensional Cohen-Macaulay local ring, $k a$ positive integer and I a k-standard \mathcal{M}-primary ideal.
If we suppose $\lambda\left(I^{k+1} / J I^{k}\right) \leq 1$, then

1) $\operatorname{depth}(G) \geq d-1$
2) the h-polynomial of I is

$$
h(z)=\sum_{n=0}^{k-1} \lambda\left(I^{n} / I^{n+1}+J I^{n-1}\right) z^{n}+\left(\lambda\left(I^{k} / J I^{k-1}\right)-c\right) z^{k}+c z^{s}
$$

where $c=\lambda\left(I^{k+1} / J I^{k}\right)$ and $s \geq k+1$.
G is Cohen-Macaulay if and only if $s=k+1$.

First we recall that in the following we may assume (A, \mathcal{M}) be a d-dimensional Cohen-Macaulay local ring, k a positive integer and I a $k-\operatorname{standard} \mathcal{M}$-primary ideal with $\lambda\left(I^{k+1} / J I^{k}\right)=1$.

With this assumption, we need the following easy facts.

Lemma 3.3. With the above assumptions, then the following conditions hold:

1) $\mathcal{M} I^{j+1} \subseteq J I^{j}$ for every $j \geq k$
2) There exist $w \in I$ and $z \in I^{k}$ such that $I^{j+1}=J I^{j}+\left(z w^{j+1-k}\right)$ for every $j \geq k$
3) $\lambda\left(I^{j+1} / J I^{j}\right) \leq 1$ for every $j \geq k$

Proof. One has

$$
I^{k+1} \supseteq \mathcal{M} I^{k+1}+J I^{k} \supseteq J I^{k}
$$

and also, if $I^{k+1}=\mathcal{M} I^{k+1}+J I^{k}$, by Nakayama $I^{k+1}=J I^{k}$. Hence

$$
\mathcal{M} I^{k+1} \subseteq J I^{k}
$$

and the first assertion follows by multiplication by I.
We pass to the second assertion.
Since $\lambda\left(I^{k+1} / J I^{k}\right)=1$, there exists an element $w \in I$ such that $w I^{k} \nsubseteq J I^{k}$. Then there exists $z \in I^{k}$ such that

$$
I^{k+1}=J I^{k}+(z w) .
$$

Now $I^{k+2} \subseteq J I^{k+1}+z w I \subseteq J I^{k+1}+w I^{k+1}=J I^{k+1}+\left(z w^{2}\right)$ and so on. The third assertion follows from 1) and 2).

We prove now a result in the one-dimensional case which will be used later. The notations are those we introduced in the first section. We only recall that s denotes the reduction number of I, such that the least integer n for which $v_{n}=$ $\lambda\left(I^{n+1} / J I^{n}\right)=0$.

Lemma 3.4. Let (A, \mathcal{M}) be a Cohen-Macaulay local ring of dimension one, with the above assumptions we have

$$
e_{1}(I)=\sum_{n=0}^{k-1} v_{n}+s-k
$$

and the h-polynomial of I is

$$
h(z)=\sum_{n=0}^{k-1} \lambda\left(I^{n} / I^{n+1}+J I^{n-1}\right) z^{n}+\left(\lambda\left(I^{k} / J I^{k-1}\right)-1\right) z^{k}+z^{s}
$$

Proof. We recall that $e_{1}(I)=\sum_{j=0}^{s-1} v_{j}$ and since the $h-$ vector is the first difference of the Hilbert function, we have $h(z)=\lambda(A / I)+\sum_{n=1}^{s}\left(v_{n-1}-v_{n}\right) z^{n}$.

If $n \leq k-1$,

$$
\begin{aligned}
& v_{n-1}-v_{n}=\lambda\left(\left(I^{n+1}+J\right) / J\right)-\lambda\left(\left(I^{n}+J\right) / J\right)= \\
& =\lambda\left(\left(I^{n}+J\right) /\left(I^{n+1}+J\right)\right)=\lambda\left(I^{n} /\left(I^{n+1}+J I^{n-1}\right)\right) .
\end{aligned}
$$

It is enough to remark that, by Lemma 3.3.3), $v_{k}=\cdots=v_{s-1}=1$.

We come back now to the general case of the Theorem.
First of all we have $s=k+1$ if and only if h-vector of I concides with that of its artinian reduction. Hence the last assertion on the Cohen-Macaulyness of G is clear.

