SYMBOLIC POWERS AND MATROIDS

Matteo Varbaro

Dipartimento di Matematica Università di Genova

Simplicial complexes

Simplicial complexes

Throughout $n \in \mathbb{N}$ and $[n] := \{1, \ldots, n\}$.

Simplicial complexes

Throughout $n \in \mathbb{N}$ and $[n] := \{1, ..., n\}$. A simplicial complex on [n] is a collection Δ of subsets of [n] satisfying:

Simplicial complexes

Throughout $n \in \mathbb{N}$ and $[n] := \{1, ..., n\}$. A simplicial complex on [n] is a collection Δ of subsets of [n] satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;

Simplicial complexes

Throughout $n \in \mathbb{N}$ and $[n] := \{1, ..., n\}$. A simplicial complex on [n] is a collection Δ of subsets of [n] satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \ \forall \ i \in [n].$

Simplicial complexes

Throughout $n \in \mathbb{N}$ and $[n] := \{1, ..., n\}$. A simplicial complex on [n] is a collection Δ of subsets of [n] satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \quad \forall \ i \in [n].$

The subsets of Δ are called *faces*

Simplicial complexes

Throughout $n \in \mathbb{N}$ and $[n] := \{1, ..., n\}$. A simplicial complex on [n] is a collection Δ of subsets of [n] satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \quad \forall \ i \in [n].$

The subsets of Δ are called *faces* and the faces maximal by inclusion are called *facets*.

Simplicial complexes

Throughout $n \in \mathbb{N}$ and $[n] := \{1, ..., n\}$. A simplicial complex on [n] is a collection Δ of subsets of [n] satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \quad \forall \ i \in [n].$

The subsets of Δ are called *faces* and the faces maximal by inclusion are called *facets*. We will denote the set of facets of Δ by $\mathcal{F}(\Delta)$.

Simplicial complexes

Throughout $n \in \mathbb{N}$ and $[n] := \{1, ..., n\}$. A simplicial complex on [n] is a collection Δ of subsets of [n] satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \quad \forall \ i \in [n].$

The subsets of Δ are called *faces* and the faces maximal by inclusion are called *facets*. We will denote the set of facets of Δ by $\mathcal{F}(\Delta)$. The dimension of a face *F* is dim F := |F| - 1.

Simplicial complexes

Throughout $n \in \mathbb{N}$ and $[n] := \{1, ..., n\}$. A simplicial complex on [n] is a collection Δ of subsets of [n] satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \quad \forall \ i \in [n].$

The subsets of Δ are called *faces* and the faces maximal by inclusion are called *facets*. We will denote the set of facets of Δ by $\mathcal{F}(\Delta)$. The dimension of a face F is dim F := |F| - 1. The dimension of Δ is dim $\Delta := \max\{\dim F : F \in \Delta\}$.

Simplicial complexes

Throughout $n \in \mathbb{N}$ and $[n] := \{1, ..., n\}$. A simplicial complex on [n] is a collection Δ of subsets of [n] satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \quad \forall \ i \in [n].$

The subsets of Δ are called *faces* and the faces maximal by inclusion are called *facets*. We will denote the set of facets of Δ by $\mathcal{F}(\Delta)$. The dimension of a face F is dim F := |F| - 1. The dimension of Δ is dim $\Delta := \max\{\dim F : F \in \Delta\}$. A simplicial complex Δ is called *pure* if dim $F = \dim \Delta \quad \forall \ F \in \mathcal{F}(\Delta)$.

Stanley-Reisner ideals

```
Stanley-Reisner ideals
```

We can associate a simplicial complex to any ideal $I \subseteq S := \Bbbk[x_1, \ldots, x_n]$:

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S := k[x_1, \ldots, x_n]$:

 $\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S := \Bbbk[x_1, \ldots, x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$$

 $\Delta(I)$ is called the *independence complex* of *I*.

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S := \Bbbk[x_1, \ldots, x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$$

 $\Delta(I)$ is called the *independence complex* of *I*. In the other direction, we can associate an ideal to any simplicial complex on [n]:

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S := \Bbbk[x_1, \ldots, x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$$

 $\Delta(I)$ is called the *independence complex* of *I*. In the other direction, we can associate an ideal to any simplicial complex on [n]:

$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.$$

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S := \Bbbk[x_1, \ldots, x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$$

 $\Delta(I)$ is called the *independence complex* of *I*. In the other direction, we can associate an ideal to any simplicial complex on [n]:

$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.$$

 I_{Δ} is called the *Stanley-Reisner ideal* of Δ .

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S := \Bbbk[x_1, \ldots, x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$$

 $\Delta(I)$ is called the *independence complex* of *I*. In the other direction, we can associate an ideal to any simplicial complex on [n]:

$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.$$

 I_{Δ} is called the *Stanley-Reisner ideal* of Δ . Such a relationship leads to a one-to-one correspondence:

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S := k[x_1, \ldots, x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$$

 $\Delta(I)$ is called the *independence complex* of *I*. In the other direction, we can associate an ideal to any simplicial complex on [n]:

$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.$$

 I_{Δ} is called the *Stanley-Reisner ideal* of Δ . Such a relationship leads to a one-to-one correspondence:

{Square-free monomial ideals of S} \leftrightarrow {Simplicial complexes on [*n*]}

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S := k[x_1, \ldots, x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$$

 $\Delta(I)$ is called the *independence complex* of *I*. In the other direction, we can associate an ideal to any simplicial complex on [n]:

$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.$$

 I_{Δ} is called the *Stanley-Reisner ideal* of Δ . Such a relationship leads to a one-to-one correspondence:

{Square-free monomial ideals of S} \leftrightarrow {Simplicial complexes on [*n*]}

To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians.

