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Abstract

Let K be an algebraically closed field of characteristc zero. In this paper
we study the isomorphism classes of Artinian Gorenstein local K-algebras with
socle degree three by means of Macaulay’s inverse system. We prove that their
classification is equivalent to the projective classification of cubic hypersurfaces
in PnK . This is an unexpected result because it reduces the study of this class of
local rings to the graded case. The result has applications in problems concerning
the punctual Hilbert scheme Hilbd(PnK) and in relation to the problem of the
rationality of the Poincaré series of local rings.

1 Introduction

The classification, up to analytic isomorphisms, of Artinian local K-algebras plays
an important role in commutative algebra and in algebraic geometry. Among other
examples, the study of the irreducibility and the smoothness of the punctual Hilbert
scheme Hilbd(PnK) parameterizing zero-dimensional subschemes of fixed degree d in
PnK , is strictly related to the structure of the Artinian local algebras of multiplicity d.
In particular, because the locus of points of Hilbd(PnK) corresponding to Gorenstein
subschemes is an open subset, often one can restrict the study to schemes which are
the spectrum of Artinian Gorenstein local algebras, see for example [5], [6], [9], [10],
[14], [21].

In this paper we present structure theorems of Artinian Gorenstein local K-algebras
(A,m) such that m4 = 0. In the main result of this paper we prove that the classification
of the Artinian Gorenstein local K-algebras (A,m) with m4 = 0 is equivalent to the
projective classification of the cubic hypersurfaces of PnK (see Theorem 4.1 and Corollary
4.3). The key point of the paper is to prove that an Artinian Gorenstein local ring
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A with Hilbert function {1, n, n, 1} is isomorphic to its own associated graded ring
(with respect to the maximal ideal), see Theorem 3.3. In this case we say that A
is canonically graded. This is an unexpected result and it is false in general, even if
the Hilbert function is symmetric. For instance there are examples of local rings with
Hilbert function {1, 2, 2, 2, 1} which are not canonically graded.

From classical results on the projective classification of the homogeneous cubics
in Pr with r ≤ 3, we may deduce the classification of the Artinian Gorenstein local
rings with Hilbert function {1,m, n, 1} where n ≤ 4. This classification allows us to find
geometric interpretations of the singularity of Hilbd(Pn) for low degrees d. In particular
we recover recent results by Casnati and Notari, see [6, Theorem 4.1].

Local rings with low socle degree have been also studied in relation to their free
resolutions. We recall that Bøgvad proved that there exist Artinian Gorenstein local
rings with socle degree three and irrational Poincaré series, see [2]. However Hen-
riques and Şega recently proved that, assuming the existence of exact zero-divisors,
the Poincaré series of finitely generated modules over an Artinian Gorenstein local ring
of socle degree three is rational, see [13, Theorem 4.4]. For Artinian Gorenstein local
rings of socle degree three, the main result of this paper will translate the problems to
Gorenstein graded K-algebras (see [7] for recent developments). As a consequence of
this approach, taking advantage of the graded case, Corollary 3.9 recovers the quoted
result by Henriques and Şega in the particular case of rings.

A central tool in this paper is Macaulay’s inverse system (see [19]) which establishes
a one-to-one correspondence between Artinian Gorenstein algebras and suitable poly-
nomials. This classical correspondence has been deeply studied in the homogeneous
case, among other authors, by Iarrobino in a long series of papers, see for example:
[15], [16], [17]. Notice that from a categorical point of view, Macaulay’s correspondence
comes from Matlis duality, see [22, Theorem 5.2].

In the local case the situation is more complicated than in the graded one, never-
theless the classification under the action of isomorphisms of algebras can be translated
to the classification of the inverse system polynomials under the action of a group of
transformations explicitly described. Emsalem devoted [11, Section C] to present an
approach to the classification of Artinian Gorenstein local algebras by means of their
inverse systems. In Section 2 we collect results spread over different papers (see [11],
[15], [16], etc.) and present also explicit methods. The strategy of classifying inverse
system polynomials instead of the corresponding Artinian Gorenstein local algebras
has at least two advantages: first, we deal with one polynomial instead of a system of
generators of the defining ideals (as in [5], [6], [9], [10]) and, second, we may perform
effective computations, often reduced to a linear algebra problem (see Proposition 2.2).

We hope that this approach will be useful in studying numerical invariants of local
Gorenstein singularities.

Acknowledgments. The authors are grateful to A. Conca and G. Valla for useful
comments and remarks regarding this work.
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2 Inverse System for Artinian local rings

Throughout the whole paper K denotes an algebraically closed field of characteristic
zero. Let R = K[[x1, . . . xn]] be the ring of the formal series with maximal ideal M =
(x1, · · · , xn) and let P = K[y1, . . . , yn] be a polynomial ring. For a positive integer s,
we let P≤s denote the set of polynomials of degree ≤ s.

Let I be an ideal of R such that R/I has finite length. Set A = R/I. We let
m =M + I denote the maximal ideal of A. The socle of A is the colon ideal (0 :A m)
and the socle-degree s of A is the largest integer for which ms 6= 0. It is well known
that A is Gorenstein if and only if dimK(0 : m) = 1. From now on we assume that the
embedding dimension of A is n.

