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Abstract. What kind of reduced monomial schemes can be obtained as a Gröbner
degeneration of a smooth projective variety? Our conjectured answer is: only Stanley-
Reisner schemes associated to acyclic Cohen-Macaulay simplicial complexes. This would
imply, in particular, that only curves of genus zero have such a degeneration. We prove
this conjecture for degrevlex orders, for elliptic curves over real number fields, for bound-
aries of cross-polytopes, and for leafless graphs. We discuss consequences for rational and
F-rational singularities of algebras with straightening laws.

1. Introduction

A deformation of a scheme X is a flat family X −→ T , over some connected affine scheme
T , whose special fibre is X. Passing from an ideal I of the polynomial ring K[x1, . . . , xn]
to its initial ideal gives rise to a flat family over the parameter space SpecK[t] in which
the special fibre (the one over t = 0) corresponds to the initial ideal. We will call such
a family a Gröbner deformation. When the generic fibre of the family is smooth, we call
such a deformation a (Gröbner) smoothing. We focus our attention to the situation in
which the special fibre is a Stanley-Reisner scheme. This means that X is defined by a
square-free monomial ideal I∆ corresponding to some simplicial complex ∆. Specifically,
we are looking at the interplay between the type of singularities (or the lack of such) in
the generic fibre and the topology of the simplicial complex associated to the special fibre.
We have two reasons for doing this. On the one hand, having a square-free initial ideal
is a desirable property which better preserves homological invariants under degeneration
[?]. For example, extremal Betti numbers stay constant (in value and position), and thus
also depth and regularity, so Cohen-Macaulayness is passed on. Radical initial ideals
appear also in toric settings, where, in certain cases, they admit a description in terms
of unimodular triangulations of lattice polytopes [?, ?, ?, ?]. On the other hand, by
upper semi-continuity, smoothings (when possible) of Stanley-Reisner schemes associated
to combinatorial manifolds produce important algebraic varieties: spheres smoothen to
Calabi-Yau’s, tori to Abelian varieties, and triangulations of RP2 smoothen to Enriques
surfaces. Studies in this direction have been done in [?, ?, ?, ?, ?].

Throughout this introduction, the polynomial ringK[x1, . . . , xn] will always be equipped
with the standard Z-grading given by deg xi = 1. The two reasons presented above are
reflected by two approaches. In the first one, where the generic fibre is fixed, we start our
investigation by merging two similar questions, [?, Problem 3.6] and [?, Question 4.2],
into one conjecture.

Conjecture 1. Let I ⊂ K[x1, . . . , xn] be a homogeneous prime ideal defining a nonsin-
gular projective variety such that in(I) is square-free for some monomial order. Then
K[x1, . . . , xn]/ in(I) is Cohen-Macaulay.
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Problem 3.6 in [?] asks for a counter example of the above conjecture, while Question
4.2 in [?] asks if a stronger form of the conjecture is true, namely it asks if the following
holds.

Conjecture 2. Let I ⊂ K[x1, . . . , xn] be a homogeneous prime ideal defining a nonsin-
gular projective variety such that in(I) is square-free for some monomial order. Then
K[x1, . . . , xn]/ in(I) is Cohen-Macaulay with negative a-invariant.

Conjecture 2 is still open for projective curves, in which case it would imply that a
nonsingular projective curve with a square-free Gröbner degeneration is forced to have
genus zero.

Further motivation for this approach comes from algebras with straightening laws
(ASL). These are K-algebras whose generators and relations are governed by a finite
poset. All ASL have a discrete counterpart given by a square-free monomial ideal, which
can be obtained by a Gröbner degeneration under a degrevlex monomial order. In partic-
ular, all ASL fit our setting. In [?] and [?] De Concini, Eisenbud and Procesi expressed
the feeling that a graded ASL R over a field of characteristic zero should have rational
singularities as soon as it is a domain. It was quickly realised that this cannot be true
in full generality, since there exist graded ASL which are nonnormal domains [?]. In un-
published work (mentioned in [?, p. 11]), Buchweitz proved that in characteristic zero an
ASL has rational singularities provided that R has rational singularities on the punctured
spectrum and that the discrete part of R (and thus R itself) is Cohen-Macaulay. We are
able to infer Buchweitz theorem without the hypothesis that the discrete part of R is
Cohen-Macaulay, which we prove is a consequence of R having rational singularities on
the punctured spectrum (see Corollary 3.7).

