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Abstract

A classical theorem by Hartshorne states that the dual graph of any arithmetically Cohen–
Macaulay projective scheme is connected. We give a quantitative version: If X ⊂ Pn is an arithmeti-
cally Gorenstein projective scheme of regularity r + 1, and if every irreducible component of X has
regularity ≤ r′, we show that the dual graph of X is b r+r′−1

r′ c-connected. The bound is sharp.
We also provide a strong converse to Hartshorne’s result: Every connected graph is dual to a

suitable arithmetically Cohen–Macaulay projective curve of regularity ≤ 3, whose components are all
rational normal curves. The regularity bound is smallest possible in general. Further consequences:
(1) Any graph is the Hochster–Huneke graph of a complete equidimensional local ring. (This answers

a question by Sather–Wagstaff and Spiroff.)
(2) The regularity of a curve is not larger than the sum of the regularities of its primary components.

1 Introduction

Intersection patterns of projective curves are a classical topic in algebraic geometry. The dual graph of
a scheme is obtained by taking as many vertices as the irreducible components, and by connecting two
distinct vertices with a single edge whenever the two corresponding components intersect in a subscheme
of dimension one less than the scheme.

In 1962, Hartshorne showed that arithmetically Cohen–Macaulay projective schemes have connected
dual graphs [Ei95, Theorem 18.12]. (The original statement by Hartshorne is slightly more general, cf. Re-
mark 1.1 below). This result, henceforth called Hartshorne’s Connectedness Theorem, triggers
two nontrivial questions:

1. (Inverse problem) Do all connected graphs arise this way? If so, how to reconstruct a (nice)
projective scheme from its intersection pattern?

2. (Quantitative problem) Under extra algebraic parameters, can we strengthen the combinatorial
conclusion quantitatively? (e.g. can we bound the graph diameter, connectivity, or expansion?)

It is not difficult to show that any connected graph is indeed dual to some algebraic curve, as elegantly
explained in Kollàr [Ko14]. Here we prove the following:
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rative Research Center TRR 109, “Discretization in Geometry and Dynamics”.
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Theorem (Theorem 3.1) Any connected graph G is dual to an arithmetically Cohen–Macaulay reduced
curve CG ⊂ Pn, of regularity ≤ 3, with the additional property that all irreducible components of CG are
rational normal curves (in their span). In addition, all of the singular points of CG have multiplicity 2
and CG is locally a complete intersection.

The embedding CG ⊂ Pn we provide is explicit, and optimal in two aspects. First of all, if C ⊂ Pn

is a projective curve of regularity 2 whose points have multiplicity ≤ 2, then the dual graph of C must
be a tree, cf. Remark 3.2. So regularity 3 is the smallest possible in general. Secondly, realizing every
graph with irreducible components of regularity 1 is not possible, since some graphs are not dual to any
line arrangement, cf. Proposition 3.5. Here we realize the components with rational normal curves, which
have regularity ≤ 2.

As for the quantitative problem, some progress was obtained in 2014 by the first and third author,
who proved that if X ⊂ Pn is an arithmetically Gorenstein (reduced) subspace arrangement of regularity
r + 1, then the dual graph of X is r-connected [BV14, Theorem 3.8].

Can one extend this result from subspace arrangements to arbitrary projective schemes? At first, the
answer seems negative: For example, there are arithmetically Gorenstein curves of high regularity whose
dual graph is a path, so not even 2-connected, cf. [BV14, Examples 3.4 and 5.10].

In the present paper we bypass these difficulties and show that the result does extend; the conclusion
“r-connected” should be replaced with “b r+r′−1

r′ c-connected”, where r′ is the maximum regularity of a
primary component of X. Under the additional assumption that X is reduced, the theorem works also if
r′ is the maximum degree of an irreducible component of X:

Main Theorem (Theorem 4.4 & Corollary 4.5) Let X be an arithmetically Gorenstein projective scheme
of regularity r + 1.
(A) If every primary component of X has regularity ≤ r′, the dual graph of X is b r+r′−1

r′ c-connected.
(B) If every irreducible component of X has degree ≤ D, and X is reduced, the dual graph of X is
b r+D−1

D c-connected.

One key to this result is a subadditivity lemma: We show that the regularity of a curve is not larger
than the sum of the regularities of its primary components (Lemma 4.2). For line arrangements this
follows by the work of Derksen and Sidman [DS02]. Unlike Derksen–Sidman’s bound, though, our bound
does not extend to higher dimensions: Compare Example 4.3.

Since every complete intersection X ⊂ Pn, defined by equations f1, . . . , fc, is arithmetically Gorenstein
of regularity deg f1 + . . .+ deg fc − c+ 1, our Main Theorem yields a rigidity condition for the possible
configurations of the irreducible components of a complete intersection (cf. e.g. Corollary 4.6).

For subspace arrangements, that is when r′ = 1, the bound of the Main Theorem is sharp by [BV14,
Example 3.13]. With some computational effort, we are able to provide examples of non-linear arrange-
ments (i.e. r′ > 1) where the bound is still sharp, cf. Section 4.1.

Remark 1.1. In Hartshorne’s connectedness theorem, the assumption “X ⊆ Pn is arithmetically Cohen–
Macaulay” depends on the embedding, while the conclusion on the connectivity of the dual graph of X
does not. It is worth mentioning that Hartshorne’s original result [Ha62, Theorem 2.2] assumes a more
general condition on X that is intrinsic, namely, “X is a connected projective scheme such that OX,x

satisfies Serre’s condition S2 for all x ∈ X”. Any arithmetically Cohen–Macaulay projective scheme of
positive dimension is connected (and satisfies S2 locally). For simplicity, we preferred to state Hartshorne’s
result in Eisenbud’s version [Ei95, Theorem 18.12]. Moreover, both in [Ha62, Theorem 2.2] and in [Ei95,
Theorem 18.12], the conclusion is that removing a subset of codimension ≥ 2 will not disconnect X. This
is equivalent to say that the dual graph of X is connected by [Ha62, Proposition 1.1].