Consider grm(A) :=
⊕

i≥0m
i/mi+1 the associated graded ring of A = R/I. It is well

known that grm(A) ' K[x1, . . . xn]/J where J is the homogeneous ideal of K[x1, . . . xn]
generated by the initial forms of the elements of I. The Hilbert function of A is by
definition the Hilbert function of grm(A), i.e.

HFA(i) = dimK

(
mi

mi+1

)
.

In this section we recall the main facts and establish notation concerning the inverse
system of Macaulay in the study and classification of Artinian local rings (A,m). The
reader should refer to [11] and [16] for an extended treatment. The graded case is much
better understood than the local case and several interesting papers have been written
(see for example [19, Chapter IV] and [17]).

It is known that P has an R-module structure by means of the following action

◦ : R× P −→ P
(f, g) → f ◦ g = f(∂y1 , . . . , ∂yn)(g)

where ∂yi denotes the partial derivative with respect to yi. If we denote by xα =

xα1
1 · · ·xαn

n and yβ = yβ11 · · · yβnn then

xα ◦ yβ =


β!

(β−α)! y
β−α if βi ≥ αi for i = 1, · · · , n

0 otherwise

where β!
(β−α)! =

∏n
i=1

βi!
(βi−αi)!

. We remark that for every f, h ∈ R and g ∈ P , it holds

(fh) ◦ g = f ◦ (h ◦ g), and we have Ms+1 ◦ g = 0 if and only if g ∈ P≤s.
Let S ⊆ P be a set of polynomials. In the following we will denote by 〈S〉K the

K-vector space generated by S, and by 〈S〉R the R-submodule of P generated by S, i.e.
the K-vector space generated by the elements of S and by the corresponding derivatives
of all orders. Starting from ◦ we consider the exact pairing of K-vector spaces:

〈 , 〉 : R× P −→ K
(f, g) → (f ◦ g)(0)
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For any ideal I ⊂ R we define the following R-submodule of P :

I⊥ := {g ∈ P | 〈f, g〉 = 0 ∀f ∈ I } = {g ∈ P | I ◦ g = 0}.

If I =Ms+1 then I⊥ coincides with P≤s. In general if R/I has socle-degree s, then I⊥

is generated by polynomials of degree ≤ s. Conversely, for every R-submodule M of P
we define

AnnR(M) := {g ∈ R | 〈g, f〉 = 0 ∀f ∈M}

which is an ideal of R; a simple computation shows that AnnR(M) = {g ∈ R | g ◦M =
0}. If M is cyclic, that is M = 〈f〉 = R ◦ f with f ∈ P, then we will write AnnR(f).

Emsalem [11, Section B, Proposition 2] and Iarrobino [16, Lemma 1.2] proved that
there exists a one-to-one correspondence between ideals I ⊆ R such that R/I is an
Artinian local ring and R-submodules M of P which are finitely generated.

Since R/I and I⊥ are finitely generated K-vector spaces, it is easy to see that the
action 〈 , 〉 induces the following isomorphism of K-vector spaces (see [11, Proposition
2 (a)]):

(R/I)∗ ' I⊥ (1)

where ()∗ denotes the dual with respect the paring 〈 , 〉 induced on R/I.
Hence dimKR/I(= multiplicity of R/I) = dimKI

⊥. As in the graded case, it is possi-
ble to compute the Hilbert function of A = R/I via the inverse system. We define the
following K-vector space:

(I⊥)i :=
I⊥ ∩ P≤i + P<i

P<i
. (2)

Then, by (1), it is known that

HFR/I(i) = dimK(I⊥)i. (3)

Given a K-algebra C we will denote by Aut(C) the group of the automorphisms of
C as a K-algebra and by AutK(C) as a K-vector space. The automorphisms of R as
a K-algebra are well known. They act as replacement of xi by zi, i = 1, · · · , n, such
that M = (x1, . . . , xn) = (z1, . . . , zn). Actually, since Ms+1 ⊆ I, we are interested in
the automorphisms of R/Ms+1 of K-algebras induced by the projection π : R −→
R/Ms+1. Clearly Aut(R/Ms+1) ⊆ AutK(R/Ms+1).

Let E = {ei} be the canonical basis of R/Ms+1 as a K-vector space consisting of
the standard monomials xα ordered by the deg-lex order with x1 > · · · > xn. Then the
dual basis of E with respect to the perfect paring 〈 , 〉 is the basis E∗ = {e∗i } of P≤s
where

(xα)∗ =
1

α!
yα,

in fact e∗i (ej) = 〈ej, e∗i 〉 = δij, where δij = 0 if i 6= j and δii = 1. Hence for any
ϕ ∈ AutK(R/Ms+1) we may associate a matrix M(ϕ) with respect to the basis E of
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size r = dimK(R/Ms+1) =
(
n+s
s

)
.We have the following natural sequence of morphisms

of groups:

Aut(R)
π−→ Aut(R/Ms+1)

σ−→ AutK(R/Ms+1)
ρE−→ Glr(K). (4)

Given I and J ideals of R such that Ms+1 ⊂ I, J, there exists an isomorphism of
K-algebras

ϕ : R/I → R/J

if and only if ϕ is canonically induced by aK-algebra automorphism ofR/Ms+1 sending
I/Ms+1 to J/Ms+1. In particular ϕ is an isomorphism of K-vector spaces. Dualizing

ϕ∗ : (R/J)∗ → (R/I)∗

is an isomorphism of the K-vector subspaces (R/I)∗ ' I⊥ and (R/J)∗ ' J⊥ of P≤s.
Hence tM(ϕ) is the matrix associated to ϕ∗ with respect to the basis E∗ of P≤s.
We can complete (4) by the following commutative diagram which helps to visualize
our setting:

AutK(R/Ms+1)
ρE−→ Glr(K)

↓ ∗ ↓ t()

AutK(P≤s)
ρE∗−→ Glr(K)

We denote by R the subgroup of AutK(P≤s) (automorphisms of P≤s as a K-vector
space) represented by the matrices tM(ϕ) of Glr(K) with ϕ ∈ Aut(R/Ms+1).