Conjecture 2 trivially holds for hypersurfaces by the following simple, but intriguing,
fact. If f ∈ K[x1, . . . , xn] is a homogeneous polynomial of degree n defining a nonsingular
projective hypersurface, then in(f) cannot be a square-free monomial for any monomial
order. In our second approach, where we fix a Stanley-Reisner ideal, the above fact
translates to “the boundary of a simplex is not Gröbner-smoothable”. Smoothings do not
always exist, but when they exist, how do they look like? Finding explicit equations, even
in seemingly simple cases as n-cycles, is a hard problem. We focus our search to Gröb-
ner smoothings, and start by looking at complete intersections. In this case, smoothings
always exist and are obtained by unobstructed generic lifting of first order deformations.
It turns out that, just as in the case of hypersurfaces, complete intersections using all
the variables are never Gröbner-smoothable (Corollary 4.2). It is our general feeling that
Gröbner smoothings of Stanley-Reisner schemes are in fact rare. For example, they do
not exist for any combinatorial manifold if the order is lexicographic (Proposition 4.12).
Another reason for looking at these special deformations is to identify which deformations
can be Gröbner. To our knowledge there is no general method to determine if a given ab-
stract deformation is Gröbner. A valuable tool in this approach is provided by Altmann
and Christophersen [?], who give complete characterisations of the first two cotangent
functors in homological terms related to the simplicial complex.

In Proposition 2.4 we prove that the conjectures 1 and 2 are equivalent, by showing
that Conjecture 1 in dimension ≤ d + 1 implies Conjecture 2 in dimension ≤ d. For
arbitrary monomial orders we know Conjecture 1 for projective curves: this follows by
[?] if the base field is algebraically closed, and by [?] in general (see Proposition 2.6). In
Section 3 we show Conjecture 2 when the monomial order is a degree reverse lexicographic
one (see Corollary 3.4). In the last section we study Gröbner deformations which are not
necessarily associated to degrevlex orders. Conjectures 1 and 2 are equivalent to: A
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simplicial complex which is Gröbner-smoothable over K must be Cohen-Macaulay and
acyclic over K. We prove the following.
1. A combinatorial sphere whose Stanley-Reisner ring is a complete intersection (e.g. the

boundary of a cross-polytope) is not Gröbner-smoothable over any field (Corollary 4.2).
2. A graph with exactly one cycle is not Gröbner-smoothable over any real number field

(Theorem 4.3).
3. A Gröbner-smoothable graph (over some field) has leafs (Corollary 4.10).
4. Any simplicial complex that is Gröbner-smoothable for the lexicographic order has

some free face (Proposition 4.12).
Theorem 4.3 is a statement on nonsingular projective curves of genus one, and its proof

relies on a result from number theory by Elkies [?]. The proofs of the other three results
are essentially combinatorial.

Acknowledgements: We are grateful to Klaus Altmann and Jan Christophersen for the
many useful hints on deformation theory; to Anurag Singh for valuable discussions on
many topics touched by this paper, especially on the behaviour of the singularities of
ProjR as the graded structure on R varies; to Bhargav Bhatt for clarifications around
Theorem 4.3; to Mitra Koley for pointing at the generalisation of the result of Fedder
and Watanabe crucial for the proof of the positive characteristic case of Corollary 3.4; to
Mateusz Michalek for many experiments on Theorem 4.3.

2. The conjectures

Let S be the polynomial ring K[x1, . . . , xn] over a field K equipped with a positive
grading (i.e. deg xi > 0 for all i = 1, . . . , n). For a homogeneous ideal I ⊂ S, let R = S/I
and denote by Him(R) the ith local cohomology module of R supported at the unique
homogeneous maximal ideal m of R. The S-module Him(R) is Z-graded; for j ∈ Z, we will
denote by Him(R)j its degree j part.

We recall that R is Cohen-Macaulay if and only if Him(R) = 0 for all i < dimR. The
a-invariant of a Cohen-Macaulay positively graded K-algebra R is the maximum j ∈ Z
such that HdimR

m (R)j 6= 0. In this case, the a-invariant of R is negative if and only if
HdimX(X,OX) = 0 (where X = ProjR), so having negative a-invariant depends only on X.
The ring R is called generalised Cohen-Macaulay if and only if Him(R) has finite length for
any i < dimR. In positive characteristic, R is called F-injective if the natural Frobenius
action on Him(R) is injective for all i ∈ N. For the definitions of rational singularities and
F-rational singularities we refer to [?, Chapter 10].

Remark 2.1. A graded, finitely generated R-module M has finite length if and only
if SuppM = {m}. Using graded duality, it is not difficult to realise that R is generalised
Cohen-Macaulay if and only if R is equidimensional and Cohen-Macaulay on the punctured
spectrum SpecR \ {m}. The latter condition is implied by R being an equidimensional
isolated singularity, or, in characteristic zero, by R being equidimensional and having
rational singularities on the punctured spectrum.

Remark 2.2. In the standard graded situation, R is an isolated singularity if and only
if X = ProjR is a nonsingular projective scheme. In the nonstandard graded polynomial
ring one has to be careful: For instance, R being an isolated singularity is not equivalent
to ProjR being nonsingular (e.g. the weighted projective space P(1, 1, 2) is singular).