2 Glossary

In the present paper, all fields are assumed to be infinite.
The Castelnuovo-Mumford regularity of a projective scheme X ⊂ Pn over a field K, denoted by regX,

is the least integer k such that Hi(X,IX(k− i)) = 0 for all i ≥ 1, where IX ⊂ OPn is the sheaf of ideals

associated to the embedding X ⊂ Pn. If S
def
= K[x0, . . . , xn] and m is the irrelevant ideal of S, we denote
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by IX the unique saturated ideal of S such that X = Proj(S/IX); in other words,

IX = ⊕z∈Z Γ(X,IX(z)).

The Castelnuovo–Mumford regularity of a finitely generated Z-graded S-module M , is defined by

regM
def
= max{i+ j : Hi

m(M)j 6= 0} = max{j − i : TorSi (M,K)j 6= 0}.

The two definitions are compatible: If X ⊂ Pn is a projective scheme, then IX is an S-module and one
has regX = reg IX . For further details, see e.g. [Ei05].

We say that X ⊂ Pn is arithmetically Cohen–Macaulay (resp. arithmetically Gorenstein) if S/IX is a
Cohen–Macaulay (resp. Gorenstein) ring. We say that X ⊂ Pn is locally Cohen–Macaulay (resp. locally
Gorenstein) if the stalk OX,x is a Cohen–Macaulay (resp. Gorenstein) local ring for any x ∈ X. For both
the Cohen–Macaulay and the Gorenstein property, “arithmetically” is much stronger than “locally”.

We say that X = X1 ∪ X2 ∪ . . . ∪ Xs is a primary decomposition of X if IX = IX1 ∩ IX2 ∩ . . . ∩
IXs is a primary decomposition of IX . The Xi’s are called primary components; in this paper, by
irreducible components we mean the reduced schemes associated to the primary components. Primary
decompositions need not be unique. However, they are unique if X has no embedded components; this
is always the case if X ⊂ Pn is arithmetically Cohen–Macaulay.

If X1, . . . , Xs are the irreducible components of X, the dual graph G(X) is the graph whose vertices
are {1, . . . , s} and such that {i, j} is an edge if and only if Xi ∩Xj has dimension dimX − 1. All graphs
considered in this paper are simple, i.e. without loops or multiple edges. As the one-point graph is trivial
to handle (it is dual to P1, for example), we will only consider graphs with at least two vertices. The
degree deg v of a vertex v of G is the number of edges containing v. A graph G is called k-connected
(with k a positive integer) if G has at least k + 1 vertices, and the deletion of less than k vertices from
G, however chosen, does not disconnect it.

3 From graphs to curves

For this section, K will be algebraically closed. Let G be a graph on s > 1 vertices, labeled by 1, . . . , s,
and let E(G) be the set of edges of G. We learned the following argument to produce a projective curve
whose dual graph is G from [Ko14]. Pick s distinct lines L1, . . . , Ls ⊂ P2 such that no three of them meet

at a common point, and set Pij
def
= Li ∩ Lj for all i 6= j.

Let X be the blow-up of P2 along
⋃
{i,j}/∈E(G) Pij , and let CG be the strict transform of

⋃s
i=1 Li. By

construction, CG is a projective curve whose dual graph is G. We also denote by Ci the strict transform
of Li for any i = 1, . . . , s. By the blow-up closure lemma, CG is isomorphic to the blow-up of

⋃s
i=1 Li

along
⋃
{i,j}/∈E(G) Pij .

Since
⋃s

i=1 Li is reduced and locally a complete intersection, and since we are blowing up only ordinary
double points, the curve CG is also reduced and locally a complete intersection. The goal of this section
is to describe an embedding of CG that is arithmetically Cohen–Macaulay if G is connected. In fact, we
will see that much more is true.

The embedding. Let us write each line Li ⊂ P2 as `i = 0, for a linear form `i ∈ S = K[x, y, z]. The
condition that no three of the Li meet at a common point, means that any three of the `i are linearly
independent. The defining ideal of

⋃
{i,j}/∈E(G) Pij ⊂ P2 is:

I
def
=

⋂
{i,j}/∈E(G)

(`i, `j) ⊂ S.

For d ∈ N, let Id be the K-vector space of the degree-d elements of I, R[d] the K-subalgebra of S generated
by Id, and

A[d]
def
=

R[d]

(`1`2 · · · `s) ∩R[d]
.

Finally, for any Z-graded ring T and any positive integer e, we denote by T (e) =
⊕

k∈Z Tke the e-th
Veronese of T .
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Theorem 3.1. Let G be a connected graph on s vertices. With the notation above, assume that d ≥
(
s−1
2

)
.

Then
(i) Proj(A[d]) = CG; moreover, regA[d] ≤ |E(G)| − s+ 2.

(ii) For each i = 1, . . . , s, the irreducible component Ci of Proj(A[d]) corresponding to the vertex i of G
is a rational normal curve (in its span) of degree deg i+ d− s+ 1.

(iii) If in addition e ≥ regA[d], then A[d](e) is Cohen–Macaulay; moreover, the regularity of Proj(A[d](e))
is equal to 2 if G is a tree, and to 3 otherwise; and the irreducible components of Proj(A[d](e)) are
rational normal curves of degree e(deg i+ d− s+ 1).