Theorem 2.1. ([11, Proposition 15]) The classification, up to analytic isomorphism, of
the Artinian local K-algebras of multiplicity d, socle degree s and embedding dimension
n is equivalent to the classification, up to the action of R, of the K-vector subspaces of
P≤s of dimension d, stable by derivations and containing P≤1 = K[y1, . . . , yn]≤1.

More precise results can be stated for Artinian Gorenstein local K-algebras. A
local ring A = R/I is an Artinian Gorenstein local ring of socle degree s if and only
if its dual module I⊥ is a cyclic R-submodule of P generated by a polynomial F ∈ P
of degree s (see also [18, Theorem 220], [16, Lemma 1.2]). We will denote by AF the
Gorenstein Artin algebra associated to F ∈ P, i.e.

AF = R/AnnR(F ).

Hence each Artinian Gorenstein local ring of socle s will be equipped with a polynomial
F ∈ P of degree s. The polynomial F is not unique, but is determined up to an unit
u of R (F can be replaced by u ◦ F ).

Our goal is to translate the classification of the Artinian Gorenstein local rings
A = R/I of socle s in terms of the corresponding polynomials of degree s in P.
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Let ϕ ∈ Aut(R/Ms+1), from the previous facts we have

ϕ(AF ) = AG if and only if (ϕ∗)−1(〈F 〉R) = 〈G〉R. (5)

It is easy to verify that

ϕ(AF ) = AG if and only if (ϕ∗)−1(F ) = u ◦G where u is an unit in R. (6)

Let u be an invertible element of R/Ms+1, the corresponding action of u in P≤s is a
K-vector space isomorphism, so we can consider the associated matrix N(u) ∈ Glr(K)
with respect to the basis E∗. If F = b1e

∗
1 + . . . bre

∗
r ∈ P≤s, then we will denote the row

vector of the coefficients of the polynomial with respect to the basis E∗ by

[F ]E∗ = (b1, . . . , br).

Hence from (6) we deduce the following key result:

Proposition 2.2. The Artinian Gorenstein local rings AF and AG of socle degree s
are isomorphic if and only if there are ϕ ∈ Aut(R/Ms+1) and an invertible element
u ∈ R/Ms+1 such that

[G]E∗(tN(u) M(ϕ)) = [F ]E∗ . (7)

The above result enables to study the isomorphism classes of Artin Gorenstein algebras
in a effective computational framework. The strategy of this paper is to classify the
Artinian local algebras by classifying their inverse systems by means of (7). Notice
that Proposition 2.2 result extends [17, Appendix A], or [11, Section C, Proposition
17], to the non-homogeneous case.

We say that F ∈ P = K[y1, . . . , yn] is non degenerate if the embedding dimension
of the Gorenstein algebra AF is n, i.e. HFAF

(1) = n. Hence a polynomial F of degree
s is non degenerate if and only if the dimension of the K-vector space of the derivatives
of order s − 1 of F is n or equivalently the ideal AnnR(F ) does not contain elements
of valuation one.

In order to classify the Artinian Gorenstein local rings of given multiplicity, we
need information on the admissible Hilbert functions. In the graded case, the Hilbert
function of an Artinian Gorenstein algebra is symmetric. Little is known about the
Hilbert function in the local case. The problem comes from the fact that, in general,
the associated algebra G = grm(A) = ⊕n≥0mn/mn+1 is no longer Gorenstein.

Nevertheless Iarrobino in [16] proved interesting results concerning G. Let’s consider
a filtration of G by a descending sequence of ideals

G = C(0) ⊇ C(1) ⊇ · · · ⊇ C(s− 2)

whose successive quotient
Q(a) = C(a)/C(a+ 1)

are reflexive graded G-modules of socle degree s−a
2

(s = socle-degree of A), see [16,
Theorem 1.5]. Hence Q(a) has symmetric Hilbert function.
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In particular Q(0) = G/C(1) is the unique (up to isomorphism) graded Gorenstein
quotient of G with the same socle degree s. Iarrobino proved that if HFA(n) is sym-
metric, then G = Q(0) and it is Gorenstein. The same result has also been proved in
a different manner by J. Watanabe in [23]. Hence if A is Gorenstein, [16, Proposition
1.7] and [11, Proposition 7],

G is Gorenstein ⇐⇒ HFA(n) is symmetric ⇐⇒ G = Q(0)

The G-module Q(0) plays a crucial role and it can be computed in terms of the
corresponding polynomial in the inverse system. Let F ∈ P be a polynomial of degree
s and denote by Fs the form of highest degree in F, that is F = Fs+ . . . terms of lower
degree, then

Q(0) ' R/AnnR(Fs),

see [11, Proposition 7] and [16, Lemma 1.10].

