SYMBOLIC POWERS AND MATROIDS

Matteo Varbaro

Dipartimento di Matematica
Università di Genova
Preliminaries and notation

Simplicial complexes

Throughout $n \in \mathbb{N}$ and $\mathcal{N} := \{1, \ldots, n\}$.

A simplicial complex on \mathcal{N} is a collection Δ of subsets of \mathcal{N} satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta$ for all $i \in \mathcal{N}$.

The subsets of Δ are called faces and the faces maximal by inclusion are called facets. We will denote the set of facets of Δ by $F(\Delta)$.

The dimension of a face F is $\dim F := |F| - 1$.

The dimension of Δ is $\dim \Delta := \max \{\dim F : F \in F(\Delta)\}$.

A simplicial complex Δ is called pure if $\dim F = \dim \Delta$ for all $F \in F(\Delta)$.
Throughout $n \in \mathbb{N}$ and $[n] := \{1, \ldots, n\}$.
Throughout $n \in \mathbb{N}$ and $[n] := \{1, \ldots, n\}$. A **simplicial complex** on $[n]$ is a collection Δ of subsets of $[n]$ satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \quad \forall i \in [n]$.

The subsets of Δ are called **faces** and the faces maximal by inclusion are called **facets**. We will denote the set of facets of Δ by $F(\Delta)$.

The dimension of a face F is $\dim F := |F| - 1$.

The **dimension of Δ** is $\dim \Delta := \max \{\dim F : F \in \Delta\}$.

A simplicial complex Δ is called **pure** if $\dim F = \dim \Delta \quad \forall F \in F(\Delta)$.

Preliminaries and notation

Simplicial complexes
Throughout \(n \in \mathbb{N} \) and \([n] := \{1, \ldots, n\}\). A simplicial complex on \([n]\) is a collection \(\Delta\) of subsets of \([n]\) satisfying:

- \(F \in \Delta\) and \(G \subseteq F \Rightarrow G \in \Delta\);
Throughout $n \in \mathbb{N}$ and $[n] := \{1, \ldots, n\}$. A *simplicial complex* on $[n]$ is a collection Δ of subsets of $[n]$ satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \quad \forall \ i \in [n]$.

Throughout $n \in \mathbb{N}$ and $[n] := \{1, \ldots, n\}$. A simplicial complex on $[n]$ is a collection Δ of subsets of $[n]$ satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \quad \forall \ i \in [n]$.

The subsets of Δ are called faces.
Throughout $n \in \mathbb{N}$ and $[n] := \{1, \ldots, n\}$. A *simplicial complex* on $[n]$ is a collection Δ of subsets of $[n]$ satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \ \forall \ i \in [n]$.

The subsets of Δ are called *faces* and the faces maximal by inclusion are called *facets*.
Preliminaries and notation

Simplicial complexes

Throughout $n \in \mathbb{N}$ and $[n] := \{1, \ldots, n\}$. A simplicial complex on $[n]$ is a collection Δ of subsets of $[n]$ satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \ \forall \ i \in [n]$.

The subsets of Δ are called faces and the faces maximal by inclusion are called facets. We will denote the set of facets of Δ by $\mathcal{F}(\Delta)$.
Throughout \(n \in \mathbb{N} \) and \([n] := \{1, \ldots, n\}\). A \textit{simplicial complex} on \([n]\) is a collection \(\Delta\) of subsets of \([n]\) satisfying:

- \(F \in \Delta \) and \(G \subseteq F \Rightarrow G \in \Delta \);
- \(\{i\} \in \Delta \) \(\forall \) \(i \in [n] \).

The subsets of \(\Delta\) are called \textit{faces} and the faces maximal by inclusion are called \textit{facets}. We will denote the set of facets of \(\Delta\) by \(\mathcal{F}(\Delta)\). The dimension of a face \(F\) is \(\dim F := |F| - 1\).
Throughout $n \in \mathbb{N}$ and $[n] := \{1, \ldots, n\}$. A simplicial complex on $[n]$ is a collection Δ of subsets of $[n]$ satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \forall i \in [n]$.

The subsets of Δ are called faces and the faces maximal by inclusion are called facets. We will denote the set of facets of Δ by $\mathcal{F}(\Delta)$. The dimension of a face F is $\dim F := |F| - 1$. The dimension of Δ is $\dim \Delta := \max\{\dim F : F \in \Delta\}$.
Throughout $n \in \mathbb{N}$ and $[n] := \{1, \ldots, n\}$. A \textit{simplicial complex} on $[n]$ is a collection Δ of subsets of $[n]$ satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta$ \forall $i \in [n]$.

The subsets of Δ are called \textit{faces} and the faces maximal by inclusion are called \textit{facets}. We will denote the set of facets of Δ by $\mathcal{F}(\Delta)$. The dimension of a face F is $\dim F := |F| - 1$. The dimension of Δ is $\dim \Delta := \max\{\dim F : F \in \Delta\}$. A simplicial complex Δ is called \textit{pure} if $\dim F = \dim \Delta$ \forall $F \in \mathcal{F}(\Delta)$.
Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S := k[x_1, \ldots, x_n]$:

$$\Delta(I) := \{F \subseteq \{n\} : k[x_i : i \in F] \cap I = \{0\}\}.$$

$\Delta(I)$ is called the independence complex of I.

In the other direction, we can associate an ideal to any simplicial complex on $\{n\}$:

$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \in \Delta) \subseteq S.$$

I_{Δ} is called the Stanley-Reisner ideal of Δ.

Such a relationship leads to a one-to-one correspondence:

$$\{\text{Square-free monomial ideals of } S\} \leftrightarrow \{\text{Simplicial complexes on } \{n\}\}.$$

To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians. For example, denoting by $\mathcal{P}(A) := (x_i : i \in A) \subseteq S$ (where $A \subseteq \{n\}$), it is easy to show that:

$$I_{\Delta} = \bigcap_{F \in \Delta} \mathcal{P}(\{n\} \setminus F).$$

This fact implies that $\dim_k [\Delta] = \dim \Delta + 1$, where $k[\Delta] := S/I_{\Delta}$.
Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S := \mathbb{k}[x_1, \ldots, x_n]$:

$$\Delta(I) := \{F \subseteq \mathbb{k}[n] : k[\{x_i : i \in F\}] \cap I = \{0\}\}.$$

$\Delta(I)$ is called the independence complex of I.

In the other direction, we can associate an ideal to any simplicial complex on $[n]$:

$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \in \Delta) \subseteq S.$$

I_{Δ} is called the Stanley-Reisner ideal of Δ.

Such a relationship leads to a one-to-one correspondence:

$$\{\text{Square-free monomial ideals of } S\} \leftrightarrow \{\text{Simplicial complexes on } [n]\}.$$

To relate combinatorial properties of Δ with algebraic ones of I_{Δ}, caught the attention of several mathematicians.

For example, denoting by $\wp_A := (x_i : i \in A) \subseteq S$ (where $A \subseteq \mathbb{k}[n]$), it is easy to show that:

$$I_{\Delta} = \bigcap_{F \in \Delta} \wp_{\mathbb{k}[n] \setminus F}.$$

This fact implies that $\dim_k \mathbb{k}[\Delta] = \dim \Delta + 1$, where $\mathbb{k}[\Delta] := S/I_{\Delta}$.
Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal \(I \subseteq S := \mathbb{k}[x_1, \ldots, x_n] \):

\[\Delta(I) := \{ F \subseteq [n] : \mathbb{k}[x_i : i \in F] \cap I = \{0\} \}. \]
Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal \(I \subseteq S := \mathbb{k}[x_1, \ldots, x_n] \):

\[\Delta(I) := \left\{ F \subseteq [n] : \mathbb{k}[x_i : i \in F] \cap I = \{0\} \right\}. \]

\(\Delta(I) \) is called the independence complex of \(I \).
We can associate a simplicial complex to any ideal \(I \subseteq S := \mathbb{k}[x_1, \ldots, x_n] \):

\[
\Delta(I) := \{ F \subseteq [n] : \mathbb{k}[x_i : i \in F] \cap I = \{0\} \}.
\]

\(\Delta(I) \) is called the \textit{independence complex} of \(I \). In the other direction, we can associate an ideal to any simplicial complex on \([n] \):
Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal \(I \subseteq S := \mathbb{k}[x_1, \ldots, x_n] \):

\[
\Delta(I) := \{ F \subseteq [n] : \mathbb{k}[x_i : i \in F] \cap I = \{0\}\}.
\]

\(\Delta(I) \) is called the **independence complex** of \(I \). In the other direction, we can associate an ideal to any simplicial complex on \([n]\):

\[
l_\Delta := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.
\]
Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S := \mathbb{k}[x_1, \ldots, x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \mathbb{k}[x_i : i \in F] \cap I = \{0\}\}.$$

$\Delta(I)$ is called the independence complex of I. In the other direction, we can associate an ideal to any simplicial complex on $[n]$:

$$I_\Delta := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.$$

I_Δ is called the Stanley-Reisner ideal of Δ.

Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S := \mathbb{k}[x_1, \ldots, x_n]$:

$$\Delta(I) := \{ F \subseteq [n] : \mathbb{k}[x_i : i \in F] \cap I = \{0\}\}.$$

$\Delta(I)$ is called the independence complex of I. In the other direction, we can associate an ideal to any simplicial complex on $[n]$:

$$I_\Delta := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.$$

I_Δ is called the Stanley-Reisner ideal of Δ. Such a relationship leads to a one-to-one correspondence:
Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S := \mathbb{k}[x_1, \ldots, x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \mathbb{k}[x_i : i \in F] \cap I = \{0\}\}.$$

$\Delta(I)$ is called the *independence complex* of I. In the other direction, we can associate an ideal to any simplicial complex on $[n]$:

$$I_\Delta := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.$$

I_Δ is called the *Stanley-Reisner ideal* of Δ. Such a relationship leads to a one-to-one correspondence:

$$\{\text{Square-free monomial ideals of } S\} \leftrightarrow \{\text{Simplicial complexes on } [n]\}$$
Preliminaries and notation

Stanley–Reisner ideals

We can associate a simplicial complex to any ideal \(I \subseteq S := \mathbb{k}[x_1, \ldots, x_n] \):

\[
\Delta(I) := \{ F \subseteq [n] : \mathbb{k}[x_i : i \in F] \cap I = \{0\} \}.
\]

\(\Delta(I) \) is called the \textit{independence complex} of \(I \). In the other direction, we can associate an ideal to any simplicial complex on \([n]\):

\[
I_\Delta := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.
\]

\(I_\Delta \) is called the \textit{Stanley-Reisner ideal} of \(\Delta \). Such a relationship leads to a one-to-one correspondence:

\[
\{\text{Square-free monomial ideals of } S\} \leftrightarrow \{\text{Simplicial complexes on } [n]\}
\]

To relate combinatorial properties of \(\Delta \) with algebraic ones of \(I_\Delta \) caught the attention of several mathematicians.
Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal \(I \subseteq S := \mathbb{k}[x_1, \ldots, x_n] \): \[
\Delta(I) := \{ F \subseteq [n] : \mathbb{k}[x_i : i \in F] \cap I = \{0\}\}.
\]
\(\Delta(I) \) is called the *independence complex* of \(I \). In the other direction, we can associate an ideal to any simplicial complex on \([n]\) :
\[
I_\Delta := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.
\]
\(I_\Delta \) is called the *Stanley-Reisner ideal* of \(\Delta \). Such a relationship leads to a one-to-one correspondence:

\[\{\text{Square-free monomial ideals of } S\} \leftrightarrow \{\text{Simplicial complexes on } [n]\}\]