Proof. Part (i): Notice that
(
s−1
2

)
=
(
s
2

)
− s+ 1 is greater than or equal to the degree of

⋃
{i,j}/∈E(G) Pij ,

which is
(
s
2

)
− |E(G)|. The latter is certainly bigger than the regularity of I, since I is an ideal of points.

In particular d ≥
(
s−1
2

)
is bigger than the highest degree of a minimal generator of I. This implies that

R[d] is a coordinate ring of the blow-up X; for a proof of such implication see for example [CH97, Lemma
1.1]. As a consequence, if d ≥

(
s−1
2

)
, then A[d] is a coordinate ring of CG. Moreover, the degree of the

strict transform of Li, with respect to the embedding given by A[d], is d− s+ 1 + deg i. Therefore,

degA[d] =

s∑
i=1

(d− s+ 1 + deg i) = s(d− s+ 1) +

s∑
i=1

deg i = sd− s2 + s+ 2|E(G)|.

Since Proj(A[d]) is a reduced connected projective curve, the Eisenbud-Goto conjecture holds [Gi06], so

reg(A[d]) ≤ degA[d]− dim Span Proj(A[d]) + 1 = sd− s2 + 2|E(G)|+ s+ 2− dimKA[d]d. (1)

Yet A[d] is isomorphic to the K-subalgebra B[d] of S/(`1`2 · · · `s) generated by the degree-d part of the
ideal I/(`1`2 · · · `s). So:

dimKA[d]d = dimKB[d]d = dimK

(
I

(`1`2 · · · `s)

)
d

= dimK

(
S

(`1`2 · · · `s)

)
d

− dimK

(
S

I

)
d

. (2)

The Hilbert function of complete intersections is well-known: Since d ≥
(
s−1
2

)
≥ s−2 = reg(`1`2 · · · `s)−2,

dimK

(
S

(`1`2 · · · `s)

)
d

= sd− s2

2
+

3s

2
. (3)

Also, since d ≥
(
s
2

)
− s+ 1 ≥ reg I − 1, the dimension of (S/I)d is the number of points defined by I, so

dimK

(
S

I

)
d

=

(
s

2

)
− |E(G)|. (4)

Putting together Equations (1), (2), (3) and (4), we conclude.

Part (ii): For each i, notice that the coordinate ring of the strict transform Ci ⊂ Proj(R[d]) of the

line Li is isomorphic to the K-subalgebra of S/(`i) generated by the degree-d part of the ideal I+(`i)
(`i)

.

Such an ideal is generated by a homogeneous polynomial f ; explicitly, f is the (image of) the product
of the `j such that {i, j} /∈ E(G). Of course, d ≥

(
s−1
2

)
≥ deg(f) = s − 1 − deg i, so in this embedding

Ci ⊂ Proj(A[d]) is a rational normal curve of degree d− s+ deg i+ 1 in its span.

Part (iii): It is well known that Proj(A[d](e)) = Proj(A[d]) for any positive integer e. We shall freely
make use of the following graded isomorphism relating the local cohomology of A[d] with that of its e-th
Veronese, cf. [GW78, Theorem 3.1.1]:

Hi
n′(A[d](e)) ∼=

⊕
k∈Z

Hi
n(A[d])ke ∀ i ∈ N,

where by n and n′ we denote the irrelevant ideals of A[d] and A[d](e), respectively.
Since A[d] is reduced, we have H0

n(A[d]) = 0. Furthermore, for any positive integer k we have
H1

n(A[d])−k = H0(Proj(A[d]),OProj(A[d])(−k)) = 0, since negative twists of an ample line bundle over CG

do not have global sections. By definition of regularity, H1
n(A[d])k = 0 also for k ≥ reg(A[d]). Finally,
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since A[d] is reduced and K is algebraically closed, the connectedness of G implies H1
n(A[d])0 = 0 . Thus

after applying an e-th Veronese with e ≥ reg(A[d]), all the undesired nonzero cohomologies disappear;
the Cohen–Macaulay property of A[d](e) follows. Since dim(A[d]) = 2, the regularity of the e-th Veronese,
with e ≥ reg(A[d]) − 1, is at most 2; also, it is at least 1, because A[d](e) is not a polynomial ring (we
are assuming s > 1). So the regularity of the e-th Veronese is equal to 2 if and only if H2

n(A[d](e))0 6= 0.
Let us consider the arithmetic genus pa(CG) = dimKH

2
n(A[d])0. This integer does not depend on the

embedding of CG. It is related to the arithmetic genus of H
def
=
⋃s

i=1 Li via the following formula:

pa(CG) = pa(H)−
∑
{i,j}/∈E

(
µPij

(H)

2

)
,

where µPij
(H) is the multiplicity of Pij on H. (See e.g. [Pe08, Theorem 5.9] for a proof of the formula in

the irreducible case; the same proof works also for reducible curves with same number of connected com-
ponents; the two curves C and X of Perrin’s notation are in our case the curves H and CG, respectively.)
But all such multiplicities are 2, and pa(H) =

(
s−1
2

)
, so the above equation can be rewritten as:

pa(CG) =

(
s− 1

2

)
−
(
s

2

)
+ |E(G)| = 1− s+ |E(G)|.

Yet any connected graph has at least s− 1 edges, with equality for trees. So G is not a tree if and only if
pa(CG) = dimKH

2
n(A[d](e))0 > 0, if and only if reg(A[d](e)) = 2. The last claim follows from the fact that

the e-th Veronese sends rational normal curves to rational normal curves, while the degree gets multiplied
by a factor e.