3 Gorenstein Artin algebras with HFA = {1, n, n, 1}
Let I be an ideal of R = k[[x1, . . . , xn]]. Assume A = R/I is an Artinian Gorenstein
local ring with Hilbert function HFA = {1, n, n, 1}. This means that the socle degree is
3 and HFA(1) = HFA(2) = n,HFA(0) = HFA(3) = 1. As we have seen, since HFA is
symmetric, then G = grm(A) is Gorenstein. We recall that G = K[x1, . . . , xn]/J where
J is the ideal generated by the initial forms of the elements of I. Since A is Artinian,
there is a natural isomorphism between G and R/JR. In this section we prove that
there exists an isomorphism of local rings between A and G (actually between A and
R/JR), see Theorem 3.3.

It is very rare that a local ring is isomorphic to its associated graded ring. Following
Emsalem [11], we say that A is canonically graded if A ' G. Gorenstein local rings
with symmetric Hilbert function are not necessarily canonically graded. The following
example shows that we cannot extend the main result of this section to higher socle
degrees without new assumptions.

Example 3.1. Let A be an Artinian Gorenstein local K-algebra with Hilbert function
HFA = {1, 2, 2, 2, 1}. Then A is isomorphic to one and only one of the following rings:

(a) R/I with I = (x41, x
2
2) ⊆ R = K[[x1, x2]], and I⊥ = 〈y31y2〉. In this case A is

canonically graded,

(b) R/I with I = (x41,−x31 + x22) ⊆ R = K[[x1, x2]], and I⊥ = 〈y31y2 + y32〉. The
associated graded ring is of type (a) and it is not isomorphic to R/I. Hence A is
not canonically graded.

(c) R/I with I = (x21 + x22, x
4
2) ⊆ R = K[[x1, x2]], and I⊥ = 〈y1y2(y21 − y22)〉. In this

case A is canonically graded.
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The computation can be performed by using Proposition 2.2, a different approach can
be found in [9].

SinceG is a graded Gorenstein algebra of embedding dimension n, it will be useful to
get information on the homogeneous cubics F ∈ P = K[y1, . . . , yn] such that HFAF

=
{1, n, n, 1}, that is to characterize the homogeneous cubics which are non degenerate.

Remark 3.2. We consider a homogeneous form F3 ∈ P = K[y1, . . . , yn] of degree
three. We write F3 in the dual basis E∗

F3 =
∑
|i|=3

αi
1

i!
yi.

F3 is non degenerate if and only if the K-vector space generated by all the derivatives
of order two has dimension n, that is

〈∂iF3 : |i| = 2〉K = P1.

This condition can be formulated in terms of the rank of a matrix, say ∆F3 , given
by the coefficients of the linear forms ∂iF3, |i| = 2. The matrix ∆F3 has size n×

(
n+1
2

)
with entries in the α′is ∈ K. We label the rows by j = 1, . . . , n, and the columns by
i ∈ Nn, |i| = 2. We have

(∆F3)j,i = αi+δj (8)

where δj is the n-uple with 0-entries but 1 in position j, hence i + δj = (i1, . . . , ij +
1, . . . , in). In fact we have

∂iF3 =
∑
|p|=3

αp y
p−i =

n∑
j=1

αi+δj yj.

Hence F3 is non degenerate if and only if rk(∆F3) = n.

Theorem 3.3. Let A be an Artinian Gorenstein local K-algebra with Hilbert function
{1, n, n, 1}. Then A is canonically graded.

Proof. Let A = R/I with R = K[[x1, . . . , xn]] and let F = F0 + F1 + F2 + F3 be a
polynomial of P = K[y1, . . . , yn] of degree three such that I = AnnR(F ) (Fi denotes
the homogeneous components of degree i). Since HFA is symmetric, then G = grm(A)
is Gorenstein, in particular G = Q(0) ' R/AnnR(F3) = AF3 and rk(∆F3) = n being
F3 non degenerate for the Hilbert function {1, n, n, 1}. By the admissibility of F3 we
deduce that P≤1 ⊆ 〈F2 + F3〉R. Hence we may assume F = F3 + F2, that is

I⊥ = 〈F 〉R = 〈F2 + F3〉R.
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So we have to prove that, however we fix F2, there exists an automorphism ϕ of
R/M4 which induces

AF3 ' AF2+F3 .

Let ϕ be an automorphism of R/M4 with the identity as Jacobian defined as follows

ϕ(xj) = xj +
∑
|i|=2

ajix
i

for j = 1, . . . , n. We prove that there exists a = (a1i , |i| = 2; · · · ; ani , |i| = 2) ∈ Kn(n+1
2 ),

the row vector of the coefficients defining ϕ, such that

[F3]E∗M(ϕ) = [F2 + F3]E∗ . (9)

The matrix associated to ϕ, say M(ϕ), is an element of Glr(K), r =
(
n+3
4

)
, with respect

to the basis E of R/M4, hence

M(ϕ) =


1 0 0 0
0 In 0 0
0 D I(n+1

2 ) 0

0 0 B I(n+2
3 )


where for all t ≥ 1, It denotes the t × t identity matrix. The first block column
corresponds to the image ϕ(1) = 1; the second block column corresponds to the image
of ϕ(xi), i = 1, . . . , n; the third block column corresponds to the image of ϕ(xi) such
that |i| = 2; and finally the last block column corresponds to the image of ϕ(xi) such
that |i| = 3, i.e. the identity matrix.