To relate combinatorial properties of \(\Delta \) with algebraic ones of \(I_\Delta \) caught the attention of several mathematicians. For example, denoting by \(\wp_A := (x_i : i \in A) \subseteq S \) (where \(A \subseteq [n] \)), it is easy to show that:
Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal \(I \subseteq S := \mathbb{k}[x_1, \ldots, x_n] \):

\[
\Delta(I) := \{ F \subseteq [n] : \mathbb{k}[x_i : i \in F] \cap I = \{0\}\}.
\]

\(\Delta(I) \) is called the *independence complex* of \(I \). In the other direction, we can associate an ideal to any simplicial complex on \([n]\):

\[
I_\Delta := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.
\]

\(I_\Delta \) is called the *Stanley-Reisner ideal* of \(\Delta \). Such a relationship leads to a one-to-one correspondence:

\[
\{\text{Square-free monomial ideals of } S\} \leftrightarrow \{\text{Simplicial complexes on } [n]\}
\]

To relate combinatorial properties of \(\Delta \) with algebraic ones of \(I_\Delta \) caught the attention of several mathematicians. For example, denoting by \(\wp_A := (x_i : i \in A) \subseteq S \) (where \(A \subseteq [n] \)), it is easy to show that:

\[
I_\Delta = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n]\setminus F}.
\]
Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal \(I \subseteq S := \mathbb{k}[x_1, \ldots, x_n] \):

\[
\Delta(I) := \{ F \subseteq [n] : \mathbb{k}[x_i : i \in F] \cap I = \{0\}\}.
\]

\(\Delta(I) \) is called the independence complex of \(I \). In the other direction, we can associate an ideal to any simplicial complex on \([n]\):

\[
I_\Delta := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \not\in \Delta) \subseteq S.
\]

\(I_\Delta \) is called the Stanley-Reisner ideal of \(\Delta \). Such a relationship leads to a one-to-one correspondence:

\[
\{ \text{Square-free monomial ideals of } S \} \leftrightarrow \{ \text{Simplicial complexes on } [n] \}
\]

To relate combinatorial properties of \(\Delta \) with algebraic ones of \(I_\Delta \) caught the attention of several mathematicians. For example, denoting by \(\wp_A := (x_i : i \in A) \subseteq S \) (where \(A \subseteq [n] \)), it is easy to show that:

\[
I_\Delta = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n]\setminus F}.
\]

This fact implies that \(\dim \mathbb{k}[\Delta] = \dim \Delta + 1 \), where \(\mathbb{k}[\Delta] := S/I_\Delta \).
Preliminaries and notation

Matroids

A simplicial complex Δ is a matroid if:

$\forall \ F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G: (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

Examples:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V. $\Delta := \{F \subseteq \{1, \ldots, n\} : |F| = \dim_k V < v_i : i \in F\}$ such a Δ is easily seen to be a matroid.

- Actually, the concept of matroid is an "abstraction of linear independence".

- Let Δ be the i-skeleton of the $(n-1)$-simplex: $\Delta := \{F \subseteq \{1, \ldots, n\} : |F| \leq i\}$. Such a Δ is obviously a matroid.

- If an ideal $I \subseteq S$ is prime, then $\Delta(I)$ is a matroid.
A simplicial complex Δ is a matroid if:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.
 $\Delta := \{F \subseteq \{1, \ldots, n\} : |F| = \operatorname{dim} k < v_i : i \in F\}$
 Such a Δ is easily seen to be a matroid.

- Let Δ be the i-skeleton of the $(n-1)$-simplex:
 $\Delta := \{F \subseteq \{1, \ldots, n\} : |F| \leq i\}$. Such a Δ is obviously a matroid.

- If an ideal $I \subseteq S$ is prime, then $\Delta(I)$ is a matroid.
A simplicial complex Δ is a matroid if:

$$\forall \ F, \ G \in \mathcal{F}(\Delta),$$
Preliminaries and notation

Matroids

A simplicial complex Δ is a matroid if:

$$\forall \ F, \ G \in F(\Delta), \ \forall \ i \in F,$$

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.

 $\Delta := \\{ F \subseteq [n] : |F| = \dim_k v_i : i \in F \} >$

 Such a Δ is easily seen to be a matroid:

 Actually, the concept of matroid is an "abstraction of linear independence".

- Let Δ be the i-skeleton of the $(n-1)$-simplex:

 $\Delta := \\{ F \subseteq [n] : |F| \leq i \} >$

 Such a Δ is obviously a matroid.

- If an ideal $I \subseteq S$ is prime,

 then $\Delta(I)$ is a matroid.
A simplicial complex Δ is a matroid if:

$$\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G :$$
A simplicial complex Δ is a matroid if:

$$\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$$
A simplicial complex Δ is a matroid if:

$$\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$$

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.
 $\Delta := \{F \subseteq \{1, \ldots, n\} : |F| = \dim_k V < v_i : i \in F\}$. Such a Δ is easily seen to be a matroid:
 Actually, the concept of matroid is an "abstraction of linear independence".

- Let Δ be the i-skeleton of the $(n-1)$-simplex:
 $\Delta := \{F \subseteq \{1, \ldots, n\} : |F| \leq i\}$. Such a Δ is obviously a matroid.

- If an ideal $I \subseteq S$ is prime, then $\Delta(I)$ is a matroid.
A simplicial complex Δ is a matroid if:

$$\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$$

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V. $\Delta := \{ F \subseteq [n] : |F| = \dim k < v_i : i \in F > \}$

 Such a Δ is easily seen to be a matroid.

- Actually, the concept of matroid is an "abstraction of linear independence".

- Let Δ be the i-skeleton of the $(n-1)$-simplex: $\Delta := \{ F \subseteq [n] : |F| \leq i \}$.

 Such a Δ is obviously a matroid.

- If an ideal $I \subseteq S$ is prime, then $\Delta(I)$ is a matroid.
A simplicial complex Δ is a matroid if:

$$\forall F, G \in \mathcal{F}(\Delta), \; \forall i \in F, \; \exists j \in G : \; (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$$

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.

- Let Δ be the i-skeleton of the $(n-1)$-simplex: $\Delta := \{F \subseteq [n] : |F| \leq i\}$. Such a Δ is obviously a matroid.

- If an ideal $I \subseteq S$ is prime, then $\Delta(I)$ is a matroid.
A simplicial complex Δ is a **matroid** if:

$$\forall F, G \in \mathcal{F}(\Delta), \ \forall i \in F, \ \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$$

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.

 $$\Delta := \{ F \subseteq [n] : |F| = \dim_k < v_i : i \in F > \}$$
Preliminaries and notation

Matroids

A simplicial complex Δ is a matroid if:

$$\forall F, G \in \mathcal{F}(\Delta), \ \forall i \in F, \ \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$$

Examples:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.
 $$\Delta := \{F \subseteq [n] : |F| \leq \dim_k < v_i : i \in F \}$$

 Such a Δ is easily seen to be a matroid:
Preliminaries and notation

Matroids

A simplicial complex Δ is a matroid if:

$$\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$$

EXAMPLES:

- Let V be a \mathbb{k}-vector space and v_1, \ldots, v_n some vectors of V.

 $$\Delta := \{ F \subseteq [n] : |F| = \dim_{\mathbb{k}} < v_i : i \in F \}$$

 Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an “abstraction of linear independence”.
A simplicial complex Δ is a matroid if:
\[
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)
\]

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.

 \[
 \Delta := \{ F \subseteq [n] : |F| = \dim_k < v_i : i \in F > \}
 \]

 Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an “abstraction of linear independence”.

- Let Δ be the i-skeleton of the $(n-1)$-simplex:
A simplicial complex Δ is a matroid if:

$$\forall F, G \in \mathcal{F}(\Delta), \ \forall i \in F, \ \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$$

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.
 $$\Delta := \{F \subseteq [n] : |F| = \dim_k < v_i : i \in F \}$$
 Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an “abstraction of linear independence”.

- Let Δ be the i-skeleton of the $(n - 1)$-simplex:
 $$\Delta := \{F \subseteq [n] : |F| \leq i\}.$$
A simplicial complex Δ is a matroid if:

$$\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$$

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.

 $$\Delta := \{ F \subseteq [n] : |F| = \dim_k v_i : i \in F \}$$

 Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an “abstraction of linear independence”.

- Let Δ be the i-skeleton of the $(n - 1)$-simplex:

 $$\Delta := \{ F \subseteq [n] : |F| \leq i \}. $$

 Such a Δ is obviously a matroid.
A simplicial complex Δ is a matroid if:

$$\forall F, G \in \mathcal{F}(\Delta), \ \forall i \in F, \ \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$$

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.

 $$\Delta := \{F \subseteq [n] : |F| = \dim_k < v_i : i \in F \}$$

 Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an “abstraction of linear independence”.

- Let Δ be the i-skeleton of the $(n - 1)$-simplex:

 $$\Delta := \{F \subseteq [n] : |F| \leq i\}.$$

 Such a Δ is obviously a matroid.

- If an ideal $I \subseteq S$ is prime,
Preliminaries and notation

Matroids

A simplicial complex Δ is a matroid if:

$$\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$$

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.

$$\Delta := \{F \subseteq [n] : |F| = \dim_k < v_i : i \in F >\}$$

Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an “abstraction of linear independence”.

- Let Δ be the i-skeleton of the $(n-1)$-simplex:

$$\Delta := \{F \subseteq [n] : |F| \leq i\}.$$

Such a Δ is obviously a matroid.

- If an ideal $I \subseteq S$ is prime, then $\Delta(I)$ is a matroid.
Preliminaries and notation

Symbolic powers

The kth symbolic power of an ideal $I \subseteq S$ is the ideal of S: $I^{(k)} := (I^k \cdot W - 1) \cap S$, where W is the multiplicative system $S \setminus \bigcup \mathcal{P} \in \text{Ass}(I) \mathcal{P}$.

$I^k \subseteq I^{(k)}$, and equality holds if I^k has no embedded primes.

If $I = I_{\Delta}$ is a square-free monomial ideal, then it is easy to show: $I^{(k)}_{\Delta} = \bigcap F \in F(\Delta) \mathcal{P}^k[n] \setminus F$.
Preliminaries and notation

Symbolic powers

The *kth symbolic power* of an ideal \(I \subseteq S \) is the ideal of \(S \):

\[
I^k := \left(I^k \cdot W^{-1} \right) \cap S,
\]

where \(W \) is the multiplicative system \(S \setminus \left(\bigcup \mathcal{P} \in \text{Ass}(I) \mathcal{P} \right) \).

\(I^k \subseteq I^{(k)} \), and equality holds if \(I^k \) has no embedded primes.

If \(I = I^\Delta \) is a square-free monomial ideal, then it is easy to show:

\[
I^{(k)} = \bigcap_{F \in F(\Delta)} \mathcal{P}^k \left[n \right] \setminus F.
\]
Preliminaries and notation

Symbolic powers

The *k*th symbolic power of an ideal \(I \subseteq S \) is the ideal of \(S \):

\[
I^{(k)} := (I^k \cdot W^{-1} S) \cap S,
\]

where \(W \) is the multiplicative system \(S \setminus (\bigcup_{\mathfrak{p} \in \text{Ass}(I)} \mathfrak{p}) \).
Preliminaries and notation

Symbolic powers

The \textit{kth symbolic power} of an ideal $I \subseteq S$ is the ideal of S:

$$I^{(k)} := (I^k \cdot W^{-1}S) \cap S,$$

where W is the multiplicative system $S \setminus (\bigcup_{\mathfrak{p} \in \text{Ass}(I)} \mathfrak{p})$.