Remark 3.2. In the projective curve CG, every point belongs to at most two irreducible components.
If a connected projective curve C ⊂ Pn has this property, and in addition it has Castelnuovo–Mumford
regularity 2, then its dual graph must be a tree. (So if G is not a tree, the “regularity ≤ 3” result of
Theorem 3.1, (iii), is best possible.) To prove this, note that such a C ⊂ Pn would be a small scheme in
the sense of [EGHP06]. By [EGHP06, Theorem 0.4], there exists an ordering C1, . . . , Cs of the irreducible
components of C such that (C1 ∪ C2 . . . ∪ Ci) ∩ Ci+1 is a single point for all i = 1, . . . , s− 1. But this is
possible if and only if the dual graph is a tree. Note that if G is a tree, the e in the statement of Theorem
3.1 can be chosen to be 1.

Sometimes it is possible to improve on the bounds for d and e given by Theorem 3.1. Here is one
example where one can save 1 both on d and e:

Example 3.3. Let G0 be K4 minus an edge, that is, the graph G0 = 13, 14, 23, 24, 34. In K[x, y, z] let
us pick the four linear forms `1 = x, `2 = y, `3 = z, and `4 = x+ y+ z. Since the missing edge in G0 is
12, we need to blow up P2 at the ideal I = (`1, `2) = (x, y). We seek a d such that A[d] is a coordinate
ring of CG0

. Theorem 3.1 guarantees that any d ≥ 3 would work. In fact, using directly [CH97, Lemma
1.1], we see that d = 2 works already. We have

A[2] =
K[x2, xy, xz, y2, yz]

(xyz(x+ y + z))
∼=

K[y0, . . . , y4]

( y0y3 − y21 , y0y4 − y1y2, y1y4 − y2y3, y2(y1 + y3 + y4) )
.

The Macaulay2 software [M2] allows to compute reg(A[2]) = 2, so the proof of Theorem 3.1, part (iii),
guarantees that the second Veronese of A[2] is Cohen–Macaulay. But in fact, A[2] is already Cohen–
Macaulay, so no Veronese is needed. En passant, note that A[2](e) is not Gorenstein for any e, because
the Veronese of any non-Gorenstein ring is not Gorenstein [GW78, Theorem 3.2.1].

Remark 3.4. The graph G0 of Example 3.3 is also realizable as dual graph of an arrangement of
projective lines. In fact, it is even a line (intersection) graph, i.e. the dual graph of another graph. Yet in
any projective line arrangement that has G0 as dual graph, it is easy to see that either r1, r3, r4 meet in a
single point, or r2, r3, r4 do. So a point of the line arrangement has multiplicity 3. In contrast, Theorem
3.1 constructs always curve arrangements in which every singular point has multiplicity 2.

We remind the reader that many graphs are neither line graphs, nor dual to line arrangements. We
have in fact the following hierarchy:
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Proposition 3.5. In any fixed dimension d ≥ 1, we have

{
line

graphs

}
⊂


dual graphs
of simplicial
d− complexes

 (


dual graphs
of projective

line arr’ts

 (


dual graphs

of affine
line arr’ts

 (


dual graphs
of projective

curves

 =

{
all

graphs

}
.

Proof. The first inclusion is obvious, and well-known to be strict if d ≥ 2, as shown for example by
the complete bipartite graph K1,3. (In fact, K1,d+1 is the dual graph of some complex C if and only if
dimC ≥ d.)

Second inclusion: As explained in [BV14], given any simplicial complex, its Stanley–Reisner variety
is a subspace arrangement with same dual graph. Via generic hyperplane sections, we can reduce ourselves
in turn from the Stanley–Reisner variety to a line arrangement with same dual graph. This proves
the inclusion. The second inclusion is not an equality: the graphs G1 and G2 of Figure 1 are easy
counterexamples. (For reasons of clarity, we postpone the proof of this fact, which requires combinatorial
topology but is otherwise elementary, to the Appendix.)

Figure 1: Two graphs G1, G2 with 5 vertices that are not dual to any simplicial complex of any dimension.

Third inclusion: Given a projective line arrangement C ⊂ Pn we can always choose a hyperplane
H ⊂ Pn that avoids all the intersection points of C; if we set U = Pn \H, then C ′ = C ∩U ⊂ U ∼= An is
the desired affine line arrangement. As for the strictness: If G3 is K6 minus two non-adjacent edges, it
is easy to produce a set of six affine lines with dual graph G3; but in [BV14, Rem. 4.1] we showed that
G3 cannot be dual to any projective line arrangement.

The fifth inclusion is well known to be an equality, see e.g. Kollar [Ko14].
The fourth inclusion is therefore trivial; to prove its strictness, since the fifth inclusion is an

equality, it suffices to find a graph that is not dual to any affine line arrangement. Consider the graph
with the following edges

G4 = {12, 34} ∪ {15, 25, 35, 45} ∪ {16, 26, 36, 46} ∪ {17, 27, 37, 47}.

By contradiction, let {r1, . . . , r7} be an affine arrangement of lines with dual graph G4. Set P = r1 ∩ r2
and Q = r3∩ r4. Let π be the plane spanned by r1 and r2. Since r3 intersects neither r1 nor r2, it cannot
belong to the plane π. The same is true for r4. Symmetrically, if q is the plane spanned by r3 and r4,
neither r1 nor r2 belongs to q. Now, how can a new line r meet all four lines r1, r2, r3, r4? There are two
options:
– either r is the unique line passing through P and Q, or
– r is the (unique) line of intersection of the two planes π and q.

But from the definition of G4, we are supposed to find three new lines (r5, r6 and r7) each of which meets
all four of r1, r2, r3, r4. By the pidgeonhole principle, two of these three lines r5, r6, r7 must coincide; a
contradiction.

Remark 3.6. Any graph containing G4 as induced subgraph cannot be dual to any affine arrangement.

Hochster–Huneke graphs and Lyubeznik complexes.

