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New Trends in Syzygies Square-free Gröbner degenerations



Motivations

K a field.

S = K [x1, . . . , xn] the (positively graded) polynomial ring.

m = (x1, . . . , xn) the maximal homogeneous ideal of S .

≺ a monomial order on S .

If I ⊆ S , we denote the initial ideal of I w.r.t. ≺ with in(I ). If I is
homogeneous, denoting by

hij(S/I ) = dimK H i
m(S/I )j ,

the following is well-known:

Theorem

hij(S/I ) ≤ hij(S/ in(I )).
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Motivations

K a field.

S = K [x1, . . . , xn] the (positively graded) polynomial ring.

m = (x1, . . . , xn) the maximal homogeneous ideal of S .

≺ a monomial order on S .

If I ⊆ S , we denote the initial ideal of I w.r.t. ≺ with in(I ). If I is
homogeneous, denoting by

hij(S/I ) = dimK H i
m(S/I )j ,

the following is well-known:

Theorem

hij(S/I ) ≤ hij(S/ in(I )).

New Trends in Syzygies Square-free Gröbner degenerations



Motivations

In particular, because

depth S/I = min
i ,j
{i : hij(S/I ) 6= 0},

reg S/I = max
i ,j
{i + j : hij(S/I ) 6= 0},

we have depthS/I ≥ depthS/ in(I ) and reg S/I ≤ reg S/ in(I ).

It is easy to produce examples in which the inequalities above are
strict, but equalities hold in a special and important case...
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Motivations

Theorem (Bayer-Stillman, 1987)

If ≺ is a degree reverse lexicographic monomial order and the
coordinates are generic (with respect to I ), then

depthS/I = depthS/ in(I ), reg S/I = reg S/ in(I ).

On a different perspective, Algebras with Straightening Laws
(ASL) were introduced in the eighties by De Concini, Eisenbud
and Procesi. This notion arose as an axiomatization of the
underlying combinatorial structure observed by many authors in
classical algebras like coordinate rings of flag varieties, their
Schubert subvarieties and various kinds of rings defined by
determinantal equations.
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Motivations

Any ASL A has a discrete counterpart AD that is defined by
square-free monomials of degree 2,

and it was proved by DEP that
depthA ≥ depthAD . This can also be seen because A can be
realized as S/I in such a way that AD

∼= S/ in(I ) with respect to a
degrevlex monomial order. In this case, in all the known examples
depthA = depthAD was true. This lead Herzog to conjecture the
following:

Conjecture (Herzog)

Let I ⊆ S be a homogeneous ideal such that in(I ) is a square-free
monomial ideal. Then

depthS/I = depthS/ in(I ), reg S/I = reg S/ in(I ).

New Trends in Syzygies Square-free Gröbner degenerations
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The main result

Theorem (Conca- , 2018)

Let I ⊆ S be a homogeneous ideal such that in(I ) is a square-free
monomial ideal. Then

hij(S/I ) = hij(S/ in(I )) ∀ i , j ∈ Z.

As a consequence, we get Herzog’s conjecture and, in particular,
the following:

Corollary

For any ASL A, we have depthA = depthAD . In particular, A is
Cohen-Macaulay if and only if AD is Cohen-Macaulay.

New Trends in Syzygies Square-free Gröbner degenerations
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The main result

Further consequences are:

Corollary

Let I ⊆ S be a homogeneous ideal such that in(I ) is a square-free
monomial ideal. Then

1 S/I is generalized Cohen-Macaulay if and only if S/ in(I ) is
generalized Cohen-Macaulay.

2 For all r ∈ N, S/I satisfies Serre’s condition (Sr ) if and only if
S/ in(I ) satisfies (Sr ).

The analogs for the generic initial ideal of the two statements
above are false.
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The main result

Further consequences are:

Corollary

Let I ⊆ S be a homogeneous ideal such that in(I ) is a square-free
monomial ideal. Then

1 S/I is generalized Cohen-Macaulay if and only if S/ in(I ) is
generalized Cohen-Macaulay.

2 For all r ∈ N, S/I satisfies Serre’s condition (Sr ) if and only if
S/ in(I ) satisfies (Sr ).

The analogs for the generic initial ideal of the two statements
above are false.

New Trends in Syzygies Square-free Gröbner degenerations



Why square-free?