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S := k[x_1, \ldots, x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$$

 $\Delta(I)$ is called the *independence complex* of *I*. In the other direction, we can associate an ideal to any simplicial complex on [n]:

$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.$$

 I_{Δ} is called the *Stanley-Reisner ideal* of Δ . Such a relationship leads to a one-to-one correspondence:

{Square-free monomial ideals of S} \leftrightarrow {Simplicial complexes on [*n*]}

To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians. For example, denoting by $\wp_A := (x_i : i \in A) \subseteq S$ (where $A \subseteq [n]$), it is easy to show that:

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S := \Bbbk[x_1, \ldots, x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$$

 $\Delta(I)$ is called the *independence complex* of *I*. In the other direction, we can associate an ideal to any simplicial complex on [n]:

$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.$$

 I_{Δ} is called the *Stanley-Reisner ideal* of Δ . Such a relationship leads to a one-to-one correspondence:

{Square-free monomial ideals of S} \leftrightarrow {Simplicial complexes on [n]}

To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians. For example, denoting by $\wp_A := (x_i : i \in A) \subseteq S$ (where $A \subseteq [n]$), it is easy to show that:

$$I_{\Delta} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \setminus F}.$$

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S := \Bbbk[x_1, \ldots, x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$$

 $\Delta(I)$ is called the *independence complex* of *I*. In the other direction, we can associate an ideal to any simplicial complex on [n]:

$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.$$

 I_{Δ} is called the *Stanley-Reisner ideal* of Δ . Such a relationship leads to a one-to-one correspondence:

{Square-free monomial ideals of S} \leftrightarrow {Simplicial complexes on [n]}

To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians. For example, denoting by $\wp_A := (x_i : i \in A) \subseteq S$ (where $A \subseteq [n]$), it is easy to show that:

$$I_{\Delta} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \setminus F}.$$

This fact implies that $\dim \Bbbk[\Delta] = \dim \Delta + 1$, where $\Bbbk[\Delta] := S/I_{\Delta}$.

Matroids

Matroids

A simplicial complex Δ is a matroid if:

Matroids

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta),$

Matroids

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F,$

 $M \ \texttt{atroids}$

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G :$

 $M \ \texttt{atroids}$

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta), \ \forall i \in F, \ \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

Matroids

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta), \ \forall i \in F, \ \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

EXAMPLES:

Matroids

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta), \ \forall i \in F, \ \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

EXAMPLES:

Matroids

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta), \ \forall i \in F, \ \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.

Matroids

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta), \ \forall i \in F, \ \exists j \in G : \ (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.

$$\Delta := \{F \subseteq [n] : |F| = \dim_{\mathbb{k}} \langle v_i : i \in F \rangle\}$$

Matroids

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta), \ \forall i \in F, \ \exists j \in G : \ (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.

$$\Delta := \{F \subseteq [n] : |F| = \dim_{\Bbbk} < v_i : i \in F > \}$$

Such a Δ is easily seen to be a matroid:

Matroids

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta), \ \forall i \in F, \ \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.

$$\Delta := \{F \subseteq [n] : |F| = \dim_{\Bbbk} < v_i : i \in F > \}$$

Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an "abstraction of linear independence".

Matroids

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta), \ \forall i \in F, \ \exists j \in G : \ (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.

$$\Delta := \{F \subseteq [n] : |F| = \dim_{\Bbbk} < v_i : i \in F > \}$$

Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an "abstraction of linear independence".

- Let Δ be the *i*-skeleton of the (n-1)-simplex:

Matroids

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta), \ \forall i \in F, \ \exists j \in G : \ (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.

$$\Delta := \{F \subseteq [n] : |F| = \dim_{\Bbbk} < v_i : i \in F > \}$$

Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an "abstraction of linear independence".

- Let Δ be the *i*-skeleton of the (n-1)-simplex:

 $\Delta := \{F \subseteq [n] : |F| \le i\}.$

Matroids

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta), \ \forall i \in F, \ \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.

$$\Delta := \{F \subseteq [n] : |F| = \dim_{\Bbbk} < v_i : i \in F > \}$$

Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an "abstraction of linear independence".

- Let Δ be the *i*-skeleton of the (n-1)-simplex:

$$\Delta := \{F \subseteq [n] : |F| \le i\}.$$

Such a Δ is obviously a matroid.

Matroids

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta), \ \forall i \in F, \ \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.

$$\Delta := \{F \subseteq [n] : |F| = \dim_{\Bbbk} < v_i : i \in F > \}$$

Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an "abstraction of linear independence".

- Let Δ be the *i*-skeleton of the (n-1)-simplex:

$$\Delta := \{F \subseteq [n] : |F| \le i\}.$$

Such a Δ is obviously a matroid.

- If an ideal $I \subseteq S$ is prime,

Matroids

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta), \ \forall i \in F, \ \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

EXAMPLES:

- Let V be a k-vector space and v_1, \ldots, v_n some vectors of V.

$$\Delta := \{F \subseteq [n] : |F| = \dim_{\Bbbk} < v_i : i \in F > \}$$

Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an "abstraction of linear independence".

- Let Δ be the *i*-skeleton of the (n-1)-simplex:

$$\Delta := \{F \subseteq [n] : |F| \le i\}.$$

Such a Δ is obviously a matroid.

- If an ideal $I \subseteq S$ is *prime*, then $\Delta(I)$ is a matroid.

Symbolic powers

Symbolic powers

The *k*th simbolic power of an ideal $I \subseteq S$ is the ideal of *S*:

The *k*th simbolic power of an ideal $I \subseteq S$ is the ideal of *S*:

$$I^{(k)} := (I^k \cdot W^{-1}S) \cap S,$$

where W is the multiplicative system $S \setminus (\bigcup_{\wp \in Ass(I)} \wp)$.

The *k*th simbolic power of an ideal $I \subseteq S$ is the ideal of *S*:

$$I^{(k)} := (I^k \cdot W^{-1}S) \cap S,$$

where W is the multiplicative system $S \setminus (\bigcup_{\wp \in Ass(I)} \wp)$.