Hence D is the
(
n+1
2

)
× n matrix defined by the coefficients of the degree two

monomials of ϕ(xi), i = 1, . . . , n and B is the
(
n+2
3

)
×
(
n+1
2

)
matrix defined by the

coefficients of the degree three monomials appearing in ϕ(xi), |i| = 2. It is clear that
M(ϕ) is determined by D, and the entries of B are linear forms in the variables aji ,
with |i| = 2, j = 1, · · · , n. Let

F2 =
∑
|i|=2

βi
1

i!
yi and F3 =

∑
|i|=3

αi
1

i!
yi.

Hence (9) is equivalent to the following equality

[αi]B = [βi].

Then we get a system of
(
n+1
2

)
equations which are bi-homogeneous polynomials in

the {αi} and a ∈ K n(n+1
2 ) of bi-degree (1, 1). Then there exists a matrix MF3 of size(

n+1
2

)
× n

(
n+1
2

)
and entries in the {αi}′s such that

t([αi]B) = MF3

ta
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where ta denotes the transpose of the row-vector a. We have to prove that the following
linear system in

(
n+1
2

)
equations and the n

(
n+1
2

)
indeterminates a = (a1i , · · · ; ani )

MF3

ta = t[βi]

is compatible. The result follows if we show that rk(MF3) is maximal, i.e. rk(MF3) =(
n+1
2

)
.

Claim. The matrix MF3 has the following upper-diagonal structure

MF3 =


M1

F3
∗ · · · ∗ ∗

0 M2
F3
· · · ∗ ∗

...
...

...
...

...
0 0 0 Mn−1

F3
∗

0 0 0 0 Mn
F3


where M l

F3
is a (n− l + 1)×

(
n+1
2

)
matrix, l = 1, · · · , n, such that:

(i) 1-st row of M1
F3

= 2 times the 1-st row of ∆F3 ,

t-th row of M1
F3

= t-th row of ∆F3 , t = 2, · · · , n.

(ii) 1-st row of M l
F3

= 2 times the l-st row of ∆F3 , for l = 2, · · · , n,

t-th row of M l
F3

= (l+ t− 1)-th row of ∆F3 , for t = 2, · · · , n− l+ 1, l = 2, · · · , n,

where ∆F3 is the matrix defined in Remark 3.2 of the coefficients of the second deriva-
tives of F3.

Proof of the Claim. Let us recall that the entries of the columns of B are the
coefficients of the degree three monomials of the support of ϕ(xi), |i| = 2. Hence the
entries of the ali−th column of MF3 are the coefficients of the terms of degree three in the

support of F3 which appear in ϕ(xi) with coefficient ali. Given integers 1 ≤ l ≤ j ≤ n
let us compute ϕ(xlxj). If l 6= j then

ϕ(xlxj) = xlxj +
∑
|i|=2

ajix
ixl +

∑
|i|=2

alix
ixj + terms of degree 4.

Since xixj = xi+δj and j > l we get

(MF3)δl+δj ,ali = αi+δj

and
(MF3)δl+δj ,aji

= αi+δl .

If j = l then

ϕ(x2l ) = x2l + 2
∑
|i|=2

alix
ixl + terms of degree 4.
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so
(MF3)2δl,ali = 2αi+δl .

Hence the row (δl + δj)-th of MF3 , j > l, can be split in two non-zero subsets of
entries. The first subset, with respect to the lex ordering, corresponds to the columns
ali, |i| = 2, with entries αi+δj , the second subset of entries corresponds to the column

aji with entries αi+δl . From these facts we get the upper-diagonal block structure of

MF3 . In particular, if we fix l = 1, . . . , n, the matrices M l
F3
, l = 1, . . . , n appearing

in the claim are determined by the columns ali and the rows δl + δj with l ≤ j ≤ n
((n− j + 1)-rows) and

(M l
F3

)δl+δj ,ali = αi+δj if l > j ; (M l
F3

)δl+δj ,ali = 2αi+δj if l = j

By Remark 3.2 (8) we get

(M l
F3

)δl+δj ,ali = (∆F3)j,i if l > j ; (M l
F3

)δl+δj ,ali = 2(∆F3)j,i if l = j

as claimed.

Now we prove that

rk(MF3) =

(
n+ 1

2

)
.

Since F3 is non degenerate, by Remark 3.2 we have rank(∆F3) = n. Now M l
F3

for

l = 1, . . . , n is a matrix of size n− l+ 1×
(
n+1
2

)
obtained by ∆F3 by deleting the first l

rows. Hence rk(M l
F3

) = n− l + 1 and the result follows.

From the previous result, we easily get the following consequences.

Corollary 3.4. There exists an isomorphism between the Artinian Gorenstein local
K-algebras (A,m) and (B, n) with Hilbert function {1, n, n, 1} if and only if grm(A) '
grn(B) as graded K-algebras.

Corollary 3.5. The classification of Artinian Gorenstein local K-algebras with Hilbert
function HFA = {1, n, n, 1} is equivalent to the projective classification of the hyper-
surfaces V (F ) ⊂ Pn−1K where F is a degree three non degenerate form in n variables.

The classification of the Artinian Gorenstein local rings with Hilbert function
HFA = {1, n, n, 1} for 1 ≤ n ≤ 3 has been studied by Casnati and Notari [6, Theorem
4.1], and by Cartwright et al. [4]. By using Corollary 3.5, the problem can be reduced
to the homogeneous case which is well known for 1 ≤ n ≤ 3. Hence we can describe
the geometric models of the varieties defined by them.