For convenience, we recall the results of [?] which we will most frequently use.
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Theorem 2.3 ([?]). Let I ⊂ S be a homogeneous ideal such that in(I) is radical for some
monomial order. Then
(i) dimKH

i
m(S/I)j = dimKH

i
m(S/ in(I))j for all i, j ∈ Z.

(ii) S/I is Cohen-Macaulay if and only if S/ in(I) is Cohen-Macaulay.
(iii) S/I is generalised Cohen-Macaulay if and only if S/ in(I) is Buchsbaum.
(iv) S/I satisfies Serre condition (Sr) if and only if S/ in(I) satisfies Serre condition (Sr),

for all r ≥ 1.
All the above results, even if originally stated for the standard grading, hold true for

any positive grading [?, Remark 2.5].
For the remaining part of this section, the graded structure on S = K[x1, . . . , xn] will

be the standard one.

Proposition 2.4. Conjectures 1 and 2 are equivalent.

Proof. Obviously 2 implies 1, so let us assume 1 is true and take a homogeneous prime
ideal I ⊂ S = K[x1, . . . , xn] contradicting 2. We have that X = ProjS/I is nonsingular,
in(I) is square-free for some monomial order, S/ in(I) is Cohen-Macaulay, but the a-
invariant of S/ in(I) is nonnegative. So also S/I is Cohen-Macaulay with nonnegative
a-invariant. We show now that the Segre embedding Y = X × P1 ⊂ P2n−1 provides a
counterexample to Conjecture 1: Let A = K[yij : i ∈ {0, 1}, j ∈ {1, . . . , n}] and P ⊂ A be
the homogeneous prime ideal defining Y ⊂ P2n−1. Then ProjA/P ∼= Y is nonsingular and
HdM(A/P)0

∼= Hdm(S/I)0 6= 0 by [?, Theorem 4.1.5], where M is the unique homogeneous
maximal ideal ofA/P and d = dimS/I. Since dimA/P = d+1, the ringA/P is not Cohen-
Macaulay, so A/ in(P) is not Cohen-Macaulay for any monomial order on A. Finally, in(P)
is square-free for some special monomial order by [?, Theorem 3.2]. �

Remark 2.5. In the proof of Proposition 2.4 we actually showed that
Conjecture 1 in dimension ≤ d+ 1 =⇒ Conjecture 2 in dimension ≤ d.

Let us recall that there is a one-to-one correspondence between square-free monomial
ideals I∆ of S and simplicial complexes ∆ on [n] = {1, . . . , n}, given by:

∀ F ⊂ [n], F ∈ ∆ ⇐⇒ x :=
∏
i∈F

xi /∈ I∆.

In some instances it will be convenient to identify F and xF, and simply write xF ∈ ∆.
An element of ∆ is called face. By maximal face we mean maximal under inclusion. The
dimension of a face F ∈ ∆ is dim F = |F|− 1, and the dimension of ∆ is

dim∆ = max{dim F : F ∈ ∆}.
The link of F ∈ ∆ is the simplicial complex link∆ F = {G ⊂ [n] : G∪F ∈ ∆ and G∩F = ∅}. A
simplicial complex ∆ is pure precisely when all its maximal faces have the same dimension.
A simplicial complex is strongly connected if and only if for every pair of maximal faces
F,G ∈ ∆, there exist F = F0, F1, . . . , Fr = Gmaximal faces of ∆ such that |Fi∩Fi+1| = |Fi|−1
for all 0 ≤ i < r; in particular, if ∆ is strongly connected then it is pure. We say that ∆ is
normal if and only if link∆ F is strongly connected for all F ∈ ∆. Furthermore, ∆ is Cohen-
Macaulay if H̃i(link∆ F;K) = 0 for all F ∈ ∆ and i < dim link∆ F, while ∆ is Buchsbaum if
H̃i(link∆ F;K) = 0 for all ∅ 6= F ∈ ∆ and i < dim link∆ F. These two notions agree with
the corresponding algebraic notions for the Stanley-Reisner ring K[∆] = S/I∆. Finally, if
K[∆] is Cohen-Macaulay, then it has negative a-invariant if and only if H̃dim∆(∆;K) = 0.

Proposition 2.6. Let I ⊂ S be an ideal such that in(I) = I∆ for some monomial order.
(i) If S/I is a domain, then ∆ is strongly connected.
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(ii) If S/I is a normal domain, then ∆ is normal.
(iii) If I is homogeneous and ProjS/I is an equidimensional nonsingular projective scheme,

then ∆ is Buchsbaum.