$I^k \subseteq I^{(k)},$
Preliminaries and notation

Symbolic powers

The kth symbolic power of an ideal $I \subseteq S$ is the ideal of S:

$$I^{(k)} := (I^k \cdot W^{-1} S) \cap S,$$

where W is the multiplicative system $S \setminus (\bigcup_{\wp \in \text{Ass}(I)} \wp)$.

$I^k \subseteq I^{(k)}$, and equality holds if I^k has no embedded primes.
Preliminaries and notation

Symbolic powers

The kth symbolic power of an ideal $I \subseteq S$ is the ideal of S:

$$I^{(k)} := (I^k \cdot W^{-1} S) \cap S,$$

where W is the multiplicative system $S \setminus (\bigcup_{\wp \in \text{Ass}(I)} \wp)$.

$I^k \subseteq I^{(k)}$, and equality holds if I^k has no embedded primes.

If $I = I_\Delta$ is a square-free monomial ideal,
The kth symbolic power of an ideal $I \subseteq S$ is the ideal of S:

$$I^{(k)} := (I^k \cdot W^{-1}S) \cap S,$$

where W is the multiplicative system $S \setminus (\bigcup_{\wp \in \text{Ass}(I)} \wp)$.

$I^k \subseteq I^{(k)}$, and equality holds if I^k has no embedded primes.

If $I = I_\Delta$ is a square-free monomial ideal, then it is easy to show:

$$I_\Delta^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp^k [n] \setminus F.$$
The problem

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the topological realization of Δ of the Cohen-Macaulay property of $k[\Delta]$. However, a characterization in a combinatorial fashion still misses. A related question is when all the rings S/I_Δ are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977): S/I_Δ is Cohen-Macaulay $\forall k \in \mathbb{Z}^+$ \iff I_Δ is a complete intersection. Notice that S/I_Δ Cohen-Macaulay \implies $\text{Ass}(I_\Delta) = \text{Min}(I_\Delta) \implies I_\Delta = I(k\Delta)$. Therefore it is natural to ask: When is $S/I(k\Delta)$ Cohen-Macaulay for all $k \in \mathbb{Z}^+$?
The problem

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the topological realization of Δ of the Cohen-Macaulay property of $k[\Delta]$.

\[\text{Reisner, in 1976, gave a characterization in terms of the topological realization of } \Delta \text{ of the Cohen-Macaulay property of } k[\Delta]. \]
The problem

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the topological realization of Δ of the Cohen-Macaulay property of $k[\Delta]$. However a characterization in a combinatorial fashion still misses.
Reisner, in 1976, gave a characterization in terms of the topological realization of Δ of the Cohen-Macaulay property of $k[\Delta]$. However a characterization in a combinatorial fashion still misses.

A related question is when all the rings S/I^k_Δ are Cohen-Macaulay.
The problem

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the topological realization of Δ of the Cohen-Macaulay property of $k[\Delta]$. However a characterization in a combinatorial fashion still misses.

A related question is when all the rings S/I_{Δ}^k are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):
Reisner, in 1976, gave a characterization in terms of the topological realization of Δ of the Cohen-Macaulay property of $k[\Delta]$. However a characterization in a combinatorial fashion still misses.

A related question is when all the rings S/I^k_{Δ} are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

$$S/I^k_{\Delta} \text{ is Cohen-Macaulay } \forall \ k \in \mathbb{Z}_+ \iff I_{\Delta} \text{ is a complete intersection}$$
The problem

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the *topological* realization of Δ of the Cohen-Macaulay property of $k[\Delta]$. However a characterization in a *combinatorial* fashion still misses.

A related question is when all the rings S/I^k_Δ are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

$$S/I^k_\Delta \text{ is Cohen-Macaulay } \forall \ k \in \mathbb{Z}_+ \iff I_\Delta \text{ is a complete intersection}$$

Notice that S/I^k_Δ Cohen-Macaulay \Rightarrow $\text{Ass}(I^k_\Delta) = \text{Min}(I^k_\Delta) \Rightarrow I^k_\Delta = I^{(k)}_\Delta$.

The problem

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the *topological* realization of Δ of the Cohen-Macaulay property of $k[\Delta]$. However, a characterization in a *combinatorial* fashion still misses.

A related question is when all the rings S/I^k_Δ are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

S/I^k_Δ is Cohen-Macaulay $\forall \ k \in \mathbb{Z}_+$ \iff I_Δ is a complete intersection

Notice that S/I^k_Δ Cohen-Macaulay \Rightarrow $\text{Ass}(I^k_\Delta) = \text{Min}(I^k_\Delta) \Rightarrow I^k_\Delta = I^{(k)}_\Delta$.

Therefore it is natural to ask:
The problem

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the topological realization of Δ of the Cohen-Macaulay property of $k[\Delta]$. However a characterization in a combinatorial fashion still misses.

A related question is when all the rings S/I^k are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

S/I^k is Cohen-Macaulay $\forall k \in \mathbb{Z}_+$ \iff I is a complete intersection

Notice that S/I^k Cohen-Macaulay \Rightarrow $\text{Ass}(I^k) = \text{Min}(I^k) \Rightarrow I^k = I^{(k)}$.

Therefore it is natural to ask:

When is $S/I^{(k)}$ Cohen-Macaulay for all $k \in \mathbb{Z}_+$???
The result

In this talk, we are going to answer the above question:

\[S/I(k) \Delta \text{is Cohen-Macaulay} \forall k \in \mathbb{Z}^+ \iff \Delta \text{is a matroid} \]

It is fair to say that Minh and Trung proved at the same time the same result. However, the two proofs are completely different.
The result

In this talk, we are going to answer the above question:
In this talk, we are going to answer the above question:

\[S/I^{(k)}_{\Delta} \text{ is Cohen-Macaulay } \forall k \in \mathbb{Z}_+ \iff \Delta \text{ is a matroid} \]
The result

In this talk, we are going to answer the above question:

$$S/I^{(k)}_\Delta \text{ is Cohen-Macaulay } \forall k \in \mathbb{Z}_+ \iff \Delta \text{ is a matroid}$$

It is fair to say that Minh and Trung proved at the same time the same result.
The result

In this talk, we are going to answer the above question:

\[\frac{S}{I_{\Delta}^{(k)}} \text{ is Cohen-Macaulay} \quad \forall k \in \mathbb{Z}_+ \iff \Delta \text{ is a matroid} \]

It is fair to say that Minh and Trung proved at the same time the same result. However the two proofs are completely different.
THE PROOF
Stanley-Reisner ideals \longrightarrow cover ideals

Properties of matroids

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property.

If Δ is a matroid, then

$$\forall F, G \in F(\Delta), \forall i \in F(\Delta), \exists j \in G : (F \{i\} \cup \{j\}) \in F(\Delta)$$

and

$$\forall F, G \in F(\Delta), \forall i \in F(\Delta), \exists j \in G : (G \{j\} \cup \{i\}) \in F(\Delta)$$

(iii) Duality.

For any simplicial complex Δ on $[n]$, we have

Δ is a matroid \iff Δ^c is a matroid.
Stanley-Reisner ideals \rightarrow cover ideals

Properties of matroids

(i) If Δ is a matroid, then Δ is pure.
Stanley-Reisner ideals → cover ideals

Properties of matroids

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property.
Stanley-Reisner ideals → cover ideals

Properties of matroids

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta)$, $\forall i \in F$,

$$\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$$
Stanley-Reisner ideals \longrightarrow cover ideals

Properties of matroids

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$ and $(G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)$!
Stanley-Reisner ideals \rightarrow cover ideals

Properties of matroids

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta)$, $\forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$ and $(G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)$.

The dual simplicial complex of Δ is the complex Δ^c on $[n]$ s. t.:
Stanley-Reisner ideals \rightarrow cover ideals

Properties of matroids

(i) If Δ is a matroid, then Δ is pure.

(ii) *Exchange property*. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$ and $(G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)$.

The dual simplicial complex of Δ is the complex Δ^c on $[n]$ s. t.:

$$\mathcal{F}(\Delta^c) := \{[n] \setminus F : F \in \mathcal{F}(\Delta)\}.$$
Stanley-Reisner ideals → cover ideals

Properties of matroids

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$ and $(G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)$!

The dual simplicial complex of Δ is the complex Δ^c on $[n]$ s. t.:

$$\mathcal{F}(\Delta^c) := \{[n] \setminus F : F \in \mathcal{F}(\Delta)\}.$$

(iii) Duality.
Stanley-Reisner ideals \rightarrow cover ideals

Properties of matroids

(i) If Δ is a matroid, then Δ is pure.

(ii) *Exchange property.* If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F,$
$\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$ and $(G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)$!

The dual simplicial complex of Δ is the complex Δ^c on $[n]$ s. t.:

$\mathcal{F}(\Delta^c) := \{[n] \setminus F : F \in \mathcal{F}(\Delta)\}$.

(iii) *Duality.* For any simplicial complex Δ on $[n]$, we have
Stanley-Reisner ideals \(\rightarrow\) cover ideals

Properties of matroids

(i) If \(\Delta\) is a matroid, then \(\Delta\) is pure.

(ii) *Exchange property.* If \(\Delta\) is a matroid, then \(\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)\) and \((G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)!\)

The dual simplicial complex of \(\Delta\) is the complex \(\Delta^c\) on \([n]\) s. t.:

\[
\mathcal{F}(\Delta^c) := \{[n] \setminus F : F \in \mathcal{F}(\Delta)\}.
\]

(iii) *Duality.* For any simplicial complex \(\Delta\) on \([n]\), we have

\(\Delta\) is a matroid \(\Leftrightarrow\) \(\Delta^c\) is a matroid.
Stanley-Reisner ideals \rightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta) := I(\Delta^c)$, so:

$$J(\Delta) = \bigcap_{F \in F(\Delta)} \wp F,$$

$A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \forall F \in F(\Delta)$.

One can easily check that:

$$J(\Delta) = (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \text{ is a vertex cover of } \Delta).$$
For a simplicial complex Δ, its cover ideal is $J(\Delta) := I_{\Delta^c}$, so:

\[
J(\Delta) = \bigcap_{F \in F(\Delta)} \mathcal{P}(F),
\]

where $A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset$ for all $F \in F(\Delta)$. One can easily check that $J(\Delta) = \langle x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \text{ is a vertex cover of } \Delta \rangle$.

Stanley-Reisner ideals \rightarrow cover ideals
For a simplicial complex Δ, its cover ideal is $J(\Delta) := I_{\Delta^c}$, so:

$$J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \emptyset_F,$$

where $A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset$ for all $F \in \mathcal{F}(\Delta)$.
For a simplicial complex Δ, its cover ideal is $J(\Delta) \coloneqq I_{\Delta^c}$, so:

$$J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \emptyset F,$$

$A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \; \forall \; F \in \mathcal{F}(\Delta)$.
For a simplicial complex Δ, its cover ideal is $J(\Delta) := I_{\Delta^c}$, so:

$$J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} F^c,$$

$A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \ \forall \ F \in \mathcal{F}(\Delta)$.

EXAMPLES:

![Diagram of a hexagon with vertices labeled 1 to 6 and edges connecting them, illustrating a vertex cover example.](image-url)
Stanley-Reisner ideals \mapsto cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta) := l_{\Delta^c}$, so:

$$J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp F,$$

$A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \ \forall \ F \in \mathcal{F}(\Delta)$.