 $I^k \subseteq I^{(k)}$,

The *k*th simbolic power of an ideal $I \subseteq S$ is the ideal of *S*:

$$I^{(k)} := (I^k \cdot W^{-1}S) \cap S,$$

where W is the multiplicative system $S \setminus (\bigcup_{\wp \in Ass(I)} \wp)$.

 $I^k \subseteq I^{(k)}$, and equality holds if I^k has no embedded primes.

The *k*th simbolic power of an ideal $I \subseteq S$ is the ideal of *S*:

$$I^{(k)} := (I^k \cdot W^{-1}S) \cap S,$$

where W is the multiplicative system $S \setminus (\bigcup_{\wp \in Ass(I)} \wp)$.

 $I^k \subseteq I^{(k)}$, and equality holds if I^k has no embedded primes.

If $I = I_{\Delta}$ is a square-free monomial ideal,

The *k*th simbolic power of an ideal $I \subseteq S$ is the ideal of *S*:

$$I^{(k)} := (I^k \cdot W^{-1}S) \cap S,$$

where W is the multiplicative system $S \setminus (\bigcup_{\wp \in Ass(I)} \wp)$.

 $I^k \subseteq I^{(k)}$, and equality holds if I^k has no embedded primes.

If $I = I_{\Delta}$ is a square-free monomial ideal, then it is easy to show:

$$I_{\Delta}^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \setminus F}^{k}.$$

The problem Cohen-Macaulay combinatorial counterpart

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the *topological* realization of Δ of the Cohen-Macaulay property of $\Bbbk[\Delta]$.

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the *topological* realization of Δ of the Cohen-Macaulay property of $\Bbbk[\Delta]$. However a characterization in a *combinatorial* fashion still misses.

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the *topological* realization of Δ of the Cohen-Macaulay property of $\Bbbk[\Delta]$. However a characterization in a *combinatorial* fashion still misses.

A related question is when all the rings S/I_{Δ}^{k} are Cohen-Macaulay.

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the *topological* realization of Δ of the Cohen-Macaulay property of $\Bbbk[\Delta]$. However a characterization in a *combinatorial* fashion still misses.

A related question is when all the rings S/I_{Δ}^k are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the *topological* realization of Δ of the Cohen-Macaulay property of $\Bbbk[\Delta]$. However a characterization in a *combinatorial* fashion still misses.

A related question is when all the rings S/I_{Δ}^k are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

 S/I_{Δ}^k is Cohen-Macaulay $\forall \ k \in \mathbb{Z}_+ \ \Leftrightarrow \ I_{\Delta}$ is a complete intersection

The problem Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the *topological* realization of Δ of the Cohen-Macaulay property of $\Bbbk[\Delta]$. However a characterization in a *combinatorial* fashion still misses.

A related question is when all the rings S/I_{Δ}^k are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

 S/I_{Δ}^k is Cohen-Macaulay $\forall \ k \in \mathbb{Z}_+ \ \Leftrightarrow \ I_{\Delta}$ is a complete intersection

Notice that S/I^k_{Δ} Cohen-Macaulay $\Rightarrow \operatorname{Ass}(I^k_{\Delta}) = \operatorname{Min}(I^k_{\Delta}) \Rightarrow I^k_{\Delta} = I^{(k)}_{\Delta}$.

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the *topological* realization of Δ of the Cohen-Macaulay property of $\Bbbk[\Delta]$. However a characterization in a *combinatorial* fashion still misses.

A related question is when all the rings S/I_{Δ}^k are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

 S/I_{Δ}^k is Cohen-Macaulay $\forall \ k \in \mathbb{Z}_+ \ \Leftrightarrow \ I_{\Delta}$ is a complete intersection

Notice that S/I^k_{Δ} Cohen-Macaulay $\Rightarrow \operatorname{Ass}(I^k_{\Delta}) = \operatorname{Min}(I^k_{\Delta}) \Rightarrow I^k_{\Delta} = I^{(k)}_{\Delta}$.

Therefore it is natural to ask:

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the *topological* realization of Δ of the Cohen-Macaulay property of $\Bbbk[\Delta]$. However a characterization in a *combinatorial* fashion still misses.

A related question is when all the rings S/I_{Δ}^k are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

 S/I_{Δ}^k is Cohen-Macaulay $\forall \ k \in \mathbb{Z}_+ \ \Leftrightarrow \ I_{\Delta}$ is a complete intersection

Notice that S/I^k_{Δ} Cohen-Macaulay $\Rightarrow \operatorname{Ass}(I^k_{\Delta}) = \operatorname{Min}(I^k_{\Delta}) \Rightarrow I^k_{\Delta} = I^{(k)}_{\Delta}$.

Therefore it is natural to ask:

When is $S/I_{\Delta}^{(k)}$ Cohen-Macaulay for all $k \in \mathbb{Z}_+$???

In this talk, we are going to answer the above question:

In this talk, we are going to answer the above question:

 $S/I^{(k)}_{\Delta}$ is Cohen-Macaulay $orall \ k\in\mathbb{Z}_+\ \Leftrightarrow\ \Delta$ is a matroid

In this talk, we are going to answer the above question:

$$S/I^{(k)}_\Delta$$
 is Cohen-Macaulay $orall \; k \in \mathbb{Z}_+ \; \Leftrightarrow \; \Delta$ is a matroid

It is fair to say that *Minh* and *Trung* proved at the same time the same result.

In this talk, we are going to answer the above question:

$$S/I^{(k)}_\Delta$$
 is Cohen-Macaulay $orall \ k\in\mathbb{Z}_+\ \Leftrightarrow\ \Delta$ is a matroid

It is fair to say that *Minh* and *Trung* proved at the same time the same result. However the two proofs are completely different.

THE PROOF

(i) If Δ is a matroid, then Δ is pure.