Let A be a d-dimensional standard graded K-algebra. Let {p1, . . . , ps} be its minimal primes. We define
the graph G(A) as the graph whose vertices are {1, . . . , s} and such that {i, j} is an edge if and only if
A/(pi + pj) has dimension d − 1. Obviously, G(A) = G(Proj(A)). The graph G(A) is sometimes called
the Hochster-Huneke graph of A, after the work [HH94]. In this language, Theorem 3.1 implies that:
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Corollary 3.7. Any connected graph is the Hochster–Huneke graph of a reduced 2-dimensional Cohen–
Macaulay standard graded K-algebra.

After completing at the irrelevant ideal, this yields an affirmative answer to the question raised in [SWS14]
of whether any graph is the Hochster-Huneke graph of a complete equidimensional local ring (indeed one
can show that for a positively graded K-algebra the dual graph does not change after completing at the
irrelevant ideal, as it follows by the Equation (4) of [Va09, Theorem 1.15]).

Theorem 3.1 is of interest also from the point of view of a recent result obtained in [KLZ14]: The
Lyubeznik complex of A is the simplicial complex ∆(A) on vertices {1, . . . , s}, where {i0, . . . , ik} is a face
if and only if dim(A/(pi0 + . . . + pik)) > 0. (The terminology is due to the paper [Ly07], where the
complex ∆(A) was introduced.) If dim(A/(pi + pj + pk)) = 0 for all i < j < k and dim(A/(pi + pj)) >
0 ⇐⇒ dim(A/(pi +pj)) = d−1 (e.g. when Proj(A) is a curve such that no three irreducible components
meet at the same point), then ∆(A) = G(A). So, Theorem 3.1 implies that

Corollary 3.8. Any connected graph is the Lyubeznik complex of a reduced 2-dimensional Cohen–
Macaulay standard graded K-algebra.

On the other hand, the results of [KLZ14] imply that, among graphs, only trees can be the Lyubeznik
complex of a d-dimensional standard graded Cohen–Macaulay K-algebra with d ≥ 3 (if K is separably
closed).

4 From curves to graphs

In this section we prove the main result of the paper. Our first goal is to establish a bound on the
regularity of a projective scheme as the sum of the regularities of its primary components. Unfortunately,
this goal is hopeless in general, as there are counterexamples already among surfaces (see Example 4.3).
However, here we prove it for curves (cf. Lemma 4.2 below), and later we will show that this suffices.

Lemma 4.1 (essentially Caviglia [Ca07]). Let I, J be graded ideals of S. If the Krull dimension of
TorS1 (S/I, S/J) is at most 1, then reg(I ∩ J) ≤ reg I + reg J .

Proof. By a result of Caviglia [Ca07, Corollary 3.4] we have

regS/(I + J) ≤ regS/I + regS/J.

From the short exact sequence 0→ S/(I ∩ J)→ S/I ⊕ S/J → S/(I + J)→ 0, we immediately obtain

reg S/(I ∩ J) ≤ max{regS/I, regS/J, 1 + regS/(I + J)} ≤ regS/I + regS/J + 1.

This is equivalent to the claim, because regS/H = regH − 1 for any graded ideal H.

Lemma 4.2. Let C ⊂ Pn be a curve and C = ∪si=1Ci a primary decomposition of C, then:
(1) regC ≤ regC1 + . . .+ regCs.
(2) If in addition C is reduced and dimCi = dimCj then regC ≤ degC.

Proof. For any t ∈ {2, . . . , s}, set Jt
def
= ICt

+
⋂t−1

i=1 ICi
. The ideal Jt defines a 0-dimensional projective

scheme, so dimS/Jt ≤ 1. Moreover, Jt annihilates TorS1 (S/ ∩t−1i=1 ICi , S/ICt). So the Krull dimension
of TorS1 (S/ ∩t−1i=1 ICi

, S/ICt
) is at most 1. By Lemma 4.1 and by induction on t, we obtain reg IC ≤∑s

i=1 reg ICi
, which proves part (1) of the claim.

As for part (2), note that degC =
∑s

i=1 degCi. Since the Eisenbud-Goto conjecture holds for integral
curves [GLP83], we have

regCi ≤ degCi − dim(Span Ci) + 2.

Therefore regCi ≤ degCi if dim(Span Ci) ≥ 2. On the other hand, if the dimension of Span Ci is 1, then
Ci is a line: so regCi = 1 = degCi. By part (1) of the claim, which we have already proved, we conclude
that

regC ≤
s∑

i=1

regCi ≤
s∑

i=1

degCi = degC.

7



Example 4.3. The above lemma cannot be extended to dimension > 1. The following example is due
to Aldo Conca: Let H ⊆ P4 be the plane x1 = x2 = 0. Let p be the kernel of the map from K[x0, . . . , x4]
to K[a, b, c] given by:

x0 7→ a3b, x1 7→ b4, x2 7→ a3c, x3 7→ abc2, x4 7→ b2c2.

This p is a prime ideal of height 2 and regularity 5. Let X ⊆ P4 be the surface it defines. One has
regX = 5, regH = 1, but reg(X ∪H) = 7. One can see (via Lemma 4.2) that any general hyperplane
section of X ∪ H has regularity smaller than 7. This is because X ∪ H is not arithmetically Cohen–
Macaulay.

Theorem 4.4. Let r, r′ be positive integers. Let X ⊂ Pn be an arithmetically Gorenstein scheme of
regularity r+ 1 and let X = X1 ∪X2 ∪ . . .∪Xs be the primary decomposition of X. If regXi ≤ r′ for all
i = 1, . . . , s, then the dual graph G(X) is b r+r′−1

r′ c-connected.