EXAMPLES: $\{1, 2, 3, 4, 5, 6\}$ is a vertex cover
For a simplicial complex Δ, its cover ideal is $J(\Delta) := I_{\Delta^c}$, so:

$$J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \emptyset_F,$$

$A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \ \forall \ F \in \mathcal{F}(\Delta)$.

EXAMPLES: \{1, 2, 4, 5\} is a vertex cover.
Stanley-Reisner ideals \rightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta) := I_{\Delta^c}$, so:

$$J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \mathcal{P} F,$$

$A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \ \forall \ F \in \mathcal{F}(\Delta)$.

EXAMPLES: $\{1, 2, 4\}$ is not a vertex cover
Stanley-Reisner ideals \longrightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta) := I_{\Delta^c}$, so:

$$J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} I_F,$$

$A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \ \forall \ F \in \mathcal{F}(\Delta)$.

EXAMPLES:

$\{1, 3, 5\}$ is a vertex cover
Stanley-Reisner ideals \longrightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta) \coloneqq I_{\Delta^c}$, so:

$$J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \mathcal{P} F,$$

$A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \ \forall \ F \in \mathcal{F}(\Delta)$.

One can easily check that:

$$J(\Delta) = (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \text{ is a vertex cover of } \Delta).$$
Stanley-Reisner ideals \rightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta) := I_{\Delta^c}$, so:

$$J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$$

where \wp_F is the ideal generated by the monomials of F.

$A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \ \forall \ F \in \mathcal{F}(\Delta)$.

One can easily check that:

$$J(\Delta) = (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \text{ is a vertex cover of } \Delta).$$

By the duality for matroids, because $I_\Delta = J(\Delta^c)$, we can pass
Stanley-Reisner ideals \longrightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta) := I_{\Delta^c}$, so:

$$J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \mathcal{P}(F),$$

$A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset$ \forall $F \in \mathcal{F}(\Delta)$.

One can easily check that:

$$J(\Delta) = (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \text{ is a vertex cover of } \Delta).$$

By the duality for matroids, because $I_\Delta = J(\Delta^c)$, we can pass from

$$S/I_{\Delta}^{(k)} \text{ is CM for any } k \in \mathbb{Z}_+ \iff \Delta \text{ is a matroid}$$
Stanley-Reisner ideals \rightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta) := I_{\Delta^c}$, so:

$$J(\Delta) = \bigcap_{F \in F(\Delta)} \wp_{\varnothing},$$

$A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \ \forall \ F \in F(\Delta)$.

One can easily check that:

$$J(\Delta) = (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \text{ is a vertex cover of } \Delta).$$

By the duality for matroids, because $I_\Delta = J(\Delta^c)$, we can pass to

$$S/J(\Delta)^{(k)} \text{ is CM for any } k \in \mathbb{Z}_+ \iff \Delta \text{ is a matroid}$$
Symbolic powers and k-covers

We have $\mathcal{J}(\Delta)(k) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_k F \forall k \in \mathbb{N}$.

We want to describe which monomials belong to $\mathcal{J}(\Delta)(k)$.

For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if:

$$\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta).$$

A k-cover α is basic if there is not a k-cover β with $\beta < \alpha$.
Symbolic powers and k-covers

We have $J(\Delta)^{(k)} = \bigcap_{F \in F(\Delta)} \mathfrak{s}_F^k \quad \forall \ k \in \mathbb{N}$.
Symbolic powers and k-covers

We have $J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \mathcal{O}_F^k \quad \forall \ k \in \mathbb{N}.$

We want to describe which monomials belong to $J(\Delta)^{(k)}.$
We have \(J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \mathcal{O}_F^k \) \(\forall k \in \mathbb{N} \).

We want to describe which monomials belong to \(J(\Delta)^{(k)} \). For each \(k \in \mathbb{N} \), a nonzero function \(\alpha : [n] \to \mathbb{N} \) is called a \textit{k-cover} of a simplicial complex \(\Delta \) on \([n] \) if:

\[\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta). \]
Symbolic powers and k-covers

We have $J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \varnothing_F^k \quad \forall \ k \in \mathbb{N}$.

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \quad \forall \ F \in \mathcal{F}(\Delta)$.

A k-cover α is basic if there is not a k-cover β with $\beta < \alpha$.
Symbolic powers and k-covers

We have $J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \varnothing_F^k \quad \forall k \in \mathbb{N}$.

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \quad \forall F \in \mathcal{F}(\Delta)$.

A k-cover α is basic if there is not a k-cover β with $\beta < \alpha$.
Symbolic powers and k-covers

We have $J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \varnothing^k_F \quad \forall \ k \in \mathbb{N}$.

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: \[
\sum_{i \in F} \alpha(i) \geq k \quad \forall \ F \in \mathcal{F}(\Delta).
\]

A k-cover α is basic if there is not a k-cover β with $\beta < \alpha$.

EXAMPLES:

\[
\begin{array}{c}
\text{EXAMPLES:} \\
\begin{array}{c}
\text{Diagram of a simplicial complex}\end{array}
\end{array}
\]
Symbolic powers and \(k \)-covers

We have \(J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \mathcal{P}_F^k \quad \forall \ k \in \mathbb{N}. \)

We want to describe which monomials belong to \(J(\Delta)^{(k)} \). For each \(k \in \mathbb{N} \), a nonzero function \(\alpha : [n] \to \mathbb{N} \) is called a \(k \)-cover of a simplicial complex \(\Delta \) on \([n]\) if: \(\sum_{i \in F} \alpha(i) \geq k \quad \forall \ F \in \mathcal{F}(\Delta). \)

A \(k \)-cover \(\alpha \) is basic if there is not a \(k \)-cover \(\beta \) with \(\beta < \alpha \).

EXAMPLES:

```
  vertex cover
```
Symbolic powers and k-covers

We have $J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \phi^k_F \quad \forall k \in \mathbb{N}$.

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \quad \forall F \in \mathcal{F}(\Delta)$.

A k-cover α is basic if there is not a k-cover β with $\beta < \alpha$.

EXAMPLES:

```
1 0
```

1-cover
Symbolic powers and k-covers

We have $J(\Delta)^{(k)} = \bigcap_{F \in F(\Delta)} \wp^k_F \quad \forall \ k \in \mathbb{N}$.

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \ \forall \ F \in F(\Delta)$.

A k-cover α is basic if there is not a k-cover β with $\beta < \alpha$.

EXAMPLES:

```
1 0 1
```

1-cover
Symbolic powers and k-covers

We have $J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \varnothing_F^k \quad \forall \ k \in \mathbb{N}$.

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \quad \forall \ F \in \mathcal{F}(\Delta)$.

A k-cover α is basic if there is not a k-cover β with $\beta < \alpha$.

EXAMPLES:

```
1  2
\hline
\hline
2  3
```

3-cover
Symbolic powers and k-covers

We have $J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \phi_F^k \quad \forall \ k \in \mathbb{N}$.

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \ \forall \ F \in \mathcal{F}(\Delta)$.

A k-cover α is basic if there is not a k-cover β with $\beta < \alpha$.

EXAMPLES:

```
2  1  2
2 3  1
3-cover
```
Symbolic powers and k-covers

We have $J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \phi^k_F \quad \forall \ k \in \mathbb{N}$.

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \quad \forall \ F \in \mathcal{F}(\Delta)$.

A k-cover α is basic if there is not a k-cover β with $\beta < \alpha$.

EXAMPLES:

```
1 2 2
2 1
```

basic 3-cover
Symbolic powers and k-covers

We have $J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp^k_F \quad \forall \ k \in \mathbb{N}$.

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \ \forall \ F \in \mathcal{F}(\Delta)$.

A k-cover α is basic if there is not a k-cover β with $\beta < \alpha$.

It is not difficult to show:

$$J(\Delta)^{(k)} = (x_1^{\alpha(1)} \cdots x_n^{\alpha(n)} : \alpha \text{ is a } k\text{-cover}).$$
Symbolic powers and k-covers

We have $J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \mathcal{F}^{k}_F \quad \forall \ k \in \mathbb{N}$.

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \quad \forall \ F \in \mathcal{F}(\Delta)$.

A k-cover α is basic if there is not a k-cover β with $\beta < \alpha$.

It is not difficult to show:

$J(\Delta)^{(k)} = (x_1^{\alpha(1)} \cdots x_n^{\alpha(n)} : \alpha \text{ is a basic } k\text{-cover})$.
The algebra of basic covers

Definition

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)(k)$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ. We need to deal with the special fiber of $A(\Delta)$: $\overline{A}(\Delta) := A(\Delta) / m_A(\Delta) = \bigoplus_{k \in \mathbb{N}} J(\Delta)(k) / m_J(\Delta)(k)$, where $m := (x_1, \ldots, x_n) \subseteq S$. For all $k \in \mathbb{Z}^+$, we have: $\overline{A}(\Delta)_k = \langle x^\alpha : \alpha \text{ is a basic } k\text{-cover} \rangle$. For this reason, $\overline{A}(\Delta)$ is called the algebra of basic covers of Δ.
The algebra of basic covers

Definition

The symbolic Rees algebra of $J(\Delta)$,
The algebra of basic covers

Definition

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$,
The algebra of basic covers

Definition

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers.
The algebra of basic covers

Definition

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung.
The algebra of basic covers

Definition

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ.

For all $k \in \mathbb{Z}^+$, we have: $\bar{A}(\Delta)^k = \langle x^{\alpha} : \alpha \text{ is a basic } k\text{-cover} \rangle$. For this reason, $\bar{A}(\Delta)$ is called the algebra of basic covers of Δ.
The algebra of basic covers

Definition

The symbolic Rees algebra of \(J(\Delta) \), i.e. \(A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)} \), has an obvious interpretation in terms of \(k \)-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of \(\Delta \). We need to deal with the special fiber of \(A(\Delta) \):
The algebra of basic covers

Definition

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ. We need to deal with the special fiber of $A(\Delta)$:

$$\bar{A}(\Delta) := A(\Delta)/mA(\Delta) = \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}/mJ(\Delta)^{(k)}.$$
Definition

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ. We need to deal with the special fiber of $A(\Delta)$:

$$\bar{A}(\Delta) := A(\Delta)/mA(\Delta) = \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}/mJ(\Delta)^{(k)},$$

where $m := (x_1, \ldots, x_n) \subseteq S$.

The algebra of basic covers
The algebra of basic covers

Definition

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ. We need to deal with the special fiber of $A(\Delta)$:

$$\bar{A}(\Delta) := A(\Delta)/mA(\Delta) = \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}/mJ(\Delta)^{(k)},$$

where $m := (x_1, \ldots, x_n) \subseteq S$.

For all $k \in \mathbb{Z}^+$, we have:

$$\bar{A}(\Delta)_k = \langle x^\alpha : \alpha \text{ is a basic } k\text{-cover} \rangle.$$
The algebra of basic covers

Definition

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ. We need to deal with the special fiber of $A(\Delta)$:

$$\tilde{A}(\Delta) := A(\Delta)/mA(\Delta) = \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}/mJ(\Delta)^{(k)},$$

where $m := (x_1, \ldots, x_n) \subseteq S$.