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property.

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta) \text{ and } (G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)!$

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta) \text{ and } (G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of Δ is the complex Δ^c on [n] s. t.:

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta) \text{ and } (G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of Δ is the complex Δ^c on [n] s. t.: $\mathcal{F}(\Delta^c) := \{[n] \setminus F : F \in \mathcal{F}(\Delta)\}.$

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta) \text{ and } (G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of Δ is the complex Δ^c on [n] s. t.: $\mathcal{F}(\Delta^c) := \{[n] \setminus F : F \in \mathcal{F}(\Delta)\}.$

(iii) *Duality*.

Stanley-Reisner ideals \longrightarrow cover ideals Properties of matroids

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta) \text{ and } (G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of Δ is the complex Δ^c on [n] s. t.: $\mathcal{F}(\Delta^c) := \{[n] \setminus F : F \in \mathcal{F}(\Delta)\}.$

(iii) *Duality.* For any simplicial complex Δ on [n], we have

Stanley-Reisner ideals \longrightarrow cover ideals Properties of matroids

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta) \text{ and } (G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of Δ is the complex Δ^c on [n] s. t.: $\mathcal{F}(\Delta^c) := \{[n] \setminus F : F \in \mathcal{F}(\Delta)\}.$

(iii) *Duality.* For any simplicial complex Δ on [n], we have Δ is a matroid $\Leftrightarrow \Delta^c$ is a matroid.

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so:

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so:

$$J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$$

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so:

$$J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$$

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so:

$$J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$$

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so: $J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so: $J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so: $J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so: $J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so: $J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$

 $A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \ \forall \ F \in \mathcal{F}(\Delta)$.

One can easily check that:

 $J(\Delta) = (x_{i_1} \cdots x_{i_k} : \{i_1, \dots, i_k\}$ is a vertex cover of Δ).

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so: $J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$

 $A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \ \forall \ F \in \mathcal{F}(\Delta)$.

One can easily check that:

 $J(\Delta) = (x_{i_1} \cdots x_{i_k} : \{i_1, \dots, i_k\} \text{ is a vertex cover of } \Delta).$

By the duality for matroids, because $I_{\Delta} = J(\Delta^c)$, we can pass

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so: $J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$

 $A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \ \forall \ F \in \mathcal{F}(\Delta)$.

One can easily check that:

 $J(\Delta) = (x_{i_1} \cdots x_{i_k} : \{i_1, \dots, i_k\} \text{ is a vertex cover of } \Delta).$

By the duality for matroids, because $I_{\Delta} = J(\Delta^c)$, we can pass from

 $S/I^{(k)}_\Delta$ is CM for any $k\in\mathbb{Z}_+\ \Leftrightarrow\ \Delta$ is a matroid

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so: $J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$

 $A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \ \forall \ F \in \mathcal{F}(\Delta)$.

One can easily check that:

 $J(\Delta) = (x_{i_1} \cdots x_{i_k} : \{i_1, \dots, i_k\} \text{ is a vertex cover of } \Delta).$

By the duality for matroids, because $I_{\Delta} = J(\Delta^c)$, we can pass to

 $S/J(\Delta)^{(k)}$ is CM for any $k\in\mathbb{Z}_+ \ \Leftrightarrow \ \Delta$ is a matroid

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$.

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a *k*-cover of a simplicial complex Δ on [n] if:

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a *k*-cover of a simplicial complex Δ on [n] if: $\sum_{i \in F} \alpha(i) \ge k \quad \forall F \in \mathcal{F}(\Delta)$.

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a *k*-cover of a simplicial complex Δ on [n] if: $\sum_{i \in F} \alpha(i) \ge k \quad \forall F \in \mathcal{F}(\Delta)$. A *k*-cover α is basic if there is not a *k*-cover β with $\beta < \alpha$.

It is not difficult to show:

$$J(\Delta)^{(k)} = (x_1^{\alpha(1)} \cdots x_n^{\alpha(n)} : \alpha \text{ is a } k\text{-cover}).$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a *k*-cover of a simplicial complex Δ on [n] if: $\sum_{i \in F} \alpha(i) \ge k \quad \forall F \in \mathcal{F}(\Delta)$. A *k*-cover α is basic if there is not a *k*-cover β with $\beta < \alpha$.

It is not difficult to show:

$$J(\Delta)^{(k)} = (x_1^{lpha(1)} \cdots x_n^{lpha(n)} \ : \ lpha \ ext{is a basic } k ext{-cover}).$$

The symbolic Rees algebra of $J(\Delta)$,

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$,

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers.

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by *Herzog*, *Hibi* and *Trung*,

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by *Herzog*, *Hibi* and *Trung*, and it is called the vertex cover algebra of Δ .

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by *Herzog*, *Hibi* and *Trung*, and it is called the vertex cover algebra of Δ . We need to deal with the special fiber of $A(\Delta)$:

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of *k*-covers. It has been introduced by *Herzog*, *Hibi* and *Trung*, and it is called the vertex cover algebra of Δ . We need to deal with the special fiber of $A(\Delta)$: $\overline{A}(\Delta) := A(\Delta)/\mathfrak{m}A(\Delta) = \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}/\mathfrak{m}J(\Delta)^{(k)}$,

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by *Herzog*, *Hibi* and *Trung*, and it is called the vertex cover algebra of Δ . We need to deal with the special fiber of $A(\Delta)$:

$$\overline{A}(\Delta) := A(\Delta)/\mathfrak{m}A(\Delta) = \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}/\mathfrak{m}J(\Delta)^{(k)},$$

where $\mathfrak{m} := (x_1, \dots, x_n) \subseteq S.$

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by *Herzog*, *Hibi* and *Trung*, and it is called the vertex cover algebra of Δ . We need to deal with the special fiber of $A(\Delta)$:

$$\overline{A}(\Delta) := A(\Delta)/\mathfrak{m}A(\Delta) = \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}/\mathfrak{m}J(\Delta)^{(k)},$$

where $\mathfrak{m} := (x_1, \dots, x_n) \subseteq S.$

For all $k \in \mathbb{Z}_+$, we have:

 $ar{\mathcal{A}}(\Delta)_k = < x^{lpha} \; : \; lpha \;$ is a basic k-cover >

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by *Herzog*, *Hibi* and *Trung*, and it is called the vertex cover algebra of Δ . We need to deal with the special fiber of $A(\Delta)$:

$$\overline{A}(\Delta) := A(\Delta)/\mathfrak{m}A(\Delta) = \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}/\mathfrak{m}J(\Delta)^{(k)},$$

where $\mathfrak{m} := (x_1, \dots, x_n) \subseteq S.$

For all $k \in \mathbb{Z}_+$, we have:

.

 $\bar{A}(\Delta)_k = < x^{lpha} : \alpha$ is a basic k-cover >

For this reason, $\overline{A}(\Delta)$ is called the algebra of basic covers of Δ .

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

Using a theorem of *Eisenbud* and *Huneke*, the above result yields

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

Using a theorem of Eisenbud and Huneke, the above result yields

 $\dim \bar{A}(\Delta) = n - \min_{k \in \mathbb{N}_{>0}} \{ \operatorname{depth}(S/J(\Delta)^{(k)}) \}$

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

Using a theorem of Eisenbud and Huneke, the above result yields

 $\dim \Delta + 1 = \operatorname{ht}(J(\Delta)) \leq \dim \overline{A}(\Delta) = n - \min_{k \in \mathbb{N}_{>0}} \{\operatorname{depth}(S/J(\Delta)^{(k)})\}.$

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

Using a theorem of *Eisenbud* and *Huneke*, the above result yields $\dim \Delta + 1 = \operatorname{ht}(J(\Delta)) \leq \dim \overline{A}(\Delta) = n - \min_{k \in \mathbb{N}_{>0}} \{\operatorname{depth}(S/J(\Delta)^{(k)})\}.$

Therefore, since dim $S/J(\Delta) = n - \dim \Delta - 1$, we get

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

Using a theorem of *Eisenbud* and *Huneke*, the above result yields $\dim \Delta + 1 = \operatorname{ht}(J(\Delta)) \leq \dim \overline{A}(\Delta) = n - \min_{k \in \mathbb{N}_{>0}} \{\operatorname{depth}(S/J(\Delta)^{(k)})\}.$ Therefore, since dim $S/J(\Delta) = n - \dim \Delta - 1$, we get $S/J(\Delta)^{(k)}$ is CM for any $k \in \mathbb{Z}_+ \iff \dim \overline{A}(\Delta) = \dim \Delta + 1$.

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

Using a theorem of *Eisenbud* and *Huneke*, the above result yields $\dim \Delta + 1 = \operatorname{ht}(J(\Delta)) \leq \dim \overline{A}(\Delta) = n - \min_{k \in \mathbb{N}_{>0}} \{\operatorname{depth}(S/J(\Delta)^{(k)})\}.$ Therefore, since dim $S/J(\Delta) = n - \dim \Delta - 1$, we get $S/J(\Delta)^{(k)}$ is CM for any $k \in \mathbb{Z}_+ \iff \dim \overline{A}(\Delta) = \dim \Delta + 1$.

In the next slides we are going to show that:

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

Using a theorem of *Eisenbud* and *Huneke*, the above result yields $\dim \Delta + 1 = \operatorname{ht}(J(\Delta)) \leq \dim \overline{A}(\Delta) = n - \min_{k \in \mathbb{N}_{>0}} \{\operatorname{depth}(S/J(\Delta)^{(k)})\}.$ Therefore, since dim $S/J(\Delta) = n - \dim \Delta - 1$, we get $S/J(\Delta)^{(k)}$ is CM for any $k \in \mathbb{Z}_+ \iff \dim \overline{A}(\Delta) = \dim \Delta + 1$.

In the next slides we are going to show that:

dim $\overline{A}(\Delta) = \dim \Delta + 1$ whenever Δ is a matroid.

A combinatorial description of $\dim \overline{A}(\Delta)$

A combinatorial description of $\dim \overline{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\overline{A}(\Delta)$ is a finitely generated k-algebra.

A combinatorial description of dim $\overline{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\overline{A}(\Delta)$ is a finitely generated k-algebra. This implies that there exists a positive integer δ such that:

A combinatorial description of dim $ar{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\overline{A}(\Delta)$ is a finitely generated k-algebra. This implies that there exists a positive integer δ such that:

 $\bar{A}(\Delta)^{(\delta)} := \bigoplus_{m \in \mathbb{N}} \bar{A}(\Delta)_{\delta m}$ is a standard graded k-algebra.

A combinatorial description of dim $ar{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\overline{A}(\Delta)$ is a finitely generated k-algebra. This implies that there exists a positive integer δ such that:

 $\bar{A}(\Delta)^{(\delta)} := \bigoplus_{m \in \mathbb{N}} \bar{A}(\Delta)_{\delta m}$ is a standard graded \Bbbk -algebra.

 $\bar{A}(\Delta)$ fin. gen. $\bar{A}(\Delta)^{(\delta)}$ -module $\Rightarrow \dim \bar{A}(\Delta) = \dim \bar{A}(\Delta)^{(\delta)}$.

A combinatorial description of dim $ar{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\overline{A}(\Delta)$ is a finitely generated k-algebra. This implies that there exists a positive integer δ such that:

 $\bar{\mathcal{A}}(\Delta)^{(\delta)} := \bigoplus_{m \in \mathbb{N}} \bar{\mathcal{A}}(\Delta)_{\delta m}$ is a standard graded k-algebra.