Proof. Point (i) follows by [?] if the base field is algebraically closed, and by [?] in general.
(ii) Since R/I is normal, it satisfies Serre condition (S2), so, by Theorem 2.3 (iv), K[∆]
satisfies (S2) as well; on the other hand, it is known and easy to prove that ∆ is normal
if and only if K[∆] satisfies (S2).
(iii) As S/I is generalised Cohen-Macaulay, we conclude by Theorem 2.3 (iii). �

Given a simplicial complex ∆ on n vertices, we say it is Gröbner-smoothable over K if
there exists a homogeneous prime ideal I ⊂ K[x1, . . . , xn] defining a nonsingular projective
variety and a monomial order such that in(I) = I∆. So a further equivalent formulation
of Conjectures 1 and 2, using Proposition 2.4, is the following:

Conjecture 3. A simplicial complex which is Gröbner-smoothable over K is Cohen-
Macaulay and acyclic over K.

A simplicial complex ∆ is acyclic over K if all its reduced simplicial cohomology modules
with coefficients in K vanish.

3. Degree reverse lexicographic degenerations

Throughout this section S = K[x1, . . . , xn] is again allowed to have any positive grading.

Definition 3.1. A monomial order on S is xn-addicted if, whenever f ∈ S and xn| in(f),
we have that xn|f.

Remark 3.2. Any degrevlex monomial order is xn-addicted if xn is the smallest variable.

Theorem 3.3. Let I ⊂ S be a homogeneous ideal such that S/I is generalised Cohen-
Macaulay and xn is S/I-regular. If in(I) is radical for some xn-addicted monomial order,
then S/ in(I) is Cohen-Macaulay with negative a-invariant.

Proof. By Theorem 2.3 (iii), S/ in(I) is generalised Cohen-Macaulay. By Hochster’s for-
mula for local cohomology [?, Theorem 3.5.8] we infer:

Him(S/ in(I)) = H
i
m(S/ in(I))0

∼= H̃i−1(∆) ∀ i ≥ 1,
where ∆ is the simplicial complex on n vertices such that in(I) = I∆, the Stanley-Reisner
ideal of ∆. Since H0m(S/ in(I)) trivially vanishes, it is enough to show that H̃i(∆) = 0 for
all i ∈ N. We will show an even stronger statement, namely, that ∆ is contractible.

In order to do so, it is enough to show that the vertex corresponding to xn is a cone
point for ∆, i.e. that xn is contained in every maximal face of ∆. This is equivalent to
xn not dividing any minimal monomial generator of in(I). By contradiction, let u be a
minimal monomial generator of in(I) which is divisible by xn, and let f ∈ I such that
in(f) = u. As the monomial order is xn-addicted, there exists g ∈ S such that f = xng.
Since xn is S/I-regular, we have g ∈ I. In particular, in(g) is a monomial of in(I) strictly
dividing u, thus contradicting the minimality of u. �

The following corollary solves Conjectures 1 and 2 for any degree reverse lexicographic
monomial order.

Corollary 3.4. Let I ⊂ S be homogeneous prime ideal such that in(I) is a square-free
monomial ideal with respect to a degrevlex monomial order.
(i) If S/I is generalised Cohen-Macaulay, then S/ in(I) (and thus also S/I) is Cohen-

Macaulay with negative a-invariant.
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(ii) In characteristic zero, S/I has rational singularities whenever it has rational singu-
larities on the punctured spectrum.

(iii) In positive characteristic, S/I is F-rational whenever it is F-rational on the punctured
spectrum.

Proof. (i) We can assume that x1 > . . . > xn. If xn /∈ I, then we conclude by Theorem
3.3. Otherwise, set S ′ = S/(xn) and I ′ = I/(xn). Then I ′ ⊂ S ′ is a prime ideal such
that S ′/I ′ ∼= S/I is generalised Cohen-Macaulay and in(I ′) = in(I)/(xn) is a square-
free monomial ideal with respect to the degrevlex monomial order extending the linear
order x1 > . . . > xn−1. By induction on the number of variables, S ′/ in(I ′) ∼= S/ in(I) is
Cohen-Macaulay with negative a-invariant.

(ii) It follows from (i) and [?, Theorem 2.2].
(iii) Since in(I) is a square-free monomial ideal, S/ in(I) is F-injective. By (i), S/ in(I) is

Cohen-Macaulay, so we get that S/I is F-injective using [?, Theorem 2.1]. So, using (i), we
have that R is Cohen-Macaulay, F-injective, F-rational on the punctured spectrum, and has
negative a-invariant. In [?, Theorem 2.8, Remark 1.17], Fedder and Watanabe proved that
these conditions, under the stronger assumption that R is an isolated singularity, imply
that R is F-rational. It turns out that their proof works as well without the stronger
assumption (see [?, Theorem 5.49, Lemma 5.44] for a rigorous proof), hence we conclude.