Proof. First we show that there is no loss in assuming that X is a curve. In fact, if dimX ≥ 2, as explained
in [BV14, Lemma 2.12] we can always take a general hyperplane section of X, thereby obtaining a scheme
X ′ ⊂ Pn−1 of dimension one less, such that G(X) = G(X ′). Since X is arithmetically-Gorenstein and the
hyperplane section is general, in passing from X to X ′ both the arithmetically-Gorenstein property and
the (global) Castelnuovo–Mumford regularity are maintained. Caveat: the regularities of the components
need not be maintained; but since the regularity of a general hyperplane section of any projective scheme
cannot be larger than the regularity of the original scheme [Ei05, Lemma 4.8 + Corollary 4.10], the
regularities of the components of X ′ can only be smaller or equal than those of X, so they will still be
bounded above by r′. Iterating this process dimX−1 times, we can reduce ourselves to the 1-dimensional
case.

By the assumption, S/IX is a Gorenstein ring of regularity r and reg IXi
≤ r′ for all i = 1, . . . , s. Let

B be a subset of {1, . . . , s} of cardinality |B| < b r+r′−1
r′ c. Let A = {1, . . . , s} \B. Define

XA
def
=
⋃

i∈AXi,

XB
def
=
⋃

i∈B Xi.

Our goal is to show that the dual graph of XA is connected, or in other words, that XA is a connected
curve. (This would imply the claim, because the dual graph of XA is exactly the dual graph of X with

the vertices in B removed, and B was an arbitrary subset of {1, . . . , s} of cardinality less than b r+r′−1
r′ c.)

The curves XA and XB are geometrically linked by X, which is arithmetically Gorenstein. Exploiting
that dimXi = 1 for all i = 1, . . . , s, both XA and XB are locally Cohen–Macaulay curves. By Schenzel’s
work [Sc82] (see also Migliore [Mi98, Theorem 5.3.1]) this implies the existence of a graded isomorphism

H1
m(S/IXA

) ∼= H1
m(S/IXB

)∨(2− r).

In particular the two finite K-vector spaces H1
m(S/IXA

)0 and H1
m(S/IXB

)r−2 are dual to one another.
Notice that the connectedness of CA (which is what we want to show) follows by the vanishing of
H1

m(S/IA)0, and thus of H1
m(S/IB)r−2. So it is enough to show that

regS/IXB
≤ r − 2.

But regS/IXB
= regXB − 1, and by our Lemma 4.2 we have precisely

regXB ≤ |B| · r′ ≤
(⌊

r + r′ − 1

r′

⌋
− 1

)
r′ ≤

(
r + r′ − 1

r′
− 1

)
r′ = r − 1.

One might wonder if the previous statement still holds by replacing the “bounded regularity” assump-
tion for the primary components, with a “bounded degree” assumption. The answer is positive, but an
additional assumption is needed, namely, X should be reduced.

Corollary 4.5. Let D and r be positive integers. Let X ⊂ Pn be a reduced arithmetically Gorenstein
scheme of regularity r+1. If every irreducible component of X has degree ≤ D, then the dual graph G(X)
is b r+D−1

D c-connected.
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Proof. If X has dimension N , let us take N − 1 general hyperplane sections and call X ′ the resulting
curve. As in the proof of Theorem 4.4, X ′ is arithmetically Gorenstein and G(X) = G(X ′). Since general
hyperplane sections maintain the degree, each irreducible component of X ′ has degree ≤ D. Moreover,
X ′ is reduced, since X is. By [GLP83], we infer that each irreducible component of X ′ has also regularity
≤ D. Applying Theorem 4.4, we conclude.

Corollary 4.6. Let X1, . . . , Xs ⊆ Pn be integral projective curves of degrees d1 ≤ d2 ≤ . . . ≤ ds. If
X =

⋃s
i=1Xi ⊆ Pn is a complete intersection, then each Xi must meet at least bN+ds−1

ds
c of the other

Xj’s, where

N = min

{
n−1∑
k=1

δk − n+ 1 : δi ∈ N and

n−1∏
k=1

δk =

s∑
i=1

di

}
≥ (n− 1) ·

( s∑
i=1

di

)1/(n−1)

− 1

 .

Proof. If X ⊆ Pn is defined by n−1 equations of degrees δ1, . . . , δn−1, then it is arithmetically Gorenstein

of regularity
∑n−1

k=1 δk−n+2, and
∏n−1

k=1 δk =
∑s

i=1 di. So G(X) is bN+maxi{di}−1
maxi{di} c-connected by Corollary

4.5. In particular, each vertex of G(X) has valency at least bN+maxi{di}−1
maxi{di} c.

Example 4.7 (27-lines). With the notation of Corollary 4.6, if s = 27, di = 1 and n = 3, then N = 10.
So if a union of 27 lines in P3 happens to be a complete intersection, then each line must meet at least
10 of the others by Corollary 4.6.

It is easy to see that the union of the 27 lines in a smooth cubic surface in P3 is a complete intersection
(the cubic cut out by a union of 9 planes); one can see that any of the 27 lines meet exactly with 10 of
the others. In this sense Corollary 4.6 is sharp.

In case the regularities of the irreducible components are quite diverse (for example, if one component
has much larger regularity than all the other ones) the following sharpening of Theorem 4.4 could be
convenient:

Theorem 4.8. Let r be a positive integer. Let X ⊂ Pn be an arithmetically Gorenstein scheme of
regularity r + 1 and X = X1 ∪X2 ∪ . . . ∪Xs be the primary decomposition of X. Then the dual graph
G(X) is f(r)-connected, where

f(r)
def
= max {i ∈ N s.t. for all B ⊂ [s] of cardinality i− 1, one has

∑
j∈B

regXj ≤ r − 1}.