 $\bar{A}(\Delta)$ fin. gen. $\bar{A}(\Delta)^{(\delta)}$ -module $\Rightarrow \dim \bar{A}(\Delta) = \dim \bar{A}(\Delta)^{(\delta)}$.

Because $\bar{A}(\Delta)^{(\delta)}$ is standard graded, it has a Hilbert polynomial.

A combinatorial description of dim $ar{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\overline{A}(\Delta)$ is a finitely generated k-algebra. This implies that there exists a positive integer δ such that:

 $ar{A}(\Delta)^{(\delta)} := \bigoplus_{m \in \mathbb{N}} ar{A}(\Delta)_{\delta m}$ is a standard graded \Bbbk -algebra.

 $\bar{A}(\Delta)$ fin. gen. $\bar{A}(\Delta)^{(\delta)}$ -module $\Rightarrow \dim \bar{A}(\Delta) = \dim \bar{A}(\Delta)^{(\delta)}$.

Because $\bar{A}(\Delta)^{(\delta)}$ is standard graded, it has a Hilbert polynomial.

I.e. a polynomial $P \in \mathbb{Q}[T]$, of degree dim $\overline{A}(\Delta)^{(\delta)} - 1$, such that:

A combinatorial description of dim $ar{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\overline{A}(\Delta)$ is a finitely generated k-algebra. This implies that there exists a positive integer δ such that:

 $ar{A}(\Delta)^{(\delta)} := igoplus_{m \in \mathbb{N}} ar{A}(\Delta)_{\delta m}$ is a standard graded \Bbbk -algebra.

 $\bar{A}(\Delta)$ fin. gen. $\bar{A}(\Delta)^{(\delta)}$ -module $\Rightarrow \dim \bar{A}(\Delta) = \dim \bar{A}(\Delta)^{(\delta)}$.

Because $\bar{A}(\Delta)^{(\delta)}$ is standard graded, it has a Hilbert polynomial.

I.e. a polynomial $P \in \mathbb{Q}[T]$, of degree dim $\overline{A}(\Delta)^{(\delta)} - 1$, such that:

 $P(m) = \dim_{\mathbb{k}}(\bar{A}(\Delta)_{\delta m}) \quad \forall \ m \gg 0.$

A combinatorial description of dim $ar{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\overline{A}(\Delta)$ is a finitely generated k-algebra. This implies that there exists a positive integer δ such that:

 $ar{\mathcal{A}}(\Delta)^{(\delta)} := \bigoplus_{m \in \mathbb{N}} ar{\mathcal{A}}(\Delta)_{\delta m}$ is a standard graded \Bbbk -algebra.

 $\bar{A}(\Delta)$ fin. gen. $\bar{A}(\Delta)^{(\delta)}$ -module $\Rightarrow \dim \bar{A}(\Delta) = \dim \bar{A}(\Delta)^{(\delta)}$.

Because $\bar{A}(\Delta)^{(\delta)}$ is standard graded, it has a Hilbert polynomial.

I.e. a polynomial $P \in \mathbb{Q}[T]$, of degree dim $\overline{A}(\Delta)^{(\delta)} - 1$, such that:

 $P(m) = \dim_{\mathbb{K}}(\bar{A}(\Delta)_{\delta m}) \quad \forall \ m \gg 0.$

Therefore, since dim_k($\bar{A}(\Delta)_{\delta m}$) = |{basic δm -cover of Δ }|,

A combinatorial description of dim $ar{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\overline{A}(\Delta)$ is a finitely generated k-algebra. This implies that there exists a positive integer δ such that:

 $\bar{\mathcal{A}}(\Delta)^{(\delta)} := \bigoplus_{m \in \mathbb{N}} \bar{\mathcal{A}}(\Delta)_{\delta m}$ is a standard graded k-algebra.

 $\bar{A}(\Delta)$ fin. gen. $\bar{A}(\Delta)^{(\delta)}$ -module $\Rightarrow \dim \bar{A}(\Delta) = \dim \bar{A}(\Delta)^{(\delta)}$.

Because $\bar{A}(\Delta)^{(\delta)}$ is standard graded, it has a Hilbert polynomial.

I.e. a polynomial $P \in \mathbb{Q}[T]$, of degree dim $\overline{A}(\Delta)^{(\delta)} - 1$, such that:

 $P(m) = \dim_{\mathbb{K}}(\bar{A}(\Delta)_{\delta m}) \quad \forall \ m \gg 0.$

Therefore, since dim_k($\bar{A}(\Delta)_{\delta m}$) = |{basic δm -cover of Δ }|,

if $|\{\text{basic }k\text{-covers}\}| = O(k^{s-1}),$

A combinatorial description of dim $ar{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\overline{A}(\Delta)$ is a finitely generated k-algebra. This implies that there exists a positive integer δ such that:

 $ar{A}(\Delta)^{(\delta)} := igoplus_{m \in \mathbb{N}} ar{A}(\Delta)_{\delta m}$ is a standard graded \Bbbk -algebra.

 $\bar{A}(\Delta)$ fin. gen. $\bar{A}(\Delta)^{(\delta)}$ -module $\Rightarrow \dim \bar{A}(\Delta) = \dim \bar{A}(\Delta)^{(\delta)}$.

Because $\bar{A}(\Delta)^{(\delta)}$ is standard graded, it has a Hilbert polynomial.

I.e. a polynomial $P \in \mathbb{Q}[T]$, of degree dim $\overline{A}(\Delta)^{(\delta)} - 1$, such that:

 $P(m) = \dim_{\mathbb{K}}(\bar{A}(\Delta)_{\delta m}) \quad \forall \ m \gg 0.$

Therefore, since dim_k($\overline{A}(\Delta)_{\delta m}$) = |{basic δm -cover of Δ }|,

if $|\{\text{basic }k\text{-covers}\}| = O(k^{s-1})$, then $\dim(\overline{A}(\Delta)) \leq s$.