For all $k \in \mathbb{Z}_+$, we have:

$$\tilde{A}(\Delta)_k = \langle x^\alpha : \alpha \text{ is a basic } k\text{-cover} \rangle$$

For this reason, $\tilde{A}(\Delta)$ is called the algebra of basic covers of Δ.
The algebra of basic covers

How \(\bar{A}(\Delta) \) comes into play
The algebra of basic covers

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.
The algebra of basic covers

How $\tilde{\mathcal{A}}(\Delta)$ comes into play

(HHT). $\mathcal{A}(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

Using a theorem of Eisenbud and Huneke, the above result yields

$$\dim \mathcal{A}(\Delta) = \dim \mathcal{A}(\Delta) + 1$$

Whenever Δ is a matroid.
The algebra of basic covers

\(\tilde{A}(\Delta) \) comes into play

\((HHT) \). \(A(\Delta) \) is a Cohen-Macaulay, finitely generated \(S \)-algebra.

Using a theorem of Eisenbud and Huneke, the above result yields

\[
\dim \tilde{A}(\Delta) = n - \min_{k \in \mathbb{N}_{>0}} \{ \text{depth}(S/J(\Delta)^{(k)}) \}
\]
The algebra of basic covers

How $\bar{A}(\Delta)$ comes into play

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

Using a theorem of Eisenbud and Huneke, the above result yields

$$\dim \Delta + 1 = \text{ht}(J(\Delta)) \leq \dim \bar{A}(\Delta) = n - \min_{k \in \mathbb{N}_0} \{\text{depth}(S/J(\Delta)^{(k)})\}.$$
The algebra of basic covers

The algebra of basic covers

How $\tilde{A}(\Delta)$ comes into play

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

Using a theorem of Eisenbud and Huneke, the above result yields

$$\dim \Delta + 1 = \text{ht}(J(\Delta)) \leq \dim \tilde{A}(\Delta) = n - \min_{k \in \mathbb{N}_{>0}} \{ \text{depth}(S/J(\Delta)^{(k)}) \}.$$

Therefore, since $\dim S/J(\Delta) = n - \dim \Delta - 1$, we get
The algebra of basic covers

How \(\bar{A}(\Delta) \) comes into play

\((HHT)\). \(A(\Delta) \) is a Cohen-Macaulay, finitely generated \(S \)-algebra.

Using a theorem of *Eisenbud* and *Huneke*, the above result yields

\[
\dim \Delta + 1 = \text{ht}(J(\Delta)) \leq \dim \bar{A}(\Delta) = n - \min_{k \in \mathbb{N}_0} \{ \text{depth}(S/J(\Delta)^{(k)}) \}.
\]

Therefore, since \(\dim S/J(\Delta) = n - \dim \Delta - 1 \), we get

\[
S/J(\Delta)^{(k)} \text{ is CM for any } k \in \mathbb{Z}_+ \iff \dim \bar{A}(\Delta) = \dim \Delta + 1.
\]
The algebra of basic covers

How \(A(\Delta) \) comes into play

\((HHT)\). \(A(\Delta) \) is a Cohen-Macaulay, finitely generated \(S \)-algebra.

Using a theorem of Eisenbud and Huneke, the above result yields

\[
\dim \Delta + 1 = \text{ht}(J(\Delta)) \leq \dim \tilde{A}(\Delta) = n - \min_{k \in \mathbb{N}_0} \{ \text{depth}(S/J(\Delta)^{(k)}) \}.
\]

Therefore, since \(\dim S/J(\Delta) = n - \dim \Delta - 1 \), we get

\[
S/J(\Delta)^{(k)} \text{ is CM for any } k \in \mathbb{Z}_+ \iff \dim \tilde{A}(\Delta) = \dim \Delta + 1.
\]

In the next slides we are going to show that:
(HHT). $\mathcal{A}(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

Using a theorem of Eisenbud and Huneke, the above result yields

$$\dim \Delta + 1 = \text{ht}(J(\Delta)) \leq \dim \mathcal{A}(\Delta) = n - \min_{k \in \mathbb{N}_0} \{\text{depth}(S/J(\Delta)^{(k)})\}.$$

Therefore, since $\dim S/J(\Delta) = n - \dim \Delta - 1$, we get

$S/J(\Delta)^{(k)}$ is CM for any $k \in \mathbb{Z}_+$ if and only if $\dim \mathcal{A}(\Delta) = \dim \Delta + 1$.

In the next slides we are going to show that:

$$\dim \mathcal{A}(\Delta) = \dim \Delta + 1$$

whenever Δ is a matroid.
The algebra of basic covers

A combinatorial description of $\dim \tilde{A}(\Delta)$
The algebra of basic covers

A combinatorial description of $\dim \tilde{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\tilde{A}(\Delta)$ is a finitely generated k-algebra.
The algebra of basic covers

A combinatorial description of \(\dim \tilde{A}(\Delta) \)

Since \(A(\Delta) \) is Noetherian, \(\tilde{A}(\Delta) \) is a finitely generated \(k \)-algebra. This implies that there exists a positive integer \(\delta \) such that:
The algebra of basic covers

A combinatorial description of $\dim \tilde{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\tilde{A}(\Delta)$ is a finitely generated k-algebra. This implies that there exists a positive integer δ such that:

$$\tilde{A}(\Delta)^{(\delta)} := \bigoplus_{m \in \mathbb{N}} \tilde{A}(\Delta)_{\delta m}$$

is a standard graded k-algebra.
The algebra of basic covers

A combinatorial description of \(\dim \bar{A}(\Delta) \)

Since \(A(\Delta) \) is Noetherian, \(\bar{A}(\Delta) \) is a finitely generated \(\mathbb{k} \)-algebra. This implies that there exists a positive integer \(\delta \) such that:

\[
\bar{A}(\Delta)^{(\delta)} := \bigoplus_{m \in \mathbb{N}} \bar{A}(\Delta)_{m} \text{ is a standard graded } \mathbb{k}-\text{algebra.}
\]

\(\bar{A}(\Delta) \) fin. gen. \(\bar{A}(\Delta)^{(\delta)} \)-module \(\Rightarrow \) \(\dim \bar{A}(\Delta) = \dim \bar{A}(\Delta)^{(\delta)} \).
The algebra of basic covers

Since $A(\Delta)$ is Noetherian, $\bar{A}(\Delta)$ is a finitely generated k-algebra. This implies that there exists a positive integer δ such that:

$$\bar{A}(\Delta)^{(\delta)} := \bigoplus_{m \in \mathbb{N}} \bar{A}(\Delta)_{\delta m}$$

is a standard graded k-algebra.

$\bar{A}(\Delta)$ fin. gen. $\bar{A}(\Delta)^{(\delta)}$-module $\Rightarrow \dim \bar{A}(\Delta) = \dim \bar{A}(\Delta)^{(\delta)}$.

Because $\bar{A}(\Delta)^{(\delta)}$ is standard graded, it has a Hilbert polynomial.
The algebra of basic covers

A combinatorial description of \(\dim \tilde{A}(\Delta) \)

Since \(A(\Delta) \) is Noetherian, \(\tilde{A}(\Delta) \) is a finitely generated \(\mathbb{k} \)-algebra. This implies that there exists a positive integer \(\delta \) such that:

\[
\tilde{A}(\Delta)^{(\delta)} := \bigoplus_{m \in \mathbb{N}} \tilde{A}(\Delta)_{\delta m}
\]

is a standard graded \(\mathbb{k} \)-algebra.

\(\tilde{A}(\Delta) \) fin. gen. \(\tilde{A}(\Delta)^{(\delta)} \)-module \(\Rightarrow \) \(\dim \tilde{A}(\Delta) = \dim \tilde{A}(\Delta)^{(\delta)} \).

Because \(\tilde{A}(\Delta)^{(\delta)} \) is standard graded, it has a Hilbert polynomial.

I.e. a polynomial \(P \in \mathbb{Q}[T] \), of degree \(\dim \tilde{A}(\Delta)^{(\delta)} - 1 \), such that:
The algebra of basic covers

A combinatorial description of \(\dim \tilde{A}(\Delta) \)

Since \(A(\Delta) \) is Noetherian, \(\tilde{A}(\Delta) \) is a finitely generated \(\mathbb{k} \)-algebra. This implies that there exists a positive integer \(\delta \) such that:

\[
\tilde{A}(\Delta)^{(\delta)} := \bigoplus_{m \in \mathbb{N}} \tilde{A}(\Delta)_{\delta m} \text{ is a standard graded } \mathbb{k}\text{-algebra.}
\]

\(\tilde{A}(\Delta) \) fin. gen. \(\tilde{A}(\Delta)^{(\delta)} \)-module \(\Rightarrow \) \(\dim \tilde{A}(\Delta) = \dim \tilde{A}(\Delta)^{(\delta)} \).

Because \(\tilde{A}(\Delta)^{(\delta)} \) is standard graded, it has a Hilbert polynomial. I.e. a polynomial \(P \in \mathbb{Q}[T] \), of degree \(\dim \tilde{A}(\Delta)^{(\delta)} - 1 \), such that:

\[
P(m) = \dim_{\mathbb{k}}(\tilde{A}(\Delta)_{\delta m}) \quad \forall \ m \gg 0.
\]
Since $A(\Delta)$ is Noetherian, $\bar{A}(\Delta)$ is a finitely generated k-algebra. This implies that there exists a positive integer δ such that:

\[\bar{A}(\Delta)^{(\delta)} := \bigoplus_{m \in \mathbb{N}} \bar{A}(\Delta)_{\delta m} \text{ is a standard graded } k\text{-algebra.} \]

Because $\bar{A}(\Delta)^{(\delta)}$ is standard graded, it has a Hilbert polynomial. I.e. a polynomial $P \in \mathbb{Q}[T]$, of degree $\dim \bar{A}(\Delta)^{(\delta)} - 1$, such that:

\[P(m) = \dim_k(\bar{A}(\Delta)_{\delta m}) \quad \forall \ m \gg 0. \]

Therefore, since $\dim_k(\bar{A}(\Delta)_{\delta m}) = |\{\text{basic } \delta m\text{-cover of } \Delta\}|$,

The algebra of basic covers

\[A \text{ combinatorial description of } \dim \bar{A}(\Delta) \]
The algebra of basic covers

A combinatorial description of \(\dim \tilde{A}(\Delta) \)

Since \(A(\Delta) \) is Noetherian, \(\tilde{A}(\Delta) \) is a finitely generated \(k \)-algebra. This implies that there exists a positive integer \(\delta \) such that:

\[
\tilde{A}(\Delta)^{(\delta)} := \bigoplus_{m \in \mathbb{N}} \tilde{A}(\Delta)_{\delta m} \quad \text{is a standard graded } k \text{-algebra.}
\]

Because \(\tilde{A}(\Delta)^{(\delta)} \) is standard graded, it has a Hilbert polynomial. I.e. a polynomial \(P \in \mathbb{Q}[T] \), of degree \(\dim \tilde{A}(\Delta)^{(\delta)} - 1 \), such that:

\[
P(m) = \dim_k(\tilde{A}(\Delta)_{\delta m}) \quad \forall \ m \gg 0.
\]

Therefore, since \(\dim_k(\tilde{A}(\Delta)_{\delta m}) = |\{ \text{basic } \delta m \text{-cover of } \Delta \}| \), if \(|\{ \text{basic } k \text{-covers} \}| = O(k^{s-1}) \),
The algebra of basic covers

A combinatorial description of $\dim \mathcal{A}(\Delta)$

Since $\mathcal{A}(\Delta)$ is Noetherian, $\mathcal{A}(\Delta)$ is a finitely generated \mathbb{k}-algebra. This implies that there exists a positive integer δ such that:

$$\mathcal{A}(\Delta)^{(\delta)} := \bigoplus_{m \in \mathbb{N}} \mathcal{A}(\Delta)_{\delta m}$$

is a standard graded \mathbb{k}-algebra.