�

Remark 3.5. Corollary 3.4 solves in positive Conjectures 1 and 2 for a degree reverse
lexicographic monomial order even. In fact, it uses only the weaker assumption that
ProjS/I is Cohen-Macaulay, instead of nonsingular. However, this stronger version of
Conjectures 1 and 2 is not true for other monomial orders, as the following examples
show.

Example 3.6. (i) Let f = xyz + y3 + z3 ∈ S = K[x, y, z], I = (f) and choose the
lexicographic monomial order with x > y > z. Then I is a homogeneous (w.r.t.
the standard grading) prime ideal, ProjS/I is Cohen-Macaulay and in(I) = (xyz) is
square-free. However S/ in(I) is Cohen-Macaulay with a-invariant 0, so Conjecture
2 is false if we replace “ProjS/I is nonsingular” by “ProjS/I is Cohen-Macaulay”.

(ii) In [?, Example 3.4], a homogeneous prime ideal I of the standard graded polynomial
ring S in 6 variables over K is considered. That ideal satisfies: ProjS/I is a Cohen-
Macaulay surface, in(I) is square-free for a lexicographic monomial order, but S/ in(I)
is not Cohen-Macaulay. So also Conjecture 1 is false if we replace “ProjS/I is
nonsingular” by “ProjS/I is Cohen-Macaulay”.

In the following corollary, the notion “graded algebra with straightening laws” is the
same used in [?].

Corollary 3.7. Let R be a graded algebra with straightening laws over a field such that R
is a domain.
(i) If R is generalised Cohen-Macaulay, then R is Cohen-Macaulay with negative a-

invariant.
(ii) In characteristic zero, R has rational singularities whenever it has rational singular-

ities on the punctured spectrum.
(iii) In positive characteristic, R is F-rational whenever it is F-rational on the punctured

spectrum.

Proof. Let Ω be the set of ASL generators of R, i.e. the partially ordered K-algebra
generators of R to which the straightening laws apply. This means that R ∼= S/I where
S = K[xω : ω ∈ Ω] is the polynomial ring over K whose variables correspond to the
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elements of Ω and I ⊂ S is a prime ideal such that in(I) is a square-free monomial
ideal with respect to any degrevlex monomial order on S extending the partial order of
Ω. By supplying S with the degrees given by deg(xω) = deg(ω) for all ω ∈ Ω, I is a
homogeneous ideal of S, so we conclude by Corollary 3.4. �

Remark 3.8. If R = S/I is an isolated singularity, the hypothesis of all three parts of
Corollary 3.4 and Corollary 3.7 are fulfilled.

4. Gröbner deformations for arbitrary monomial orders

From the remaining part of this article we will assume that the graded structure on
S = K[x1, . . . , xn] is the standard one.

4.1. Complete intersections. Complete intersections are a particularly nice case to
consider: they are always smoothable (in fact there are no obstructions to lifting infini-
tesimal deformations), however we are going to see that square-free monomial complete
intersections using all the variables of K[x1, . . . , xn] in their minimal generators are not
Gröbner-smoothable. The proof of this result is a simple combinatorial argument, that
however we find instructive: it is a generalisation of the easy fact that a polynomial defin-
ing a Calabi-Yau hypersurface cannot have a square-free initial monomial, which was one
of the starting points of this paper.

Let I = (u1, . . . , uc) be a monomial ideal of S = K[x1, . . . , xn] minimally generated by
monomials u1, . . . , uc of degree di = degui. Then I is a complete intersection (of height
c) if and only if the ui’s are supported on disjoint sets of variables. So, if I = I∆ is square-
free, then d1 + . . . + dc ≤ n with equality holding if and only if K[∆] has a-invariant
0.

Let I = I∆ ⊂ m2 be a complete intersection such that K[∆] has a-invariant 0. Then ∆ is
the join of c boundaries of simplices. So let ∆ = ∂∆1 ∗ · · · ∗∂∆c, with dim∆i = di−1 ≥ 1.
Let the variables corresponding to ∆i be xi1, . . . , xidi , so we have

I∆ = (x11 . . . x1d1 , . . . , xc1 . . . xcdc).

Let τ be some monomial order, and assume that I = (f1, . . . , fc) is a reduced homogeneous
Gröbner basis with

fi = xi1 . . . xidi −
∑

λMM,where λM ∈ K and M ≤τ xi1 . . . xidi .

As the Gröbner basis is homogeneous and reduced, all the monomials M above have
degree di and are supported on faces of ∆. Without losing generality we may always
assume that we have the following inequalities for τ:

(1)
xi1 > . . . > xidi ∀ i,
x11 ≥ xij ∀ xij,
xij ≥ xcdc ∀ xij with i > 1.