The following trick is due to Eisenbud. Let J ⊆ S be a monomial
ideal and I =

√
J:

by taking the polarization Jpol ⊆ S pol, then
projdim J = projdim Jpol. By localizing at the multiplicative set
U ⊆ S pol generated by the variables used to polarize, we have

JpolS pol

U = IS pol

U .

Since S → S pol

U is faithfully flat, we get:

projdim I = projdim IS pol

U = projdim JpolS pol

U ≤ projdim Jpol = projdim J,

that is depthS/I ≥ depthS/J.
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Why square-free?

More generally, let I ⊆ S be a square-free monomial ideal.

In 1984,
Lyubeznik proved that the natural map

Extn−i
S (S/I ,S)→ Hn−i

I (S)

is injective for any i . So, for any homogeneous ideal J ⊆ S with√
J = I , the natural map

Extn−i
S (S/I ,S)→ Extn−i

S (S/J,S),

factorizing Extn−i
S (S/I ,S) ↪→ Hn−i

I (S), must be injective for any i .

By Grothendieck duality, then H i
m(S/J)→ H i

m(S/I ) is surjective
for all i ∈ N. This fact yields that S/I is cohomologically full, in
the sense of Dao, De Stefani and Ma (2018).
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Why square-free?

More generally, let I ⊆ S be a square-free monomial ideal. In 1984,
Lyubeznik proved that the natural map

Extn−i
S (S/I ,S)→ Hn−i

I (S)

is injective for any i . So, for any homogeneous ideal J ⊆ S with√
J = I , the natural map

Extn−i
S (S/I ,S)→ Extn−i

S (S/J,S),

factorizing Extn−i
S (S/I ,S) ↪→ Hn−i

I (S), must be injective for any i .

By Grothendieck duality, then H i
m(S/J)→ H i

m(S/I ) is surjective
for all i ∈ N. This fact yields that S/I is cohomologically full, in
the sense of Dao, De Stefani and Ma (2018).

New Trends in Syzygies Square-free Gröbner degenerations



Sketch of the proof

For the moment, we do not assume that in(I ) is a square-free
monomial ideal.

The standard argument to prove the inequality

hij(S/I ) ≤ hij(S/ in(I ))

is by providing a degeneration of S/I to S/ in(I ).

Precisely, let w ∈ Nn such that inw (I ) = in(I ). Denoting by
homw (I ) ⊆ P = S [t] the w -homogeneization of I and defining
A = P/ homw (I ), we have that K [t] ↪→ A is a flat ring
homomorphism with special fiber S/ in(I ) and generic fiber S/I .

As it turns out, the differences hij(S/I )− hij(S/ in(I )) are
measured by the t-torsion of Extn−i

P (A,P). Indeed, one has:

hij(S/I ) = hij(S/ in(I )) ∀ j ⇐⇒ Extn−i
P (A,P) has no t-torsion.
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Sketch of the proof

For the moment, we do not assume that in(I ) is a square-free
monomial ideal. The standard argument to prove the inequality

hij(S/I ) ≤ hij(S/ in(I ))

is by providing a degeneration of S/I to S/ in(I ).

Precisely, let w ∈ Nn such that inw (I ) = in(I ). Denoting by
homw (I ) ⊆ P = S [t] the w -homogeneization of I and defining
A = P/ homw (I ), we have that K [t] ↪→ A is a flat ring
homomorphism with special fiber S/ in(I ) and generic fiber S/I .

As it turns out, the differences hij(S/I )− hij(S/ in(I )) are
measured by the t-torsion of Extn−i

P (A,P). Indeed, one has:

hij(S/I ) = hij(S/ in(I )) ∀ j ⇐⇒ Extn−i
P (A,P) has no t-torsion.

New Trends in Syzygies Square-free Gröbner degenerations
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As it turns out, the differences hij(S/I )− hij(S/ in(I )) are
measured by the t-torsion of Extn−i

P (A,P).

Indeed, one has:
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Sketch of the proof

For all m ∈ N, set Am =
P

homw (I ) + (tm+1)
, Rm = K [t]/(tm+1)

and Pm = P/(tm+1). Then A0
∼= S/ in(I ).

It is simple to prove
that the following are equivalent:

1 ExtkP(A,P) has no t-torsion.

2 ExtkP(A,P) is a flat R-module.

3 ExtkPm
(Am,Pm) is a flat Rm-module for all m ∈ N.

We show that point 3 holds true by induction on m provided that
in(I ) is a square-free monomial ideal (m = 0 is obvious because R0

is a field): the idea to prove it comes from a recent work of Kollár
and Kovács on deformations of Du Bois singularities (2018)...
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Sketch of the proof

Assume that in(I ) is square-free.