Set $d := \dim(\Delta) + 1$.

Set $d := \dim(\Delta) + 1$. Being a matroid, Δ is pure, so:

> Set $d := \dim(\Delta) + 1$. Being a matroid, Δ is pure, so: d is the cardinality of each facet of Δ .

> Set $d := \dim(\Delta) + 1$. Being a matroid, Δ is pure, so: d is the cardinality of each facet of Δ .

In order to show that $S/J(\Delta)^k$ is Cohen-Macaulay $\forall \ k \in \mathbb{Z}_+$,

> Set $d := \dim(\Delta) + 1$. Being a matroid, Δ is pure, so: d is the cardinality of each facet of Δ .

In order to show that $S/J(\Delta)^k$ is Cohen-Macaulay $\forall k \in \mathbb{Z}_+$, we have to prove that $\dim \overline{A}(\Delta) = d$.

> Set $d := \dim(\Delta) + 1$. Being a matroid, Δ is pure, so: d is the cardinality of each facet of Δ .

In order to show that $S/J(\Delta)^k$ is Cohen-Macaulay $\forall k \in \mathbb{Z}_+$, we have to prove that dim $\overline{A}(\Delta) = d$. So:

Claim: $|\{\text{basic } k\text{-covers of } \Delta\}| = O(k^{d-1}).$

Let α be a basic *k*-cover of Δ .

Let α be a basic *k*-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

Let α be a basic *k*-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

 $\sum_{i\in \mathbf{F}} \alpha(i) = k.$

Let α be a basic *k*-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

 $\sum_{i\in \mathbf{F}} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F.

Let α be a basic *k*-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

 $\sum_{i\in \mathbf{F}} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$.

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

 $\sum_{i\in \mathbf{F}} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

 $\sum_{i\in \mathbf{F}} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

 $\sum_{i\in \mathbf{F}} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Sub-claim: *F* fixes α . I.e., all the values of α are determined by those on *F*.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

(I) $F' := (F \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta)$ and (II) $G' := (G \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta)$.

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

(I) $F' := (F \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta)$ and (II) $G' := (G \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta)$. (I) $\Longrightarrow \sum_{i \in F'} \alpha(i) \ge k$

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

(I) $F' := (F \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta)$ and (II) $G' := (G \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta)$.

(I) $\Longrightarrow \sum_{i \in F'} \alpha(i) \ge k \Longrightarrow \alpha(j_0) \ge \alpha(i_0).$

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

(I) $F' := (F \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta)$ and (II) $G' := (G \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta)$. (II) $\Longrightarrow \sum_{j \in G'} \alpha(j) \ge k$

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

(I) $F' := (F \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta)$ and (II) $G' := (G \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta)$.

 $(\mathsf{II}) \Longrightarrow \sum_{j \in \mathcal{G}'} \alpha(j) \ge k \Longrightarrow \alpha(i_0) \ge \alpha(j_0).$

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

(I) $F' := (F \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta)$ and (II) $G' := (G \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta)$.

Therefore (I) and (II) together yield $\alpha(j_0) = \alpha(i_0)$.

Let us recall that, since $F \in \mathcal{F}(\Delta)$, |F| = d.

Let us recall that, since $F \in \mathcal{F}(\Delta)$, |F| = d.

$$|\{(a_1,\ldots,a_d)\in\mathbb{N}^d:a_1+\ldots+a_d=k\}|={k+d-1\choose k}.$$

Let us recall that, since $F \in \mathcal{F}(\Delta)$, |F| = d.

$$|\{(a_1,\ldots,a_d)\in\mathbb{N}^d:a_1+\ldots+a_d=k\}|=\binom{k+d-1}{k}$$

So

Let us recall that, since $F \in \mathcal{F}(\Delta)$, |F| = d.

$$|\{(a_1,\ldots,a_d)\in\mathbb{N}^d:a_1+\ldots+a_d=k\}|=\binom{k+d-1}{k}.$$

So

$$|\{ \text{basic } k\text{-covers} \}| \leq |\mathcal{F}(\Delta)| \binom{k+d-1}{k}$$

Let us recall that, since $F \in \mathcal{F}(\Delta)$, |F| = d.

$$|\{(a_1,\ldots,a_d)\in\mathbb{N}^d:a_1+\ldots+a_d=k\}|=\binom{k+d-1}{k}.$$

So

$$|\{\text{basic }k\text{-covers}\}| \leq |\mathcal{F}(\Delta)| \binom{k+d-1}{k} = O(k^{d-1}).$$

Let us recall that, since $F \in \mathcal{F}(\Delta)$, |F| = d.

$$|\{(a_1,\ldots,a_d)\in\mathbb{N}^d:a_1+\ldots+a_d=k\}|=\binom{k+d-1}{k}.$$

So

$$|\{\text{basic }k\text{-covers}\}| \leq |\mathcal{F}(\Delta)| \binom{k+d-1}{k} = O(k^{d-1}).$$

Therefore dim $\overline{A}(\Delta) = d = \dim \Delta + 1$.

Let us recall that, since $F \in \mathcal{F}(\Delta)$, |F| = d.

$$|\{(a_1,\ldots,a_d)\in\mathbb{N}^d:a_1+\ldots+a_d=k\}|=\binom{k+d-1}{k}.$$

So

$$|\{\text{basic }k\text{-covers}\}| \leq |\mathcal{F}(\Delta)| \binom{k+d-1}{k} = O(k^{d-1}).$$

Therefore dim $\overline{A}(\Delta) = d = \dim \Delta + 1$.

Hence $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for any $k \in \mathbb{Z}_+$!

IF $S/J(\Delta)^{(k)}$ IS COHEN-MACAULAY FOR ALL $k \in \mathbb{Z}_+$...