If n = 1, then it is clear that A ∼= K[[x]]/(x4), so there is only one analytic model.
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Proposition 3.6. Let A be an Artinian Gorenstein local K-algebra with Hilbert func-
tion HFA = {1, 2, 2, 1}. Then A is isomorphic to one and only one of the following
quotients of R = K[[x1, x2]]:

Model A = R/I Inverse system F Geometry of C = V (F ) ⊂ P1
K

(x31, x
2
2) y21y2 Double point plus a simple point

(x1x2, x
3
1 − x32) y31 − y32 Three distinct points

Proof. Let us assume n = 2, then grm(A) = K[y1, y2]/Ann(F ) where F ∈ K[y1, y2] is
a degree three form on two variables y1, y2. Since K is an algebraic closed field, F can
be decomposed as product of three linear forms L1, L2, L3, i.e. F = L1L2L3. We set
d = dimK〈L1, L2, L3〉, so we only have to consider three cases. If d = 1 then we can
assume F = y31, but this case does not occur because F is degenerated. If d = 2, then
we can assume F = y21y2. It is easy to see that Ann(〈y21y2〉) = (x31, x

2
2). If d = 3, then

we can assume F = y31−y32. In this case we get Ann(〈y31−y32〉) = (x1x2, x
3
1−x32). Since

V (y21y2) (resp. V (y31 − y32)) is a degree three subscheme of P1
K with two (resp. three)

point basis we deduce that the algebras of the statement are not isomorphic.

We know that any plane elliptic cubic curve C ⊂ P2
K is defined, in a suitable system

of coordinates, by a Legendre’s equation

Lλ = y22y3 − y1(y1 − y3)(y1 − λy3)

with λ 6= 0, 1. This equation is equipped with the j-invariant

j(λ) = 28 (λ2 − λ+ 1)

λ2(λ− 1)2
.

It is well known that two plane elliptic cubic curves Ci = V (Lλi) ⊂ P2
K , i = 1, 2, are

projectively isomorphic if and only if j(λ1) = j(λ2), see [12].

Proposition 3.7. Let A be an Artinian Gorenstein local K-algebra with Hilbert func-
tion HFA = {1, 3, 3, 1}. Then A is isomorphic to one and only one of the following
quotients of R = K[[x1, x2, x3]]:

Model A = R/I Inverse system F Geometry of C = V (F ) ⊂ P2
K

(x21, x
2
2, x

2
3) y1y2y3 Three independent lines

(x21, x1x3, x3x
2
2, x

3
2, x

2
3 + x1x2) y2(y1y2 − y23) Conic and a tangent line

(x21, x
2
2, x

2
3 + 6x1x2) x3(x1x2 − x23) Conic and a non-tangent line

(x23, x1x2, x
2
1 + x22 − 3x1x3) y22y3 − y21(y1 + y3) Irreducible nodal cubic

(x23, x1x2, x1x3, x
3
2, x

3
1 + 3x22x3) y22y3 − y31 Irreducible cuspidal cubic

(x2x3, x1x3, x1x2, x
3
2 − x33, x31 − x33) y31 + y32 + y33 Elliptic Fermat curve

I(λ) = (x1x2, H1, H2) Lλ, j(λ) 6= 0 Elliptic non Fermat curve

with H1 = λ2x21 + λ(1 + λ)x1x3 + (λ2 − λ+ 1)x23, H2 = λ2x22 + λx1x3 + (1 + λ)x23, and
I(λ1) ∼= I(λ2) if and only if j(λ1) = j(λ2).
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Proof. Let us assume that F is the product of the linear forms l1, l2, l3. If l1, l2, l3 are
K-linear independent we get the first case. On the contrary, if these linear forms are
K-linear dependent, we deduce that F is degenerate.

Let us assume that F is the product of a linear form l and an irreducible quadric Q.
According to the relative position of V (l) and V (Q) we get the second and the third
case.

Let F be a degree three irreducible form. If C = V (F ) is singular then we get the
cases fourth and fifth. If C = V (F ) is non-singular, then we may assume that F = Lλ
for λ ∈ K \ {0, 1}, i.e. C is an elliptic cubic curve. If j(λ) = 0 then C fits in the orbit
of Fermat’s curve y31 + y32 + y33 ≡ 0 and we get the sixth case. If j(λ) 6= 0 then it is easy
to see that

J = (x1x2, H1, H2) ⊂ AnnR(Lλ).

Since λ2−λ+ 1 6= 0 then J is a complete intersection with Hilbert function {1, 3, 3, 1}.
Hence (x1x2, H1, H2) = AnnR(Lλ).

Remark 3.8. As before, the classification of Artinian Gorenstein K-algebras with
Hilbert function {1, 4, 4, 1} can be obtained by using results on the classification of the
degree three hypersurfaces of P3, see for instance [3].

As a consequence of Theorem 3.3, in the particular case of Artinian algebras over a
characteristic zero field, we obtain a recent result proved by Henriques and Şega on
the rationality of the Poincaré series, see [13, Theorem 4.2]. We denote by PA

K(z) the
Poincaré series of A, that is

PA
K(z) =

∑
j≥0

TorAj (K,K)zj.

We recall that a non-zero element a ∈ m is an exact zero divisor if (0 : a) is
a principal ideal. Notice that, in the graded case, if A = AF with F a generic cubic
form, then an exact zero divisor always exists and this implies the existence of a Koszul
filtration, see [8, Theorem 6.3].