Lemma 4.1. With the above convention, if {f1, . . . , fc} is a reduced Gröbner basis of the
ideal I it generates, then the point [1 : 0 : · · · : 0] is a singular point of ProjS/I, where the
first projective coordinate corresponds to the variable x11.

Proof. First of all, as xa11 is the largest monomial of degree a, it does not appear in
the support of any fi, so [1 : 0 : · · · : 0] ∈ ProjS/I. Assume the contrary, namely that
[1 : 0 : · · · : 0] is a smooth point of ProjS/I. Then the Jacobian computed at [1 : 0 : · · · : 0]
has to have maximal rank c. This implies that no row can be zero when substituting.
In particular, in the support of fc, we must have some monomial of the form xdc−111 xij. If
i > 1, then xcdc < xij. Because all other variables xck < x11, we have xc1 . . . xcdc < x

dc−1
11 xij,
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contradicting in(fc) = xc1 . . . xcdc . So the monomial has to be xdc−111 x1j for some j. This
implies two things:

x11x1j ∈ ∆ because the Gröbner basis is reduced.(2)
x1j < xcdc because xc1 . . . xcdc > x

dc−1
11 x1j.(3)

From (2) we obtain that d1 > 2. Given that the row of the Jacobian corresponding to f1
cannot be zero when substituting [1 : 0 : · · · : 0], we must have some monomial xd1−111 xkl
in the support of f1. We claim that this leads to a contradiction. There are two cases:
If k = 1, then xd1−111 x1l > x11 . . . x1d1 which is a contradiction to in(f1) = x11 . . . x1d1 .
If k > 1, then by (3) we have x1j < xcdc , and by assumption (1) we have xcdc < xkl. So
x11 . . . x1d1 < x

d1−1
11 x1j < x

d1−1
11 xkl which is again a contradiction to in(f1) = x11 . . . x1d1 . �

Corollary 4.2. A join of boundaries of positive dimensional simplices is not Gröbner-
smoothable over any field K.

The simplicial complexes of the above corollary are particular combinatorial spheres. If
Conjecture 3 is true, no combinatorial sphere is Gröbner-smoothable. As a consequence
of the results in the next subsection, this is at least true for 1-dimensional spheres.

4.2. Dimension 1. In Proposition 2.4 we proved that if Conjecture 1 is true in dimension
≤ d+ 1, then Conjecture 2 is true in dimension ≤ d. On the other hand Conjecture 1 is
true whenever dimS/I ≤ 2 by Proposition 2.6 (since a 1-dimensional simplicial complex
is Cohen-Macaulay if and only if it is strongly connected), so the first instance where it
is open is when dimS/I = 3. This justifies our next interest, that is to study Conjecture
2 when dimS/I = 2. In this case, Conjecture 2 says that if I ⊂ S defines a smooth
projective curve C and in(I) is square-free for some monomial order, then the genus of C
must be zero. While the most general case remains open, in this section we provide some
evidence for it.

4.2.1. Elliptic curves over real number fields. In the proof of the next theorem we use
the result of Elkies [?] which states that an elliptic curve over the rational numbers has
infinitely many supersingular primes.

Theorem 4.3. If I ⊂ Q[x1, . . . , xn] defines a nonsingular projective curve of genus one,
then in(I) is not square-free for any monomial order.

Proof. Given a prime number p, we will denote by Sp the polynomial ring Z/pZ[x1, . . . , xn].
Also, for an ideal J ⊂ S = Q[x1, . . . , xn] we write Jp for the ideal J ′Sp ⊂ Sp, where
J ′ = J ∩ Z[x1, . . . , xn].

Let E ⊂ Pn−1 be the nonsingular projective curve of genus 1 defined by I ⊂ S. Of
course Ip defines Ep, its reduction mod p, for all prime numbers p. Since any nonsingular
projective curve of genus one can be embedded as an elliptic curve in P2, there exist
infinitely many supersingular primes p for E by [?, Theorem 1]. This means that the
Frobenius does not act injectively on H1(Ep,OEp) for infinitely many primes p. Since
H1(Ep,OEp) ∼= H2mp

(Sp/Ip)0, this implies

(4) Sp/Ip is not F-injective for infinitely many primes p.

Suppose by contradiction that in(I) is square-free for some monomial order. So in(I) =
I∆ for some 1-dimensional simplicial complex ∆. By Proposition 2.6 (i) ∆ must be a
connected 1-dimensional simplicial complex, thus ∆ is shellable, and thus S/I∆ is Cohen-
Macaulay. Looking at the Buchberger algorithm, it is easy to realise that in(Ip) = (I∆)p for
all prime numbers p� 0. So Sp/ in(Ip) is F-injective and Cohen-Macaulay for all p� 0;
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therefore Sp/Ip is F-injective by [?, Theorem 2.1] for all p� 0 as well, a contradiction to
(4).