The proof is the same of Theorem 4.4. Of course, the analogous sharpening of Corollary 4.5 holds.

Remark 4.9. Suppose an arithmetically Gorenstein scheme X has at least two primary components. It
is natural to ask whether the regularity of the components is bounded above by regX. The answer is:
• positive for the components Q that are arithmetically Cohen–Macaulay (one has regQ ≤ regX−1);
• “very” negative in general, even if X is a complete intersection, as the example below shows.

Let us consider the complete intersection

I = (x0x
2000
1 − x4x20002 , x0x1x3 + x34, x

3
0 + 2x1x

2
3) ⊂ S = Q[x0, . . . , x4].

With Macaulay2 [M2] we can see that the primary decomposition of I consists of three ideals:

Q1 =

(
x0x1x3 + x34, x

3
0 + 2x1x

2
3, x

2000
2 x3 + x19991 x24, x0x

2000
1 − x20002 x4,

x20x
4000
2 − 2x40001 x3x4, x0x

6000
2 − 2x60001 x3, x

10000
2 + 2x99991 x4

)
,

Q2 =
(
x4, x

2
1, x0x1, x

3
0 + 2x1x

2
3

)
,

Q3 =

(
x3x

2
4, x

2
3x4, x0x3x4, x

3
3, x0x

2
3, x0x1x3 + x34, x

2
0x3, x

3
0 + 2x1x

2
3,

x20x
2
4, x0x

2000
1 − x20002 x4, x0x

2000
2 x3 + x0x

1999
1 x24

)
.

The dual graph is K3. While the regularity of I is 2005, the regularities of the Qi’s are 10 000, 3 and
2003, respectively. In fact, S/Q1 is not Cohen–Macaulay.
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4.1 Sharpness of the bound

The b r+r′−1
r′ c connectivity bound given by Theorem 4.4 is sharp for r′ = 1, as already noticed in [BV14].

In this section we prove that such bound is sharp also for some r′ > 1. This answers a question by
Michael Joswig (personal communication). To this end, we focus on arithmetically Gorenstein curves in
P4, for which a routine to generate examples is available.

Let k ≥ 2 be an integer and let n = 2k+1. Let M be an n×n upper triangular matrix of homogenous
polynomials of degree d in Q[x0, . . . , x4]. Let A = M −M t. By definition, A is skew-symmetric. Let I be
the ideal generated by the pfaffians of size n−1 of A. By a result of Eisenbud–Buchsbaum, if height I = 3
then S/I is Gorenstein of regularity dn−3. Of course, the ideal I is completely determined by the matrix
M , and for this reason we will denote it by IM .

Example 4.10. Consider the upper triangular matrix

M =


0 x21 + x4x3 0 0 x3x5 + x21 + x3x4
0 0 x5x4 − x22 0 x1x3 − x24
0 0 0 x23 + x5x1 x25 + x3x1 − x2x4
0 0 0 0 x5x2 − x23
0 0 0 0 0

 .

Using Macaulay2 [M2], we computed the ideal IM . The regularity of S/IM is 2 · 5 − 3 = 7. There are
eight primary components of I, of regularities

3, 2, 2, 6, 3, 4, 4, and 3,

with respect to the default ordering used by the software, namely, the graded reverse lexicographic order.
So the maximum regularity is 6. According to Theorem 4.4, the dual graph is b 7+6−1

6 c-connected, that
is, 2-connected. In fact, the dual graph has 8 vertices and edge list

G5 = {12, 14, 23, 24, 27, 34, 35, 36, 37, 38, 45, 46, 47, 48, 56, 57, 58, 67, 68, 78}.

Indeed this G5 is not 3-connected, as the vertex labeled by 1 has degree two. So the bound given by
Theorem 4.4 is best possible on this example.

Example 4.11. Consider the upper triangular matrix

M ′ =


0 x21 + x4x3 0 0 x3x5 + x21 + x3x4
0 0 x5x4 − x22 0 x1x3 + x24
0 0 0 x23 + x5x1 x25 + x3x1 − x2x4
0 0 0 0 x5x2 − x23
0 0 0 0 0

 .

This is almost identical to the matrix M of Example 4.10! The only change is a minus sign that has
become a plus, in the fifth binomial of the second row. Again using Macaulay2 [M2], we computed the
ideal IM ′ associated. The regularity of S/IM ′ is 7; the eight primary components of IM ′ have regularities

3, 2, 2, 7, 3, 4, 4, and 3.

So the maximum regularity is now 7. Note that with respect to Example 4.10 all the regularities are
unchanged, except the maximal one, which has increased by one. This time, with Theorem 4.4 we can
only say that the dual graph is b 7+7−1

7 c-connected, that is, 1-connected. And as a matter of fact, the
dual graph is now

G6 = {14, 23, 24, 27, 34, 35, 36, 37, 38, 45, 46, 47, 48, 56, 57, 58, 67, 68, 78},

which is 1-connected, but not 2-connected, because the vertex labeled by 1 has now degree one. (In fact,
G6 is the G5 of Example 4.10 with the edge 12 deleted.)

These examples show that the bound given by Theorem 4.4 is best possible, and quite sensitive to
minimal variations in the regularity. Of course, the sharpness of a bound on some examples, does not
imply that the bound is sharp on all examples. There are plenty of arithmetically Gorenstein curves
whose dual graph is much more connected than what Theorem 4.4 enables us to see.
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Appendix

Here we show that some dual graphs of (affine or projective) line arrangements are not dual graphs of
any simplicial complex of any dimension. The proof of this fact is quite elementary, but we decided to
include it for completeness. Let us start with some easy notation. By convention,
– the (−1)-simplex is just the empty set;
– the join of the empty set with a complex C, is C itself.