Since (Am)red = A0 and
A0
∼= S/ in(I ) is cohomologically full, the surjection Am � A0

induces the following surjection for all h ∈ N:

Hh
(x1,...,xn,t)

(Am) � Hh
(x1,...,xn,t)

(A0).

So, since tAm
∼= Am−1, for all m, h, the following is exact:

0→ Hh
(x1,...,xn,t)

(Am−1)→ Hh
(x1,...,xn,t)

(Am)→ Hh
(x1,...,xn,t)

(A0)→ 0.

By Grothendieck duality, so, for all m, k the following is exact:

0→ ExtkP0
(A0,P0)→ ExtkPm

(Am,Pm)→ ExtkPm−1
(Am−1,Pm−1)→ 0.
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Sketch of the proof

Assume that in(I ) is square-free. Since (Am)red = A0 and
A0
∼= S/ in(I ) is cohomologically full,

the surjection Am � A0

induces the following surjection for all h ∈ N:

Hh
(x1,...,xn,t)

(Am) � Hh
(x1,...,xn,t)

(A0).

So, since tAm
∼= Am−1, for all m, h, the following is exact:

0→ Hh
(x1,...,xn,t)

(Am−1)→ Hh
(x1,...,xn,t)

(Am)→ Hh
(x1,...,xn,t)

(A0)→ 0.

By Grothendieck duality, so, for all m, k the following is exact:

0→ ExtkP0
(A0,P0)→ ExtkPm

(Am,Pm)→ ExtkPm−1
(Am−1,Pm−1)→ 0.

New Trends in Syzygies Square-free Gröbner degenerations
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Sketch of the proof

Note that A0 can be embedded in Am by multiplication by tm, so

tm : Am � A0 ↪→ Am

induces

ExtkPm
(Am,Pm)←↩ ExtkP0

(A0,P0) � ExtkPm
(Am,Pm) : tm.

Together with the previous short exact sequence, this allows to

show that ExtkPm−1
(Am−1,Pm−1) ∼=

ExtkPm
(Am,Pm)

tm ExtkPm
(Am,Pm)

and that

(tm)⊗Rm ExtkPm
(Am,Pm) ∼= tm ExtkPm

(Am,Pm). By induction on

m, these two facts imply that ExtkPm
(Am,Pm) is flat over Rm. �

New Trends in Syzygies Square-free Gröbner degenerations
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Questions and answers

When we uploaded the paper on the arXiv, we concluded it
proposing five questions. We received several comments
concerning these questions and it turns out that only one is still
open!

Next are reproduced the questions and the relative answers.

Question 1

Let p ⊆ S be a prime ideal with a square-free initial ideal. Does
S/p satisfy Serre’s condition (S2)?

The answer is negative: Rajchgot pointed at an example to us. The
same example provides a negative answer for the next question:

Question 2

Let p ⊆ S be a Knutson prime ideal. Is S/p Cohen-Macaulay?
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Questions and answers

(Knutson ideals are a particular kind of ideals admitting a
square-free initial ideal, obtained by taking irreducible components,
unions and intersections starting from an F -split hypersurface).

It
turns out that the prime ideal of Question 1 is Knutson.

Question 3

Let I ⊆ S be an ideal such that in(I ) is a square-free monomial
ideal for degrevlex. If char(K ) > 0, is it true that S/I is F -pure?

Othani (2013) proved that, if I is the binomial edge ideal of the
5-cycle, the ring S/I is not F -pure in characteristic 2. Conca, De
Negri and Gorla proved that binomial edge ideals are Cartwright-
Sturmfels ideals. In particular, they have a square-free monomial
ideal for every term order, so Othani’s example gives a negative
answer to Question 3.
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Questions and answers

Question 4

Let I ⊆ S be a prime ideal such that in(I ) is a square-free
monomial ideal for degrevlex. Is it true that S/I is normal?

Hibi informed us that, in 1985, he exhibited a 3-dimensional
standard graded ASL which is a non-normal (Gorenstein) domain...
This provides a negative answer to Question 4.

The only question remained, so far, unsolved, is the following:

Question 5

Let p ⊆ S be a homogeneous prime ideal with a square-free initial
ideal such that ProjS/p is nonsingular. Is S/p Cohen-Macaulay
and with negative a-invariant?
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