Corollary 3.9 ( [13, Theorem 4.2]). Let A be an Artinian Gorenstein local K-algebra
with m4 = 0 and HFA(1) = n ≥ 3. If there exists an exact zero divisor in A, then A is
Koszul and hence PA

K(z) is rational.

Proof. By the existence of an exact zero divisor, the Hilbert function of A is balanced,
that is HFA = {1, n, n, 1}, see [13, Theorem 4.1]. Hence, by Theorem 3.3, A is canoni-
cally graded. Because there exists an exact zero divisor in G, by [13, Remark 3.5] and
[8, Proposition 2.3 b)], we conclude that G has a Koszul filtration. As a consequence,
A is Koszul since G is Koszul and hence PA

K(z) = PG
K (z) is rational.
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4 Gorenstein Artin algebras with socle degree three

In [6] Casnati and Notari presented a complete classification of the Artinian Gorenstein
local algebras with Hilbert functions {1,m, 3, 1}, m ≥ 3. In this section we study
the Artinian Gorenstein algebras with Hilbert function {1,m, n, 1}. By using a result
proved by Iarrobino (see [16, Proposition 1.9]), a necessary condition for which the
numerical function {1,m, n, 1} is the Hilbert function of an Artinian Gorenstein local
algebra is that m ≥ n. If m = n we have proved that every Artinian Gorenstein algebra
with Hilbert function {1, n, n, 1} is canonically graded. This is no longer true if m > n
because the Hilbert function is not symmetric. In this case the associated graded ring
G is not Gorenstein, but another Gorenstein graded algebra will play the same role:
Q(0) (see Section 2) which is the unique Gorenstein graded quotient of G with the
same socle degree. By Iarrobino’s work we deduce that

HFQ(0) = {1, n, n, 1}.

If we deal with different local rings, we will denote by QA(0) the module corresponding
to the local ring (A,m).

Theorem 4.1. The following facts are equivalent:

(a) A is an Artinian Gorenstein local K-algebra with Hilbert function {1,m, n, 1},
m > n,

(b) A ' AF where F ∈ K[y1, . . . , ym], F = F3 + y2n+1 + · · · + y2m with F3 a non
degenerate form of degree three in K[y1, . . . , yn].

Proof. The part b) implies a) is an easy computation based on (3). We prove a)
implies b). Let A = R/I with R = K[[x1, . . . , xn]] and let F = F0 + F1 + F2 + F3

be a polynomial of P = K[y1, . . . , yn] of degree three such that I = AnnR(F ) (Fi
denotes the homogeneous components of degree i). We know that Q(0) ' R/AnnR(F3)
and it has Hilbert function {1, n, n, 1}. Since Q(0) is a graded algebra of embedding
dimension n < m, there exist Ln+1, . . . , Lm independent linear forms contained in
AnnR(F3), hence we may assume there exist L1, . . . , Ln, . . . , Lm generators in P1 such
that F3 ∈ S = K[L1, . . . , Ln].

Since the Hilbert function of A is {1,m, n, 1}, and hence dimK(I⊥)1 = m, it is easy
to see that

〈F 〉R = 〈F2 + F3〉R.
Now we can write F2 = C + D where C ∈ K[Ln+1, . . . , Lm] and D is a quadratic
form in the monomials LiLj with 1 ≤ i ≤ n, 1 ≤ j ≤ m. Since the field K is
algebraically closed of characteristic zero, we may assume there exist λi ∈ K such that
F2 = λmL

2
m + · · ·+ λn+1L

2
n+1 +D′ with D′ the corresponding replacement of D.

Since HFA(1) = m, we remark that, by (2) and (3), λm, . . . , λn+1 are different from
zero. Summing up this information, we can conclude that there exist L1, . . . , Ln, . . . , Lm
independent linear forms of P such that

A ' AF ,
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where F = F3 + L2
m + · · ·+ L2

n+1 +H with F3 a homogeneous form of degree three in
K[L1, . . . , Ln] and H an homogeneous form of degree two in the monomials LiLj with
1 ≤ i ≤ n, 1 ≤ j ≤ m.

Since we are considering the linear change of coordinates in P sending yi → Li, we
should replace R and P via the corresponding linear automorphism. For short, we still
denote by R = k[[x1, . . . , xm]] and P = k[y1, . . . , ym] the corresponding images. Then
we have that

A ' AF

where F = F3 + y2n+1 + · · · + y2m + H with F3 a homogeneous form of degree three
in K[y1, . . . , yn] and H a homogeneous form of degree two in the monomials yiyj with
1 ≤ i ≤ n, 1 ≤ j ≤ m. So we have to prove that, however we fix H, there exists an
automorphism ϕ of R/M4 which induces

AF3+y2n+1+···+y2m ' AF3+y2n+1+···+y2m+H .