If $d \geq 2$, we let

$$
B:=A /\left(x_{1}, \ldots, x_{d-2}\right)
$$

and

$$
C:=A /\left(x_{1}, \ldots, x_{d-1}\right)
$$

where x_{1}, \ldots, x_{d-1} is a superficial sequence in I.
We have $\operatorname{dim}(C)=1, \operatorname{dim}(B)=2$; and all the assumptions of the Theorem 3.2. are stable modulo a superficial sequence, that is if I is a k-standard primary ideal, also $I /\left(x_{1}, \ldots, x_{d-2}\right)$ and $I /\left(x_{1}, \ldots, x_{d-1}\right)$ are $k-$ standard primary ideals and the assumption on the lenght is preserved.
Hence if we can prove that the depth of the associated graded ring of $I /\left(x_{1}, \ldots, x_{d-2}\right)$ is positive then, by using Sally's machine, we get $\operatorname{depth}(G) \geq 1+d-2=d-1$.

Henceforth we may assume $\operatorname{dim}(A)=2, I$ a $k-\operatorname{standard} \mathcal{M}$-primary ideal with $\lambda\left(I^{k+1} / J I^{k}\right)=1$ and, by the above remark, we need to prove that $\operatorname{depth}(G) \geq 1$.

As before, we let $J=(x, y)$ be the ideal generated by a superficial sequence and $R:=A / x A$ the one-dimensional Cohen-Macaulay local ring. As before we denote by s the reduction exponent of $\bar{I}=I /(x)$.
If $s \leq k$, then the associated graded ring of \bar{I} is Cohen-Macaulay and, against by Sally's machine, we may conclude that G is Cohen-Macaulay.
We will suppose $s \geq k+1$ and then $\lambda\left(\bar{I}^{j+1} / y \bar{I}^{j}\right)=1$ for $j=k, \ldots, s-1$.
In order to prove the Theorem, we will need the following crucial results. We do not insert here the proofs since they have been proved in a similar version in [RV2] and [RV3].

Proposition 3.5. With the above notations the following conditions hold.

1) $\lambda\left(I^{j+1} / J I^{j}\right)=1$ for every $j=k, \ldots, s-1$.
2) $I^{j+1}: x=I^{j}$ for every superficial element x in J and $j=0, \ldots, s-1$.
3) $v_{j}=1$ for every $j=k, \ldots, s-1$.
4) $e_{1}(I)=\sum_{j=0}^{k-1} \lambda\left(I^{j+1} / J I^{j}\right)+s-k$
5) $\operatorname{depth}(G)>0 \Longleftrightarrow I^{s+1}=J I^{s}$.

Proposition 3.6. Let (A, \mathcal{M}) be a local ring, I a \mathcal{M}-primary ideal, p a positive integer and $J \subseteq I$ an ideal of A. For every integer $n=1, \ldots, p$ suppose we are given ideals

$$
I_{n}=\left(a_{1 n}, \ldots, a_{\nu_{n} n}\right) \subseteq \widetilde{I^{n}}
$$

Assume $\widetilde{I^{p+1}}=J \widetilde{I^{p}}$ and for $n=0, \ldots, p-1$,

$$
\widetilde{I^{n+1}}=J \widetilde{I^{n}}+I_{n+1}+I^{n+1}
$$

Let $w \in I$ and set $\nu:=\sum_{i=1}^{p} \nu_{i}$. Then there exists an element $\sigma \in J I^{\nu-1}$ such that for every $n=1, \ldots, p$ and $i=1, \ldots, \nu_{n}$

$$
w^{\nu} a_{i n} \equiv \sigma a_{i n} \bmod I^{\nu+n} .
$$

We can finish now the proof of the theorem.
Theorem 3.7. Let (A, \mathcal{M}) be a Cohen-Macaulay local ring of dimension two, k a positive integer and I a $k-$ standard \mathcal{M}-primary ideal such that $\lambda\left(I^{k+1} / J I^{k}\right)=1$. Then