Because $\mathcal{A}(\Delta)^{(\delta)}$ is standard graded, it has a Hilbert polynomial. I.e. a polynomial $P \in \mathbb{Q}[T]$, of degree $\dim \mathcal{A}(\Delta)^{(\delta)} - 1$, such that:

$$P(m) = \dim_{\mathbb{k}}(\mathcal{A}(\Delta)_{\delta m}) \quad \forall \ m \gg 0.$$

Therefore, since $\dim_{\mathbb{k}}(\mathcal{A}(\Delta)_{\delta m}) = |\{\text{basic } \delta m\text{-cover of } \Delta\}|$, if $|\{\text{basic } k\text{-covers}\}| = O(k^{s-1})$, then $\dim(\mathcal{A}(\Delta)) \leq s$.

Since $\mathcal{A}(\Delta)$ is finitely generated, $\mathcal{A}(\Delta)$ fin. gen. $\mathcal{A}(\Delta)^{(\delta)}$-module $\Rightarrow \dim \mathcal{A}(\Delta) = \dim \mathcal{A}(\Delta)^{(\delta)}$.

Therefore, since $\dim_{\mathbb{k}}(\mathcal{A}(\Delta)_{\delta m}) = |\{\text{basic } \delta m\text{-cover of } \Delta\}|$, if $|\{\text{basic } k\text{-covers}\}| = O(k^{s-1})$, then $\dim(\mathcal{A}(\Delta)) \leq s$.

If Δ is a matroid ...

The claim

$\text{Set}_d := \dim(\Delta) + 1$.

Being a matroid, Δ is pure, so:

d is the cardinality of each facet of Δ.

In order to show that $S/J(\Delta)$ is Cohen-Macaulay $\forall k \in \mathbb{Z}^+$, we have to prove that $\dim \bar{A}(\Delta) = d$.

So:

Claim: $|\{\text{basic } k\text{-covers of } \Delta\}| = O(k^d - 1)$.
If Δ is a matroid ...

The claim

Set $d := \dim(\Delta) + 1$.

$\forall k \in \mathbb{Z}^+$, we have to prove that $\dim \bar{A}(\Delta) = d$.

Claim: $\left| \{ \text{basic } k\text{-covers of } \Delta \} \right| = O(k^{d-1})$.

If Δ is a matroid ...

The claim

Set $d := \dim(\Delta) + 1$. Being a matroid, Δ is pure, so:
If Δ is a matroid ...

The claim

Set $d := \dim(\Delta) + 1$. Being a matroid, Δ is pure, so:

d is the cardinality of each facet of Δ.
If Δ is a matroid ...

The claim

Set $d := \dim(\Delta) + 1$. Being a matroid, Δ is pure, so:

d is the cardinality of each facet of Δ.

In order to show that $S/J(\Delta)^k$ is Cohen-Macaulay $\forall \ k \in \mathbb{Z}_+$,
If \(\Delta \) is a matroid ...

The claim

Set \(d := \dim(\Delta) + 1 \). Being a matroid, \(\Delta \) is pure, so:

\[
d \text{ is the cardinality of each facet of } \Delta.
\]

In order to show that \(S/J(\Delta)^k \) is Cohen-Macaulay \(\forall \ k \in \mathbb{Z}_+ \), we have to prove that \(\dim \overline{A}(\Delta) = d \).
If Δ is a matroid ...

The claim

Set $d := \dim(\Delta) + 1$. Being a matroid, Δ is pure, so:

- d is the cardinality of each facet of Δ.

In order to show that $S/J(\Delta)^k$ is Cohen-Macaulay $\forall \ k \in \mathbb{Z}_+$, we have to prove that $\dim \bar{A}(\Delta) = d$. So:

Claim: $|\{\text{basic } k\text{-covers of } \Delta\}| = O(k^{d-1})$.
If Δ is a $(d - 1)$-dimensional matroid ...
If Δ is a $(d-1)$-dimensional matroid ...
If Δ is a $(d - 1)$-dimensional matroid ...

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:
If Δ is a $(d - 1)$-dimensional matroid ...

Let α be a basic k-cover of Δ. Since α is basic, $\exists \ F \in \mathcal{F}(\Delta)$:

$$\sum_{i \in F} \alpha(i) = k.$$
Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$\sum_{i \in F} \alpha(i) = k.$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.

If Δ is a $(d - 1)$-dimensional matroid ...
If Δ is a $(d - 1)$-dimensional matroid ...

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$\sum_{i \in F} \alpha(i) = k.$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$.

If Δ is a $(d - 1)$-dimensional matroid ...

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$\sum_{i \in F} \alpha(i) = k.$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:
If Δ is a $(d - 1)$-dimensional matroid ...

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$\sum_{i \in F} \alpha(i) = k.$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$j_0 \in G \quad \text{and} \quad \sum_{j \in G} \alpha(j) = k.$$
If Δ is a $(d-1)$-dimensional matroid ...

Let α be a basic k-cover of Δ. Since α is basic, $\exists \ F \in \mathcal{F}(\Delta)$:

$$\sum_{i \in F} \alpha(i) = k.$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists \ G \in \mathcal{F}(\Delta)$:

$$j_0 \in G \quad \text{and} \quad \sum_{j \in G} \alpha(j) = k.$$

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that
If Δ is a $(d-1)$-dimensional matroid ...

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$\sum_{i \in F} \alpha(i) = k.$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$j_0 \in G \quad \text{and} \quad \sum_{j \in G} \alpha(j) = k.$$

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

(I) $F' := (F \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta)$ and (II) $G' := (G \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta)$.
If Δ is a $(d - 1)$-dimensional matroid ...

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$\sum_{i \in F} \alpha(i) = k.$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$j_0 \in G \quad \text{and} \quad \sum_{j \in G} \alpha(j) = k.$$

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

(I) $F' := (F \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta)$ and (II) $G' := (G \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta)$.

(I) \Rightarrow $\sum_{i \in F'} \alpha(i) \geq k$
If Δ is a $(d - 1)$-dimensional matroid ...

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$\sum_{i \in F} \alpha(i) = k.$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$j_0 \in G \quad \text{and} \quad \sum_{j \in G} \alpha(j) = k.$$

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

(I) $F' := (F \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta)$ and (II) $G' := (G \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta)$.

(I) $\Rightarrow \sum_{i \in F'} \alpha(i) \geq k \Rightarrow \alpha(j_0) \geq \alpha(i_0)$.

If Δ is a $(d - 1)$-dimensional matroid ...

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists \ F \in \mathcal{F}(\Delta)$:

$$\sum_{i \in F} \alpha(i) = k.$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists \ G \in \mathcal{F}(\Delta)$:

$$j_0 \in G \quad \text{and} \quad \sum_{j \in G} \alpha(j) = k.$$

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

(I) $F' := (F \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta)$ \quad and \quad (II) $G' := (G \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta)$.

(II) $\Rightarrow \sum_{j \in G'} \alpha(j) \geq k$
If Δ is a $(d - 1)$-dimensional matroid ...

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$\sum_{i \in F} \alpha(i) = k.$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$j_0 \in G \quad \text{and} \quad \sum_{j \in G} \alpha(j) = k.$$

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

(I) $F' := (F \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta)$ and (II) $G' := (G \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta)$.

(II) $\Rightarrow \sum_{j \in G'} \alpha(j) \geq k \Rightarrow \alpha(i_0) \geq \alpha(j_0)$.
Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$\sum_{i \in F} \alpha(i) = k.$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$j_0 \in G \quad \text{and} \quad \sum_{j \in G} \alpha(j) = k.$$

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

(1) $F' := (F \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta)$ and (II) $G' := (G \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta)$.

Therefore (I) and (II) together yield $\alpha(j_0) = \alpha(i_0)$.

If Δ is a $(d - 1)$-dimensional matroid ...
If Δ is a $(d - 1)$-dimensional matroid ...

The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta)$, $|F| = d$.
If \(\Delta \) is a \((d-1)\)-dimensional matroid ...

The conclusion

Let us recall that, since \(F \in \mathcal{F}(\Delta), |F| = d \).

\[
|\{(a_1, \ldots, a_d) \in \mathbb{N}^d : a_1 + \ldots + a_d = k\}| = \binom{k + d - 1}{k}.
\]
If Δ is a $(d - 1)$-dimensional matroid ...

The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta)$, $|F| = d$.

$$\left| \left\{ (a_1, \ldots, a_d) \in \mathbb{N}^d : a_1 + \cdots + a_d = k \right\} \right| = \binom{k + d - 1}{k}.$$

So
If \(\Delta \) is a \((d - 1)\)-dimensional matroid ...

The conclusion

Let us recall that, since \(F \in \mathcal{F}(\Delta) \), \(|F| = d\).

\[
|\{(a_1, \ldots, a_d) \in \mathbb{N}^d : a_1 + \ldots + a_d = k\}| = \binom{k + d - 1}{k}.
\]

So

\[
|\{\text{basic } k\text{-covers}\}| \leq |\mathcal{F}(\Delta)| \binom{k + d - 1}{k}
\]
If Δ is a $(d - 1)$-dimensional matroid ...

The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta)$, $|F| = d$.

$$|\{(a_1, \ldots, a_d) \in \mathbb{N}^d : a_1 + \ldots + a_d = k\}| = \binom{k + d - 1}{k}.$$

So

$$|\{\text{basic } k\text{-covers}\}| \leq |\mathcal{F}(\Delta)|\binom{k + d - 1}{k} = O(k^{d-1}).$$
If Δ is a $(d-1)$-dimensional matroid ...

The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta)$, $|F| = d$.

$$\left|\{(a_1, \ldots, a_d) \in \mathbb{N}^d : a_1 + \ldots + a_d = k\}\right| = \binom{k + d - 1}{k}.$$

So

$$\left|\{\text{basic } k\text{-covers}\}\right| \leq |\mathcal{F}(\Delta)| \binom{k + d - 1}{k} = O(k^{d-1}).$$

Therefore $\dim \tilde{A}(\Delta) = d = \dim \Delta + 1$.
If Δ is a $(d - 1)$-dimensional matroid ...

The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta)$, $|F| = d$.

$$|\{(a_1, \ldots, a_d) \in \mathbb{N}^d : a_1 + \ldots + a_d = k\}| = \binom{k + d - 1}{k}.$$

So

$$|\{\text{basic } k\text{-covers}\}| \leq |\mathcal{F}(\Delta)|\binom{k + d - 1}{k} = O(k^{d-1}).$$

Therefore $\dim \bar{A}(\Delta) = d = \dim \Delta + 1$.