Let ϕ be the automorphism of R/M4 with the identity as Jacobian defined as follows

ϕ(xj) = xj +
∑
|i|=2

ajix
i

for j = 1, . . . ,m. We prove that there exists a = (a1i ; . . . ; a
m
i ) ∈ Km(n+1

2 ) the vector of
the coefficients defining ϕ such that

[F3 + y2n+1 + · · ·+ y2m]E∗M(ϕ) = [F3 + y2n+1 + · · ·+ y2m +H]E∗ . (10)

Repeating the same computation as in Theorem 3.3, the matrix associated to ϕ, say
M(ϕ), is an element of Glr(K), r =

(
n+3
4

)
, with respect to the basis E of R/M4 ordered

by the deg-lexicographic order, hence

M(ϕ) =


1 0 0 0
0 Im 0 0
0 D I(m+1

2 ) 0

0 0 B I(m+2
3 )


Precisely D is the

(
m+1
2

)
× m matrix defined by the coefficients of the degree two

monomials of ϕ(xj), j = 1, . . . ,m, and B is the
(
m+2
3

)
×
(
m+1
2

)
matrix defined by the

coefficients of the degree three monomials appearing in ϕ(xi), |i| = 2. It is clear that
M(ϕ) is determined by D and the entries of B are linear forms in the variables aji , with
|i| = 2, j = 1, · · · ,m. Notice that, by the peculiarity of ϕ, both D and B have several
zero-rows (precisely the rows corresponding to the monomials of degree three divided
by xi, i > n). Let

H =
∑
∗ βij yiyj where i < j, 1 ≤ i ≤ n, 1 ≤ j ≤ m and F3 =

∑
|i|=3 αi

1
i!
yi11 · · · yinn ,
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hence (10) can be reduced to the following equality

[αi]B
′ = [βij],

where B′ is the submatrix of B of size
(
n+2
3

)
×[
(
n+1
2

)
+n(m−n)] obtained considering the

rows and columns corresponding to the degree three monomials in x1, . . . , xn appearing
in ϕ(xixj) with i < j, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then we get a system of

(
n+1
2

)
+n(m−n)

equations which are bi-homogeneous polynomials in the {αi} and a = (a1i , · · · ; ami ) ∈
K m(n+1

2 ) of bi-degree (1, 1). Then there exists a matrix MF of size [
(
n+1
2

)
+n(m−n)]×

m
(
n+1
2

)
and entries in the {αi} such that

t([αi]B
′) = MF

ta.

We have to prove that the following linear system in the
(
n+1
2

)
+n(m−n) equations

and m
(
n+1
2

)
indeterminates a = (a1i , · · · ; ani )

MF
ta = t[βi]

is compatible. The result follows if we show that rk(MF ) is maximal, i.e. rk(MF ) =(
n+1
2

)
+ n(m− n). We will prove that the matrix MF has the following upper-diagonal

structure

MF =


MF3 ∗ · · · ∗ ∗
0 ∆F3 · · · ∗ ∗
...

...
...

...
...

0 0 0 ∆F3 ∗
0 0 0 0 ∆F3


 m− n times

where

(i) MF3 is the
(
n+1
2

)
× n

(
n+1
2

)
matrix defined in Claim of Theorem 3.3,

(ii) ∆F3 (m−n times) is the n×
(
n+1
2

)
matrix defined in Remark 3.2 of the coefficients

of the second derivatives of F3.

Following the definition of B′, we compute ϕ(xixj), i < j, 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Hence the entries of the ali−th column of MF , l = 1, . . . ,m, are the coefficients of the

degree three terms in the support of F3 which appear in ϕ(xixj) with coefficient ali.
If 1 ≤ i ≤ j ≤ n we are in the same setting of Claim of Theorem 3.3 and we get

MF3 corresponding to the ali−th columns with l = 1, . . . , n.
We compute now ϕ(xixj) with i = 1, . . . , n and j = n+ 1, . . . ,m, then

ϕ(xixj) = xixj +
∑
|i|=2

ajix
ixi +

∑
|i|=2

alix
ixj + terms of degree 4.
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Since xixj does not appear in the support of F3 because j > n, then for every j =
n+ 1, . . . ,m we get

(MF )δi+δj ,aji
= αi+δi .

Hence
(MF )δi+δj ,aji

= (∆F3)i,i

and (i) and (ii) are proved.

Since F3 is non degenerate for the Hilbert function {1, n, n, 1}, then by Remark 3.2
rk(∆F3) = n and, from the proof of Theorem 3.3, rk(MF3) =

(
n+1
2

)
. It follows that

rk(MF ) =

(
n+ 1

2

)
+ n(m− n),

as required.

We will extend Corollary 3.4 to this more general situation.

Corollary 4.2. There exists an isomorphism between the Artinian Gorenstein local
K-algebras (A,m) and (B, n) with Hilbert function {1,m, n, 1}, m ≥ n, if and only if
QA(0) ' QB(0) as a K-algebras.

Proof. If m = n, then Q(0) coincides with the associated graded ring and the result
follows by Corollary 3.4. Assume m > n, then result follows from Theorem 4.1 which
says that the isomorphism classes of AF only depend only on F3 and hence on the
isomorphism classes of Q(0).

Next result extends Corollary 3.5.

Corollary 4.3. The classification of Artinian Gorenstein K-algebras A with Hilbert
function HFA = {1,m, n, 1}, m ≥ n, is equivalent to the projective classification of the
cubic hypersurfaces V (F ) ⊂ Pn−1K where F is a degree three non degenerate form in n
variables.

By taking advantage of the projective classification of the cubic hypersurfaces in Pr,
with r ≤ 3, the above result gives a complete classification of the Artinian Gorenstein
local K-algebras with Hilbert functions {1,m, n, 1}, n ≤ 4.
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Gorenstein local algebras with low socle degree, preprint (2010).
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