�

Remark 4.4. With the appropriate notion of reduction mod p, the proof of Theorem
4.3 works replacing Q with any number field K ⊂ R by [?]. The proof fails however on
a general field of characteristic zero. For example, all the reductions mod p of the ring
Q(π)[x, y, z]/(x3+y3+ z3+π ·xyz) are F-injective for all prime numbers p, thus (4) fails.

4.2.2. Leafless 1-dimensional complexes. Theorem 4.3 together with Remark 4.4 say that
a graph with one cycle is not Gröbner-smoothable over a real number field. We extend
this to arbitrary fields and any number of cycles, with the extra assumption that the
simplicial complex involved has no leafs. By a leaf we mean a vertex which is contained
in exactly one maximal face. We call a simplicial complex leafless if it has no leafs.

Remark 4.5. Recall that a free face of a pure d-dimensional simplicial complex is a face
of dimension d − 1 contained in only one maximal face. The notion of pure simplicial
complex with no free faces coincides with the notion of leafless pure simplicial complex
only in dimension 1. In higher dimension, leafless is implied by the absence of free faces.

We start with the setup. Since I ⊂ S = K[x1, . . . , xn] is a homogeneous prime ideal
such that dimS/I = 2 and in(I) = I∆ for some monomial order, then by Proposition
2.6 one has that ∆ is a 1-dimensional, connected simplicial complex on [n], i.e., ∆ is a
connected graph on n vertices. Moreover, from now on we will assume that I does not
contain linear forms (harmless for our goals), that is, {i} ∈ ∆ for every i ∈ [n]. Let
{fF | F is a minimal non-face of ∆} be a homogeneous reduced Gröbner basis of I∆ with
respect to some monomial order τ, such that
(5) inτ fF = xF for every minimal F /∈ ∆.
We also use the notation

dF := deg fF for every minimal F /∈ ∆.
As ∆ is 1-dimensional, dF is either two or three. We may and will relabel the vertices of
∆ in such a way that link∆ 1 = {2, . . . , r} (we abuse here notation and write just 2 for the
face {2} and so on). For the fixed monomial order τ we may always assume without loss
of generality that we have the following inequalities:

(6) x1 > xi ∀ i > 1,
x2 > · · · > xr.

Remark 4.6. If {1, l} /∈ ∆, then xdF−11 xl /∈ supp fF and xdF1 /∈ supp fF for every minimal
non-face F.

Proof. This follows directly from the fact that x1 is the highest variable, and the Gröbner
basis is reduced. �

Lemma 4.7. For 1 < a ≤ min{r, 3}, we have that

(7) xdF−11 xa /∈ supp fF, for all minimal non-faces with 1 /∈ F.

Proof. We label the minimal non-faces of ∆ not containing 1 by F1, . . . , Fs, denote the
corresponding degrees by d1, . . . , ds, and assume that

(8) if 1 ≤ i < j ≤ s, then x3−di1 inτ fFi < x
3−dj
1 inτ fFj .

We will prove (7) inductively, that is, we assume that (7) holds for F1, . . . , Fk−1 and prove
that it also holds for Fk.
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Let a = 2 and assume that xdk−11 x2 ∈ supp fFk . This implies that xdk−11 x2 < xF, so that
x2 < xi for all i ∈ Fk. Since x2 < xi implies i > r by (6), it follows that {1, i} /∈ ∆ for
every i ∈ Fk. Let ik be one of the vertices in Fk and build the S-polynomial

S(f{1,ik}, fFk) = xFk\ikf{1,ik} − x1fFk .

As we are dealing with a Gröbner basis, we must have

(9) S(f{1,ik}, fFk) =
∑

gF · fF, with in(gF · fF) < x1xFk .

The highest exponent of x1 in a monomial in the support of xFk\ikf{1,ik} is 1. So, because
xdk1 x2 ∈ supp x1fFk with dk > 1, we have xdk1 x2 ∈ suppS(f{1,ik}, fFk). Thus, there must
appear some non-face F ′ on the right hand side of (9), such that

(10) xdk1 x2 ∈ suppgF ′fF ′ .

Claim 1. For every F ′ as above we have 1 /∈ F ′.