Hence $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for any $k \in \mathbb{Z}_+$.!
IF $S/J(\Delta)^{(k)}$ IS COHEN-MACAULAY FOR ALL $k \in \mathbb{Z}_+$...
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The polarization of a monomial ideal
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The polarization of a monomial ideal

Given a monomial $u \in S$, say $u := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, its polarization is:
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The polarization of a monomial ideal

Given a monomial $u \in S$, say $u := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, its polarization is:

$$\tilde{u} := \prod_{j=1}^{\alpha_1} x_{1,j} \cdot \prod_{j=1}^{\alpha_2} x_{2,j} \cdots \prod_{j=1}^{\alpha_n} x_{n,j} \in \mathbb{K}[x_{i,j} : i \in [n], j \in [\deg u]].$$
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The polarization of a monomial ideal

Given a monomial $u \in S$, say $u := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, its polarization is:

$$\tilde{u} := \prod_{j=1}^{\alpha_1} x_{1,j} \cdot \prod_{j=1}^{\alpha_2} x_{2,j} \cdots \prod_{j=1}^{\alpha_n} x_{n,j} \in \mathbb{k}[x_{i,j} : i \in [n], j \in [\deg u]].$$

If $I \subseteq S$ is a monomial ideal with minimal monomial generators u_1, \ldots, u_m, ...
If $S/J(\Delta)(k)$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The polarization of a monomial ideal

Given a monomial $u \in S$, say $u := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, its polarization is:

$$\tilde{u} := \prod_{j=1}^{\alpha_1} x_{1,j} \cdot \prod_{j=1}^{\alpha_2} x_{2,j} \cdots \prod_{j=1}^{\alpha_n} x_{n,j} \in \mathbb{k}[x_{i,j} : i \in [n], j \in [\deg u]].$$

If $I \subseteq S$ is a monomial ideal with minimal monomial generators u_1, \ldots, u_m, its polarization is the square-free monomial ideal:
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The polarization of a monomial ideal

Given a monomial $u \in S$, say $u := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, its polarization is:

$$\tilde{u} := \prod_{j=1}^{\alpha_1} x_{1,j} \cdot \prod_{j=1}^{\alpha_2} x_{2,j} \cdots \prod_{j=1}^{\alpha_n} x_{n,j} \in \mathbb{k}[x_{i,j} : i \in [n], j \in [\deg u]].$$

If $I \subseteq S$ is a monomial ideal with minimal monomial generators u_1, \ldots, u_m, its polarization is the square-free monomial ideal:

$$\tilde{I} := (\tilde{u}_1, \ldots, \tilde{u}_m) \subseteq \tilde{S} := \mathbb{k}[x_{i,j} : i \in [n], j \in [\max_i\{\deg u_i\}]].$$
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The polarization of a monomial ideal

Given a monomial $u \in S$, say $u := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, its polarization is:

$$\widetilde{u} := \prod_{j=1}^{\alpha_1} x_{1,j} \cdot \prod_{j=1}^{\alpha_2} x_{2,j} \cdots \prod_{j=1}^{\alpha_n} x_{n,j} \in \mathbb{k}[x_{i,j} : i \in [n], j \in [\deg u]].$$

If $I \subseteq S$ is a monomial ideal with minimal monomial generators u_1, \ldots, u_m, its polarization is the square-free monomial ideal:

$$\widetilde{I} := (\widetilde{u}_1, \ldots, \widetilde{u}_m) \subseteq \widetilde{S} := \mathbb{k}[x_{i,j} : i \in [n], j \in [\max_i\{\deg u_i\}]].$$

\widetilde{I} has the same height and graded Betti numbers of I.
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The polarization of a monomial ideal

Given a monomial $u \in S$, say $u := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, its polarization is:

$$\tilde{u} := \prod_{j=1}^{\alpha_1} x_{1,j} \cdot \prod_{j=1}^{\alpha_2} x_{2,j} \cdots \prod_{j=1}^{\alpha_n} x_{n,j} \in \mathbb{k}[x_{i,j} : i \in [n], j \in [\deg u]].$$

If $I \subseteq S$ is a monomial ideal with minimal monomial generators u_1, \ldots, u_m, its polarization is the square-free monomial ideal:

$$\tilde{I} := (\tilde{u}_1, \ldots, \tilde{u}_m) \subseteq \tilde{S} := \mathbb{k}[x_{i,j} : i \in [n], j \in [\max_i\{\deg u_i\}]].$$

\tilde{I} has the same height and graded Betti numbers of I. In particular:

S/I is Cohen-Macaulay $\iff \tilde{S}/\tilde{I}$ is Cohen-Macaulay.
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The associated primes of $\widehat{J(\Delta)}^{(k)}$
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The associated primes of $\overline{J(\Delta)^{(k)}}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The associated primes of $\widetilde{J(\Delta)}^{(k)}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

Since $\widetilde{J(\Delta)}^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \tilde{\mathfrak{p}}_F^k$,

The associated primes of $\widetilde{J(\Delta)}^{(k)}$...
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The associated primes of $\overline{J(\Delta)^{(k)}}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

Since $J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \overline{\varnothing}_F^k$, we can focus in understanding:

$$\overline{\varnothing}_F^k = (\prod_{j=1}^k x_{i_1,j}, \prod_{j=1}^{k-1} x_{i_1,j} \cdot x_{i_2,1}, \ldots, \prod_{j=1}^k x_{i_d,j}),$$
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The associated primes of $\widetilde{J(\Delta)^{(k)}}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

Since $J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp}_F^k$, we can focus in understanding:

\[
\widetilde{\wp}_F^k = (\prod_{j=1}^k x_{i_1,j}, \prod_{j=1}^{k-1} x_{i_1,j} \cdot x_{i_2,1}, \ldots, \prod_{j=1}^k x_{i_d,j}),
\]
If \(S/J(\Delta)^{(k)} \) is Cohen-Macaulay for all \(k \in \mathbb{Z}_+ \) ...

The associated primes of \(\widetilde{J(\Delta)^{(k)}} \)

The trick is in understanding the polarization of \(J(\Delta)^{(k)} \);

Since \(J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \phi_F^k \), we can focus in understanding:

\[
\phi_F^k = (\prod_{j=1}^k x_{i_1,j}, \prod_{j=1}^{k-1} x_{i_1,j} \cdot x_{i_2,1}, \ldots, \prod_{j=1}^k x_{i_d,j}),
\]

\(F := \{i_1, \ldots, i_d\} \ (d = \dim \Delta + 1) \).
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The associated primes of $\widetilde{J(\Delta)^{(k)}}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

Since $J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp}_F^k$, we can focus in understanding:

$$\widetilde{\wp}_F^k = (\prod_{j=1}^k x_{i_1,j}, \prod_{j=1}^{k-1} x_{i_1,j} \cdot x_{i_2,1}, \ldots, \prod_{j=1}^k x_{i_d,j}),$$

$F := \{i_1, \ldots, i_d\}$ ($d = \dim \Delta + 1$). We need to describe $\text{Ass}(\widetilde{\wp}_F^k)$:
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The associated primes of $\widetilde{J(\Delta)}^{(k)}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

Since $J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \tilde{\wp}_F^k$, we can focus in understanding:

\[\tilde{\wp}_F^k = \left(\prod_{j=1}^{k} x_{i_1,j}, \prod_{j=1}^{k-1} x_{i_1,j} \cdot x_{i_2,1}, \ldots, \prod_{j=1}^{k} x_{i_d,j} \right), \]

$F := \{i_1, \ldots, i_d\}$ ($d = \dim \Delta + 1$). We need to describe $\text{Ass}(\tilde{\wp}_F^k)$:

For each vector $\mathbf{a} = (a_1, \ldots, a_d) \in \mathbb{N}^d$ with $1 \leq a_i \leq k$, set

\[\wp_{F,a} := (x_{i_1,a_1}, x_{i_2,a_2}, \ldots, x_{i_d,a_d}) \subseteq \tilde{S}. \]
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The associated primes of $\widetilde{J(\Delta)^{(k)}}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

Since $J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp}_F^k$, we can focus in understanding:

$$\widetilde{\wp}_F^k = (\prod_{j=1}^k x_{i_1,j}, \prod_{j=1}^{k-1} x_{i_1,j} \cdot x_{i_2,1}, \ldots, \prod_{j=1}^k x_{i_d,j}),$$

$F := \{i_1, \ldots, i_d\}$ ($d = \dim \Delta + 1$). We need to describe $\text{Ass}(\widetilde{\wp}_F^k)$:

For each vector $a = (a_1, \ldots, a_d) \in \mathbb{N}^d$ with $1 \leq a_i \leq k$, set

$$\wp_{F,a} := (x_{i_1,a_1}, x_{i_2,a_2}, \ldots, x_{i_d,a_d}) \subseteq \widetilde{S}.$$

One can prove that for any prime ideal $\wp \subseteq \widetilde{S}$,
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The associated primes of $\mathcal{J}(\Delta)^{(k)}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

Since $J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \mathcal{S}^k_F$, we can focus in understanding:

$$\mathcal{S}^k_F = (\prod_{j=1}^k x_{i_1,j}, \prod_{j=1}^{k-1} x_{i_1,j} \cdot x_{i_2,1}, \ldots, \prod_{j=1}^k x_{i_d,j}),$$

$F := \{i_1, \ldots, i_d\}$ ($d = \text{dim} \Delta + 1$). We need to describe $\text{Ass}(\mathcal{S}^k_F)$:

For each vector $a = (a_1, \ldots, a_d) \in \mathbb{N}^d$ with $1 \leq a_i \leq k$, set

$$\mathcal{S}_{F,a} := (x_{i_1,a_1}, x_{i_2,a_2}, \ldots, x_{i_d,a_d}) \subseteq \mathcal{S}.$$

One can prove that for any prime ideal $\mathfrak{p} \subseteq \mathcal{S}$,

$$\mathfrak{p} \in \text{Ass}(\mathcal{S}^k_F) \iff \mathfrak{p} = \mathcal{S}_{F,a} \text{ with } |a| = a_1 + \ldots + a_d \leq k + d - 1.$$
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The lack of connectedness
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta), i \in F$, such that:
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The lack of connectedness

Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta), i \in F$, such that:

$$(F \setminus \{i\}) \cup \{j\}$$

is not a facet of Δ for every $j \in G$.

If \(S/J(\Delta)^{(k)} \) is Cohen-Macaulay for all \(k \in \mathbb{Z}_+ \)...

The lack of connectedness

Assume by contradiction that \(\Delta \) is not a matroid.

Then there exist \(F, G \in \mathcal{F}(\Delta), i \in F \), such that:

\[
(F \setminus \{i\}) \cup \{j\} \text{ is not a facet of } \Delta \text{ for every } j \in G.
\]

Let us assume that \(F = \{i_1, \ldots, i_d\}, G = \{j_1, \ldots, j_d\} \) and \(i = i_1 \).
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The lack of connectedness

Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta), i \in F$, such that:

$$(F \setminus \{i\}) \cup \{j\} \text{ is not a facet of } \Delta \text{ for every } j \in G.$$

Let us assume that $F = \{i_1, \ldots, i_d\}, G = \{j_1, \ldots, j_d\}$ and $i = i_1$.

Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. $(d + 1 + d - 1 = 2d)$.
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The lack of connectedness

Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

$$(F \setminus \{i\}) \cup \{j\}$$

is not a facet of Δ for every $j \in G$.

Let us assume that $F = \{i_1, \ldots, i_d\}$, $G = \{j_1, \ldots, j_d\}$ and $i = i_1$.

Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. ($d + 1 + d - 1 = 2d$).

By the previous slide, $\varnothing_{F,a}$ and $\varnothing_{G,b}$ belong to $\text{Ass}(\mathcal{H})$, where

$a := (d + 1, 1, \ldots, 1) \in \mathbb{N}^d$ and $b := (2, 2, \ldots, 2) \in \mathbb{N}^d$ ($|a| = |b| = 2d$).
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The lack of connectedness

Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

$$(F \setminus \{i\}) \cup \{j\} \text{ is not a facet of } \Delta \text{ for every } j \in G.$$

Let us assume that $F = \{i_1, \ldots, i_d\}$, $G = \{j_1, \ldots, j_d\}$ and $i = i_1$.

Eventually, consider $H := J(\Delta)^{(d+1)}$. ($d + 1 + d - 1 = 2d$).