1) $\operatorname{depth}(G) \geq 1$
2) the h-polynomial of I is

$$
h(z)=\sum_{n=0}^{k-1} \lambda\left(I^{n} / I^{n+1}+J I^{n-1}\right) z^{n}+\left(\lambda\left(I^{k} / J I^{k-1}\right)-1\right) z^{k}+z^{s} .
$$

for some integer $s \geq k+1$
Proof. For every $n \geq 1$ we have $\lambda\left(\widetilde{I^{n}} / J \widetilde{I^{n-1}}+I^{n}\right) \leq \rho_{n-1}=\lambda\left(\widetilde{I^{n}} / J \widetilde{I^{n-1}}\right)$ and equality holds if and only if $I^{n} \subseteq J \widetilde{I^{n-1}}$. Further we can find elements $a_{1 n}, \ldots, a_{\nu_{n} n} \in$ $\widetilde{I^{n}}$ such that their residue classes modulo $J \widetilde{I^{n-1}}+I^{n}$ form a minimal system of generators of the module $\widetilde{I^{n}} / J \widetilde{I^{n-1}}+I^{n}$. It is clear that we have

$$
\nu_{n} \leq \lambda\left(\widetilde{I^{n}} / J \widetilde{I^{n-1}}+I^{n}\right) \leq \rho_{n-1}
$$

and if $I^{n} \nsubseteq J \widetilde{I^{n-1}}$, then $\nu_{n}<\rho_{n-1}$.
If $n \leq k-1$, by Proposition 3.1., we can be more precise, namely

$$
\nu_{n} \leq \rho_{n-1}-v_{n-1} .
$$

If we let $I_{n}:=\left(a_{1 n}, \ldots, a_{\nu_{n} n}\right)$, then $I_{n} \subseteq \widetilde{I^{n}}$ and $\widetilde{I^{n}}=\sqrt{I^{n-1}}+I^{n}+I_{n}$. Since $\widetilde{I}=I+I_{1}$ we get $\widetilde{I^{2}}=J \widetilde{I}+I^{2}+I_{2}=J I+I^{2}+I_{2}$.
Going on in this way, we obtain for every $r \geq 1$

$$
\widetilde{I^{r}}=\sum_{j=1}^{r} J^{r-j} I_{j}+I^{r} .
$$

Now we recall that by Proposition 3.1., for every $j \leq k-1$, we have $\rho_{j} \geq v_{j}=$ $\lambda\left(I^{j+1} / J I^{j}\right)$, hence by Proposition 3.5.
$e_{1}(I)=\sum_{j=0}^{k-1} v_{j}+s-k=\sum_{j \geq 0} \rho_{j}=\sum_{j=0}^{k-1} \rho_{j}+\sum_{j \geq k} \rho_{j} \geq \sum_{j=0}^{k-1} v_{j}+\sum_{j \geq k} \rho_{j}$
It follows that

$$
\sum_{j \geq k} \rho_{j} \leq s-k
$$

We distinguish two cases:
i) $\rho_{k}=\cdots=\rho_{s-1}=1$.

With this assumption the above inequality turns out to be an equality and this implies $\rho_{j}=v_{j}$ for every $j \leq s-1$ and $\rho_{j}=0$ for $j \geq s$.

Since by Proposition 3.5. we have $I^{j+1}: x=I^{j}$ for every $j \leq s-1$, we get $\lambda\left(\bar{I}^{j+1} / y \bar{I}^{j}\right)=\lambda\left(I^{j+1} / J I^{j}\right)=\rho_{j}$ for every $j \leq s-1$. In particular

$$
\lambda\left(\bar{I}^{j+1} / y \bar{I}^{j}\right)=\rho_{j}
$$

for every $j \geq 0$.
It follows

$$
e_{2}(I)=\sum_{j \geq 0} j \rho_{j}=\sum_{j \geq 0} j \lambda\left(\bar{I}^{j+1} / y \bar{I}^{j}\right)=e_{2}(\bar{I})
$$

and hence $\operatorname{depth}(G) \geq 1$.
ii) There exists an integer j such that $k \leq j \leq s-1, \rho_{j} \neq 1$.

In this case we let p the least integer $n \leq s-1$ such that $\rho_{n}=0$ and we also let c be the least integer n such that $I^{n+1} \subseteq \widetilde{J^{n}}$.
We remark that we have $k \leq c \leq p \leq s-1$. In fact $I^{k} \nsubseteq J I^{k-1}$ otherwise by the good property of I, we get $I^{k}=J I^{k-1}$, which contradicts the assumption. Further, since $\rho_{p}=0, I^{p+1} \subseteq \widetilde{I^{p+1}}=J \widetilde{I^{k-1}}$.