Proof of Claim 1: We assume that 1 ∈ F ′ and seek a contradiction. There are two cases:
If |F ′| = 3, then let F ′ = {1, l,m}, so l,m ∈ link∆ 1. In particular xl ≤ x2 and xm ≤ x2, so
x21x2 > x1xlxm = in(fF ′). This implies in(gF ′fF ′) < xdk1 x2, so x

dk
1 x2 /∈ suppgF ′fF ′ , which is

a contradiction to (10).
If |F ′| = 2, then let F ′ = {1, l}. Because x21 /∈ supp fF ′ we must have by (10) that
xdk−11 ∈ suppgF ′ , thus also that xdk1 xl ∈ suppgF ′fF ′ . By Remark 4.6, we have that
xdk1 xl /∈ suppS(f{1,ik}, fFk), so x

dk
1 xl must cancel out with some monomial in supp(gFfF) for

some F. But, again by Remark 4.6, we have xdk1 xl /∈ supp(gFfF) for every F and we also
obtain a contradiction. �

By Claim 1 we have F ′ = Fi for some i ∈ {1, . . . , s}. As xdF ′
1 /∈ supp fF ′ , we must

have xdF ′−1
1 x2 ∈ supp fF ′ . By the inductive hypothesis we must have that i ≥ k. From

(8) it follows that x3−d01 in fF ′ ≥ x3−dk1 in fFk . Thus we get inτ gF ′fF ′ ≥ x1xFk , which is a
contradiction to (9).

When a = 3, the only change in the proof is in the first lines: From x3 < xi for i ∈ Fk
it follows that there exists j ∈ Fk with {1, j} /∈ ∆ (for x2 we had this for any i ∈ Fk). The
rest of the proof runs analogously. �

The proof of Lemma 4.7 no longer works for the third-largest variable in the link of 1,
namely x1x4 ∈ supp f{2,3} would not lead to a similar contradiction. A straight-forward
generalisation of the argument in higher dimension is also not possible, because the link
of 1 is no longer a 0-dimensional complex, so we may no longer assume that x2 > · · · > xr.
So Lemma 4.7 is the best possible result using this type of arguments related to monomial
orders and reduced Gröbner bases.

Remark 4.8. For a minimal non-face F with |F| = 3 and 1 ∈ F, we have

x21x2, x
2
1x3 /∈ supp fF.

Proof. Because F = {1, l,m} is a minimal non-face, we have l,m ∈ link∆ 1. As we chose
x2 and x3 to be the largest two variables in the link of 1, we have x2 ≥ xl and x3 ≥ xm
(or l and m switched). Thus x21x2 > x21x3 > x1xkxl. �

Theorem 4.9. Let ∆ be a 1-dimensional simplicial complex, and fix a monomial order.
Let I ⊂ S be homogeneous ideal with in I = I∆, and let {fF | F is a minimal non-face of ∆}
be a reduced homogeneous Gröbner basis of I. If 1 is not a leaf, then P1 = [1 : 0 : · · · : 0]
is a singular point of ProjS/I.
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Proof. Clearly xdF1 is not in the support of any fF, which implies that P1 ∈ ProjS/I.
Because 1 is not a leaf we have r ≥ 3, where {2, . . . , r} = link∆ 1. The Jacobian Jac(I) can
be split in two blocks with full rows as follows:
B1 := the n− r rows corresponding to the degree 2 generators fF with x1|xF.
B2 := the rows corresponding to the fF without xdF−11 x2 and xdF−11 x3 in their support.
When substituting P1 in the Jacobian, the columns indexed by xr+1, . . . , xn produce an
identity submatrix in B1(P1), so

rankB1(P1) = n− r.

In B2(P1), the columns indexed by xr+1, . . . , xn are all zero because the Gröbner basis is
reduced. The first column is zero because xdF1 /∈ supp fF for any minimal non-face F. By
Lemma 4.7 and Remark 4.8 the columns indexed by x2 and x3 are also zero in B2(P1).
This leaves at most r− 3 nonzero columns in B2(P1), thus

rankB2(P1) ≤ r− 3.
This means that rank Jac(P1) ≤ n − r + r − 3 = n − 3 < codimPn−1 ProjS/I, so P1 is a
singular point. �

Corollary 4.10. A graph which is Gröbner-smoothable over some field must have leafs.
In particular, a cycle is not Gröbner-smoothable over any field.

Remark 4.11. For lexicographic monomial orders the above arguments are much easier
and work in any dimension: If τ is the lexicographic order corresponding to x1 > · · · > xn,
we have that if x1|M with M ∈ supp fF, then x1|xF. Furthermore, x21 does not divide any
monomial in the support of any fF. So (∂fF

∂xi
(P1))i=1,...,n 6= (0, . . . , 0) if and only if F = {1, j}

where {1, j} /∈ ∆. This means P1 = [1 : 0, . . . , 0] can be a smooth point of Proj(S/I) only
if | link∆ 1| ≤ dim∆. This leads to the next result.

Proposition 4.12. In any dimension, a leafless simplicial complex ∆ is not Gröbner-
smoothable with respect to any lexicographic order. In particular, pseudo-manifolds are
not lexicographically Gröbner-smoothable.

Proof. Since I∆ is the initial ideal of a prime ideal, it must be strongly connected by
Proposition 2.6 (i), and thus pure. So Remark 4.11 yields the result. �
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