By the previous slide, $\wp_{F,a}$ and $\wp_{G,b}$ belong to $\text{Ass}(H)$, where $a := (d + 1, 1, \ldots, 1) \in \mathbb{N}^d$ and $b := (2, 2, \ldots, 2) \in \mathbb{N}^d$ ($|a| = |b| = 2d$).
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The lack of connectedness

Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

$$(F \setminus \{i\}) \cup \{j\} \text{ is not a facet of } \Delta \text{ for every } j \in G.$$

Let us assume that $F = \{i_1, \ldots, i_d\}$, $G = \{j_1, \ldots, j_d\}$ and $i = i_1$.

Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. $(d + 1 + d - 1 = 2d)$.

By the previous slide, $\varphi_{F,a}$ and $\varphi_{G,b}$ belong to $\text{Ass}(\mathcal{H})$, where $a := (d + 1, 1, \ldots, 1) \in \mathbb{N}^d$ and $b := (2, 2, \ldots, 2) \in \mathbb{N}^d$ ($|a| = |b| = 2d$).

We will show that $R := \tilde{S}/\mathcal{H}$ is not Cohen-Macaulay,
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$, then the lack of connectedness.

Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

$$(F \setminus \{i\}) \cup \{j\} \text{ is not a facet of } \Delta \text{ for every } j \in G.$$

Let us assume that $F = \{i_1, \ldots, i_d\}$, $G = \{j_1, \ldots, j_d\}$ and $i = i_1$.

Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. ($d + 1 + d - 1 = 2d$).

By the previous slide, \mathcal{H} belongs to $\text{Ass}(\mathcal{H})$, where

$a := (d + 1, 1, \ldots, 1) \in \mathbb{N}^d$ and $b := (2, 2, \ldots, 2) \in \mathbb{N}^d$ ($|a| = |b| = 2d$).

We will show that $R := \tilde{S}/\mathcal{H}$ is not Cohen-Macaulay, contradicting the hypothesis that $S/J(\Delta)^{(d+1)}$ is Cohen-Macaulay.
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The lack of connectedness

Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

$$(F \setminus \{i\}) \cup \{j\} \text{ is not a facet of } \Delta \text{ for every } j \in G.$$ Let us assume that $F = \{i_1, \ldots, i_d\}$, $G = \{j_1, \ldots, j_d\}$ and $i = i_1$.

Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. ($d + 1 + d - 1 = 2d$).

By the previous slide, $\wp_{F,a}$ and $\wp_{G,b}$ belong to $\text{Ass}(\mathcal{H})$, where $a := (d + 1, 1, \ldots, 1) \in \mathbb{N}^d$ and $b := (2, 2, \ldots, 2) \in \mathbb{N}^d$ ($|a| = |b| = 2d$).

We will show that $R := \tilde{S}/\mathcal{H}$ is not Cohen-Macaulay, contradicting the hypothesis that $S/J(\Delta)^{(d+1)}$ is Cohen-Macaulay. Were it, $R_{\wp_{F,a} + \wp_{G,b}}$ would be Cohen-Macaulay too.
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The lack of connectedness

Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

$(F \setminus \{i\}) \cup \{j\}$ is not a facet of Δ for every $j \in G$.

Let us assume that $F = \{i_1, \ldots, i_d\}$, $G = \{j_1, \ldots, j_d\}$ and $i = i_1$.

Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. ($d + 1 + d - 1 = 2d$).

By the previous slide, $\mathcal{O}_{F,a}$ and $\mathcal{O}_{G,b}$ belong to $\text{Ass}(\mathcal{H})$, where $a := (d + 1, 1, \ldots, 1) \in \mathbb{N}^d$ and $b := (2, 2, \ldots, 2) \in \mathbb{N}^d$ ($|a| = |b| = 2d$).

We will show that $R := \tilde{S}/\mathcal{H}$ is not Cohen-Macaulay, contradicting the hypothesis that $S/J(\Delta)^{(d+1)}$ is Cohen-Macaulay.

Were it, $R_{\mathcal{O}_{F,a} + \mathcal{O}_{G,b}}$ would be Cohen-Macaulay too.

Particularly, $R_{\mathcal{O}_{F,a} + \mathcal{O}_{G,b}}$ would be connected in codimension 1.
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The conclusion

So, there should be a prime $\wp \in \text{Ass}(\mathcal{H})$ such that:
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The conclusion

So, there should be a prime $\wp \in \text{Ass}(\mathcal{H})$ such that:

(i) $\wp \subseteq \wp F,a + \wp G,b$;
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The conclusion

So, there should be a prime $\mathfrak{p} \in \text{Ass}(\mathcal{H})$ such that:

(i) $\mathfrak{p} \subseteq \mathfrak{p}_{F,a} + \mathfrak{p}_{G,b}$;

(ii) $\text{ht}(\mathfrak{p} + \mathfrak{p}_{F,a}) = d + 1$.
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The conclusion

So, there should be a prime $\wp \in \text{Ass}(\mathcal{H})$ such that:

(i) $\wp \subseteq \wp_{F,a} + \wp_{G,b}$;

(ii) $\text{ht}(\wp + \wp_{F,a}) = d + 1$.

In other words, there should be $p, q \in [d]$ such that:

...
The conclusion

So, there should be a prime \(\wp \in \text{Ass}(\mathcal{H}) \) such that:

(i) \(\wp \subseteq \wp_{F,a} + \wp_{G,b} \);

(ii) \(\text{ht}(\wp + \wp_{F,a}) = d + 1 \).

In other words, there should be \(p, q \in [d] \) such that:

\[
\wp = (x_{is,a_s}, x_{jq,b_q} : s \in [d] \setminus \{p\}).
\]
If \(S/J(\Delta)^{(k)} \) is Cohen-Macaulay for all \(k \in \mathbb{Z}_+ \) ...

The conclusion

So, there should be a prime \(\wp \in \text{Ass}(\mathcal{H}) \) such that:

(i) \(\wp \subseteq \wp_{F,a} + \wp_{G,b} \);

(ii) \(\text{ht}(\wp + \wp_{F,a}) = d + 1 \).

In other words, there should be \(p, q \in [d] \) such that:

\[
\wp = (x_{is,a_s}, x_{jq,b_q} : s \in [d] \setminus \{p\}).
\]

But this is impossible:
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The conclusion

So, there should be a prime $\wp \in \text{Ass}(\mathcal{H})$ such that:

(i) $\wp \subseteq \wp_{F,a} + \wp_{G,b}$;

(ii) $\text{ht}(\wp + \wp_{F,a}) = d + 1$.

In other words, there should be $p, q \in [d]$ such that:

$$\wp = (x_{is,as}, \ x_{jq,bq} : s \in [d] \setminus \{p\}).$$

But this is impossible:

If $p = 1$, then $(F \setminus \{i_1\}) \cup \{j_q\} \in \mathcal{F}(\Delta)$, a contradiction.
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The conclusion

So, there should be a prime $\wp \in \text{Ass}(\mathcal{H})$ such that:

(i) $\wp \subseteq \wp_{F,a} + \wp_{G,b}$;

(ii) $\text{ht}(\wp + \wp_{F,a}) = d + 1$.

In other words, there should be $p, q \in [d]$ such that:

$\wp = (x_{is,as}, x_{jq,bq} : s \in [d] \setminus \{p\})$.

But this is impossible:

If $p = 1$, then $(F \setminus \{i_1\}) \cup \{j_q\} \in \mathcal{F}(\Delta)$, a contradiction.

If $p \neq 1$, then $(d + 1) + 1 + \ldots + 1 + 2 > 2d$, a contradiction.
If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$...

The conclusion

So, there should be a prime $\wp \in \text{Ass}(\mathcal{H})$ such that:

(i) $\wp \subseteq \wp_{F,a} + \wp_{G,b};$

(ii) $\text{ht}(\wp + \wp_{F,a}) = d + 1.$

In other words, there should be $p, q \in [d]$ such that:

$$\wp = (x_{i_s,a_s}, x_{j_q,b_q} : s \in [d] \setminus \{p\}).$$

But this is impossible:

If $p = 1$, then $(F \setminus \{i_1\}) \cup \{j_q\} \in \mathcal{F}(\Delta)$, a contradiction.

If $p \neq 1$, then $(d + 1) + \underbrace{1 + \ldots + 1}_{d-2} + 2 > 2d$, a contradiction.

So, Δ has to be a matroid!
A related problem

As we noticed, for any Δ, we have $\dim \overline{A}(\Delta) \geq \dim \Delta + 1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem: Looking for a combinatorial characterization of $\dim \overline{A}(\Delta)$. Together with Constantinescu, we solved this problem when $\dim \Delta = 1$, that is when $\Delta = G$ is a graph. A little more precisely, we defined an invariant of G, called ordered matching number and denoted by $\nu^\circ(G)$, and we showed that $\dim \overline{A}(G) = \nu^\circ(G) + 1$. Already in this case things are complicated!
A related problem

As we noticed, for any Δ, we have $\dim \bar{A}(\Delta) \geq \dim \Delta + 1$.
A related problem

As we noticed, for any Δ, we have $\dim \bar{A}(\Delta) \geq \dim \Delta + 1$. We showed that equality holds true exactly when Δ is a matroid.
A related problem

As we noticed, for any Δ, we have $\dim \bar{A}(\Delta) \geq \dim \Delta + 1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:
A related problem

As we noticed, for any Δ, we have $\dim \bar{A}(\Delta) \geq \dim \Delta + 1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

Looking for a combinatorial characterization of $\dim \bar{A}(\Delta)$.
A related problem

As we noticed, for any Δ, we have $\dim \bar{A}(\Delta) \geq \dim \Delta + 1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

Looking for a combinatorial characterization of $\dim \bar{A}(\Delta)$.

Together with Constantinescu, we solved this problem when $\dim \Delta = 1$, that is when $\Delta = G$ is a graph.
A related problem

As we noticed, for any Δ, we have $\dim \bar{A}(\Delta) \geq \dim \Delta + 1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

Looking for a combinatorial characterization of $\dim \bar{A}(\Delta)$.

Together with Constantinescu, we solved this problem when $\dim \Delta = 1$, that is when $\Delta = G$ is a graph. A little more precisely, we defined an invariant of G,
A related problem

As we noticed, for any Δ, we have $\dim \bar{A}(\Delta) \geq \dim \Delta + 1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

Looking for a combinatorial characterization of $\dim \bar{A}(\Delta)$.

Together with Constantinescu, we solved this problem when $\dim \Delta = 1$, that is when $\Delta = G$ is a graph. A little more precisely, we defined an invariant of G, called ordered matching number and denoted by $\nu_o(G)$,
A related problem

As we noticed, for any Δ, we have $\dim \bar{A}(\Delta) \geq \dim \Delta + 1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

Looking for a combinatorial characterization of $\dim \bar{A}(\Delta)$.

Together with Constantinescu, we solved this problem when $\dim \Delta = 1$, that is when $\Delta = G$ is a graph. A little more precisely, we defined an invariant of G, called ordered matching number and denoted by $\nu_\circ(G)$, and we showed that $\dim \bar{A}(G) = \nu_\circ(G) + 1$.
A related problem

As we noticed, for any Δ, we have $\dim \bar{A}(\Delta) \geq \dim \Delta + 1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

Looking for a combinatorial characterization of $\dim \bar{A}(\Delta)$.

Together with Constantinescu, we solved this problem when $\dim \Delta = 1$, that is when $\Delta = G$ is a graph. A little more precisely, we defined an invariant of G, called ordered matching number and denoted by $\nu_o(G)$, and we showed that $\dim \bar{A}(G) = \nu_o(G) + 1$.

Already in this case things are complicated!
References