By the true definition of c with the above notations, we have for every $j=k, \ldots, c$

$$
\nu_{j}<\rho_{j-1}
$$

and for every $j \leq k \quad \nu_{j} \leq \rho_{j-1}-v_{j-1}$.
By Lemma 3.3., for every $j \geq k$ we can find $w \in I$ and $z \in I^{k}$ such that $I^{j+1}=J I^{j}+\left(z w^{j+1-k}\right)$.
We get for every $n=1, \ldots, p-1$

$$
w I_{n} \subseteq \widetilde{I^{n+1}}=\sum_{j=1}^{n+1} J^{n+1-j} I_{j}+I^{n+1}
$$

and

$$
w I_{p} \subseteq \widetilde{I^{p+1}}=J \widetilde{I^{p}}=\sum_{j=1}^{p} J^{p+1-j} I_{j}+J I^{p} \subseteq \sum_{j=1}^{p} J^{p+1-j} I_{j}+I^{p+1}
$$

By applying the above Proposition with $\nu=\sum_{i=1}^{p} \nu_{i}$, we can find an element $\sigma \in J I^{\nu-1}$, such that for every $i=1, \ldots, \nu_{n}$

$$
w^{\nu} a_{i n} \equiv \sigma a_{i n} \bmod I^{\nu+n} .
$$

On the other hand, since $I^{c+1} \subseteq J \widetilde{I^{c}}=\sum_{j=1}^{c} J^{c+1-j} I_{j}+J I^{c}$, we can write

$$
z w^{c+1-k}=\sum_{j=1}^{c} \sum_{i=1}^{\nu_{j}} m_{i j} a_{i j}+b
$$

where $m_{i j} \in J^{c+1-j}, b \in J I^{c}$. Using these facts, exactly as in the proof of Theorem 2.5. [RV2] we get

$$
z w^{\nu+c+1-k} \in J I^{\nu+c}
$$

which, by Lemma 3.3.(2), implies

$$
I^{\nu+c+1}=J I^{\nu+c} .
$$

We finally remark that

$$
\begin{aligned}
\nu+c & =\sum_{i=1}^{p} \nu_{i}+c \leq \sum_{i=1}^{k}\left(\rho_{i-1}-v_{i-1}\right)+\sum_{i=k+1}^{c}\left(\rho_{i-1}-1\right)+\sum_{i=k+1}^{p} \rho_{i-1}+c \leq \\
& \leq \sum_{i \geq 0} \rho_{i}-(c-k)+c-\sum_{i=0}^{k-1} v_{i}=e_{1}(I)+k-\left(e_{1}(I)-s+k\right)=s
\end{aligned}
$$

Hence

$$
I^{s+1}=J I^{s}
$$

and then depth $G \geq 1$ by Proposition 3.5.
In particular $I^{n}: x=I^{n-1}$ for every integer n, and the h-polynomial of I is the $h-$ polynomial of $I /(x)$. We conclude by using Lemma 3.4.

It is well known that, if (A, \mathcal{M}) is a d-dimensional Cohen-Macaulay ring and I is a \mathcal{M}-primary ideal, then $e(I) \geq \lambda\left(I / I^{2}\right)+(1-d) \lambda(A / I)$ (see [V], Lemma 1).
If the equality holds, then G is Cohen-Macaulay.
Suppose $e(I)=\lambda\left(I / I^{2}\right)+(1-d) \lambda(A / I)+1$, then $\lambda\left(I^{2} / J I\right)=1$.
In the case $I=\mathcal{M}$, then depth $G \geq d-1$. The problem was open in the \mathcal{M}-primary case. If we apply Theorem 3.2. with $k=1$, we get the following result.

Corollary 3.8. Let (A, \mathcal{M}) be a d-dimensional Cohen-Macaulay ring and I an \mathcal{M}-primary ideal.
If $e(I)=\lambda\left(I / I^{2}\right)+(1-d) \lambda(A / I)+1$, then

1) $\operatorname{depth}(G) \geq d-1$
2) $h(z)=\lambda(A / I)+\left(\lambda\left(I / I^{2}\right)-d \lambda(A / I)\right) z+z^{s}$ for some $s \geq 2$

If we apply Theorem 3.2. with $k=2$, we obtain the following result proved by Huckaba [H], Theorem 2.6. We also characterize the Hilbert function.