Definition 4.12 (d-star, d-windmill). Let d ≥ 1.
A d-star is the complex obtained by joining the graph K3 with a (d− 2)-simplex.
A d-windmill is the complex obtaned by joining the graph K1,3 with a (d− 2)-simplex. (Equivalently, a
d-windmill is the join of 3 disjoint points with a (d− 1)-simplex).

Figure 2: The 2-star, the 2-windmill, and the unique pure 2-complex with the diamond graph as dual.

Lemma 4.13. For any fixed positive integer d, there are exactly two pure d-complexes with dual graph
K3, namely, the d-star and the d-windmill.

Proof. The dual graph does not change under taking cones, and in particular, it does not change under
taking joins with simplices. Hence, the d-star and the d-windmill both have K3 as dual graph (because
both K3 and K1,3 have K3 as dual graph). Conversely, let C be a pure d-complex with dual graph K3;
we claim that C is either a d-star or a d-windmill. If d = 1, the claim is clear. So assume d ≥ 2. Let Σ1,
Σ2 and Σ3 be the d-simplices of C. Set

I = Σ1 ∩ Σ2 ∩ Σ3.

Let us denote by c (respectively, by i) the total number of vertices of C (respectively, of I). Since two of
the Σi have exactly d vertices in common, by the inclusion-exclusion formula we have

c = 3(d+ 1)− 3d+ i = 3 + (dim I + 1).

But c ≥ d + 2, otherwise C would consist of a single simplex. So dim I ≥ d − 2 and therefore
dim link(I, C) ≤ 1. So link(I, C) is a graph with dual graph K3; hence, it must be either K3 itself,
or a disjoint union of three points. Since C is the join of link(I, C) with a simplex, the claim follows.

Lemma 4.14. Let G be the diamond graph, that is, K4 minus an edge. In any fixed dimension d ≥ 1,
there is exactly one pure simplicial d-complex with dual graph G. This complex is obtained from a d-star
by glueing in a further d-simplex to one of the internal (d− 1)-faces of the d-star. In particular, the two
non-adjacent d-simplices of the complex share exactly d− 1 vertices.

Proof. Let E be a complex with dual graph {12, 13, 23, 24, 34}. Let Σi be the facet of C corresponding
to i (i = 1, . . . , 4). Let C be the subcomplex of E induced by the facets Σ1,Σ2 and Σ3. By Lemma
4.13, C is either a d-star or a d-windmill. If C is a d-star, then E must be obtained by attaching Σ4

to the (d − 1)-face Σ2 ∩ Σ3 of C. In particular Σ1 ∩ Σ4 = Σ1 ∩ Σ2 ∩ Σ3 consists of d − 1 vertices, and
the claim is proven. If instead C is a d-windmill, by definition there are three vertices v1, v2, v3 and a
(d−1)-simplex σ such that Σi = vi ∗σ for each i. Consider the subcomplex D of E formed by Σ2,Σ3 and
Σ4. The dual graph of D is K3, so by Lemma 4.13, D is either a d-star or a d-windmill; but it cannot be
a d-windmill, otherwise the common intersection Σ2 ∩Σ3 ∩Σ4 would have to be σ, which is contained in
Σ1: a contradiction, in G there is no edge 14. So E is obtained from D by glueing the simplex Σ1 onto
the internal face Σ2 ∩ Σ3 of the d-star D.

Lemma 4.15. No simplicial complex of any dimension has the graph G1 of Figure 1 as dual graph.
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Proof. By contradiction, let F be a d-dimensional complex with dual graph

G1 = {12, 13, 15, 23, 24, 34, 45}.

Let Σi be the facet of F corresponding to i (i = 1, . . . , 5), and let E be the subcomplex induced by the
first four facets. The dual graph of E coincides with the diamond graph G of Lemma 4.14, so we know
how E looks like. In particular Σ1 and Σ4 have d − 2 vertices in common. In the rest of the proof we
give a formal reason why the way the pattern of adjacencies of the fifth simplex yields a contradiction.
(We invite the reader to check this in Figure 4.1, by trying to place a fifth triangle Σ5 in the rightmost
complex so that it has edges in common only with the two triangles that are not adjacent to one another.)

Let us agree on some notation first. Without loss of generality, we can assume the subcomplex induced
by the first three facets Σ1,Σ2,Σ3 is a d-star, and the complex induced by Σ2,Σ3,Σ4 is a d-windmill.
(If not, we switch the labels of Σ1 and Σ4.) By definition of windmill, if σ = Σ2 ∩ Σ3, there are three
vertices v2, v3, v4 such that Σi (i = 2, 3, 4) is of the form vi ∗ σ. Also, there is exactly one vertex v of σ
that does not belong to Σ1. With this notation, the list of vertices of Σ1 and that of Σ4 have an overlap
of exactly d− 1 vertices. In fact, the lists differ only in the following:
• v2 and v3 only belong to Σ1;
• v and v4 only belong to Σ4.

But the new simplex Σ5 is adjacent to both Σ1 and Σ4. This means that when we compare the list
of vertices of Σ1 with the list of vertices of Σ5, we see only one change, and this change is one of the
following four:
(a) v2 is replaced by v;
(b) v2 is replaced by v4;
(c) v3 is replaced by v;
(d) v3 is replaced by v4.
In cases (a) (resp. (c) ), Σ5 has then the same set of vertices of Σ3 (resp. of Σ2), a contradiction. In
cases (b) (resp. (d)), Σ5 would be adjacent to Σ3 (resp. to Σ2), also a contradiction.

Similarly one can show that the graph G2 of Figure 1 cannot be the dual graph of any simplicial
complex, either. We leave it to the reader to construct two projective line arrangements with the graphs
G1 and G2 as dual.
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