Corollary 3.9. Let (A, \mathcal{M}) be a d-dimensional Cohen-Macaulay ring and I an \mathcal{M}-primary ideal. Assume that J is an ideal generated by a maximal superficial sequence for I such that $I^{2} \cap J=J I$ and $\lambda\left(I^{3} / J I^{2}\right) \leq 1$.
Then

1) $\operatorname{depth}(G) \geq d-1$
2) The h-polynomial of I is

$$
h(z)=\lambda(A / I)+\left(\lambda\left(I / I^{2}\right)-d \lambda(A / I)\right) z+\left(\lambda\left(I^{2} / J I\right)-c\right) z^{2}+c z^{s}
$$

where $c=\lambda\left(I^{3} / J I^{2}\right)$ and $s \geq 3$
Let (A, \mathcal{M}) be a Cohen-Macaulay ring of dimension d, embedding dimension N and multiplicity e. If t a positive integer and $\operatorname{indeg}(A) \geq t$, then \mathcal{M} is $t-s t a n d a r d$. As we have already said, if $t \geq 2$, then

$$
e \geq\binom{ N-d+t-1}{t-1}
$$

If the equality holds, then G is Cohen-Macaulay.
If $e=\binom{N-d+t-1}{t-1}+1$, then $\lambda\left(\mathcal{M}^{t} / J \mathcal{M}^{t-1}\right)=1$. In [RV3], Theorem 3.1., it was proved that depth $G \geq d-1$.
This result can be recovered if we apply Theorem 3.2 . with $k=t-1$.
Corollary 3.10. With the above notations, if $e=\binom{N-d+t-1}{t-1}+1$, then

1) $\operatorname{depth}(G) \geq d-1$
2) the h-polynomial is

$$
h(z)=\sum_{i=0}^{t-1}\binom{N-d+i-1}{i} z^{i}+z^{s}
$$

for some $s \geq t$.

If $e=N-d+3$ and the Cohen-Macaulay type is $\tau(\mathcal{M})<N-d$, in [RV4] it was proved that $\lambda\left(\mathcal{M}^{3} / J \mathcal{M}^{2}\right) \leq 1$ for every ideal J generated by a maximal superficial sequence, then:

Corollary 3.11. With the above notations, if $e=N-d+3$ and $\tau(\mathcal{M})<N-d$, then depth $(G) \geq d-1$.

References.

[A] S. Abhyankar, Local rings of high embedding dimension, Amer. J. Math. 89 (1967), 1073-1077
[BH] W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge Univ. Press, (1993) [CPV] A. Corso, C. Polini, M. Vaz Pinto, Sally Modules and associated graded rings, preprint
[E] J. Elias, On the depth of the tangent cone and the growth of the Hilbert function, preprint
[ERV] J. Elias, M. E. Rossi, G. Valla, On the coefficients of the Hilbert polynomial, J. Pure Appl. Algebra., 108 (1996), 35-60.
[GR] A. Guerrieri, M. E. Rossi, Hilbert coefficients for Hilbert filtrations, J. of Algebra 199 (1998), 40-61.
[H] S. Huckaba, On the associated graded rings having almost maximal depth, Comm. in Algebra (to appear).
[HM] S. Huckaba and T. Marley, Hilbert coefficients and the depths of associated graded rings, J. London Math. Soc., (to appear).
[Hun] C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J., 34 (1987), 293-318.
[RoV] L. Robbiano and G. Valla, Free resolutions for special tangent cone, Proc. of the Trento Conference, Lecture notes in Pure and Appl. Math., Dekker (1981) [RR] L. J. Ratliff and D. Rush, Two notes on reductions of ideals, Indiana Univ. Math. J, 27 (1978), 929-934.
[RV1] M. E. Rossi and G. Valla, Multiplicity and t-isomultiple ideals, Nagoya Math. J., 110 (1988), 81-111.
[RV2] M. E. Rossi and G. Valla, A conjecture of J. Sally, Comm. in Alg. 24(13) (1996), 4249-4261.
[RV3] M. E. Rossi and G. Valla, Cohen-Macaulay local rings of dimension two and an extended version of a conjecture of J. Sally, J.P.A.A.122, (1997), 293-311.
[RV4] M. E. Rossi and G. Valla, Cohen-Macaulay local rings of embedding dimension $e+d-3$ (preprint).
[S1] J. Sally, Super regular sequences, Pac. J. of Math., 84 (1979), 475-481.
[S2] J. Sally, Cohen-Macaulay local ring of embedding dimension $e+d-2$, J. Algebra, 83(1983), 325-333.
[S3] J. Sally, Good Embedding Dimension for Gorenstein Singularities, Math. Ann. 249, 95-106,(1980)
[VV] P. Valabrega and G. Valla, Form rings and regular sequence, Nagoya Math. J., 72 (1978), 93-101
[W] H. Wang, On Cohen-Macaulay local rings with embedding dimension e+d-2, J. Algebra 190, 226-240, (1997).

The author was partially supported by M.P.I.(Italy)
1991 Mathematics Subject Classification: Primary 14M05, Secondary 13H10
Keywords : Cohen-Macaulay Local Ring, Associated graded ring, Hilbert Function