Given a monomial $u \in S$, say $u := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, its *polarization* is:

Given a monomial $u \in S$, say $u := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, its *polarization* is:

$$\widetilde{\boldsymbol{u}} := \prod_{j=1}^{\alpha_1} x_{1,j} \cdot \prod_{j=1}^{\alpha_2} x_{2,j} \cdots \prod_{j=1}^{\alpha_n} x_{n,j} \in \mathbb{k}[x_{i,j} : i \in [n], \ j \in [\deg u]].$$

Given a monomial $u \in S$, say $u := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, its *polarization* is:

$$\widetilde{\boldsymbol{u}} := \prod_{j=1}^{\alpha_1} x_{1,j} \cdot \prod_{j=1}^{\alpha_2} x_{2,j} \cdots \prod_{j=1}^{\alpha_n} x_{n,j} \in \mathbb{k}[x_{i,j} : i \in [n], \ j \in [\deg u]].$$

If $I \subseteq S$ is a monomial ideal with minimal monomial generators u_1, \ldots, u_m ,

Given a monomial $u \in S$, say $u := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, its *polarization* is:

$$\widetilde{\boldsymbol{u}} := \prod_{j=1}^{\alpha_1} x_{1,j} \cdot \prod_{j=1}^{\alpha_2} x_{2,j} \cdots \prod_{j=1}^{\alpha_n} x_{n,j} \in \mathbb{k}[x_{i,j} : i \in [n], \ j \in [\deg u]].$$

If $I \subseteq S$ is a monomial ideal with minimal monomial generators u_1, \ldots, u_m , its polarization is the square-free monomial ideal:

Given a monomial $u \in S$, say $u := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, its *polarization* is:

$$\widetilde{\boldsymbol{u}} := \prod_{j=1}^{\alpha_1} x_{1,j} \cdot \prod_{j=1}^{\alpha_2} x_{2,j} \cdots \prod_{j=1}^{\alpha_n} x_{n,j} \in \mathbb{k}[x_{i,j} : i \in [n], \ j \in [\deg u]].$$

If $I \subseteq S$ is a monomial ideal with minimal monomial generators u_1, \ldots, u_m , its polarization is the square-free monomial ideal:

$$\widetilde{\textit{\textbf{I}}} := (\widetilde{u_1}, \dots, \widetilde{u_m}) \subseteq \widetilde{\textit{\textbf{S}}} := \Bbbk[x_{i,j} : i \in [n], \ j \in [\mathsf{max}_i \{ \deg u_i \}]].$$

Given a monomial $u \in S$, say $u := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, its *polarization* is:

$$\widetilde{\boldsymbol{u}} := \prod_{j=1}^{\alpha_1} x_{1,j} \cdot \prod_{j=1}^{\alpha_2} x_{2,j} \cdots \prod_{j=1}^{\alpha_n} x_{n,j} \in \mathbb{k}[x_{i,j} : i \in [n], \ j \in [\deg u]].$$

If $I \subseteq S$ is a monomial ideal with minimal monomial generators u_1, \ldots, u_m , its polarization is the square-free monomial ideal:

$$\widetilde{\textit{I}} := (\widetilde{u_1}, \dots, \widetilde{u_m}) \subseteq \widetilde{\textit{S}} := \Bbbk[x_{i,j} : i \in [n], \ j \in [\mathsf{max}_i \{ \deg u_i \}]].$$

I has the same height and graded Betti numbers of I.

Given a monomial $u \in S$, say $u := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, its *polarization* is:

$$\widetilde{\boldsymbol{u}} := \prod_{j=1}^{\alpha_1} x_{1,j} \cdot \prod_{j=1}^{\alpha_2} x_{2,j} \cdots \prod_{j=1}^{\alpha_n} x_{n,j} \in \mathbb{k}[x_{i,j} : i \in [n], \ j \in [\deg u]].$$

If $I \subseteq S$ is a monomial ideal with minimal monomial generators u_1, \ldots, u_m , its polarization is the square-free monomial ideal:

$$\overline{I} := (\widetilde{u_1}, \ldots, \widetilde{u_m}) \subseteq \overline{S} := \Bbbk[x_{i,j} : i \in [n], j \in [\max_i \{ \deg u_i \}]].$$

 \tilde{I} has the same height and graded Betti numbers of I. In particular: S/I is Cohen-Maculay $\Leftrightarrow \tilde{S}/\tilde{I}$ is Cohen-Macaulay.

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

Since $\widetilde{J(\Delta)^{(k)}} = \bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_F^k}$,

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

Since $\widetilde{J(\Delta)^{(k)}} = \bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_F^k}$, we can focus in understanding: $\widetilde{\wp_F^k} = (\prod_{j=1}^k x_{i_1,j}, \prod_{j=1}^{k-1} x_{i_1,j} \cdot x_{i_2,1}, \dots, \prod_{j=1}^k x_{i_d,j}),$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

Since $\widetilde{J(\Delta)^{(k)}} = \bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_F^k}$, we can focus in understanding: $\widetilde{\wp_F^k} = (\prod_{j=1}^k x_{i_1,j}, \prod_{j=1}^{k-1} x_{i_1,j} \cdot x_{i_2,1}, \dots, \prod_{j=1}^k x_{i_d,j}),$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

Since $\widetilde{J(\Delta)^{(k)}} = \bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_F^k}$, we can focus in understanding: $\widetilde{\wp_F^k} = (\prod_{j=1}^k x_{i_1,j}, \prod_{j=1}^{k-1} x_{i_1,j} \cdot x_{i_2,1}, \dots, \prod_{j=1}^k x_{i_d,j}),$ $F := \{i_1, \dots, i_d\} \ (d = \dim \Delta + 1).$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

Since $\widehat{J(\Delta)^{(k)}} = \bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp}_{F}^{k}$, we can focus in understanding: $\widetilde{\wp}_{F}^{k} = (\prod_{j=1}^{k} x_{i_{1},j}, \prod_{j=1}^{k-1} x_{i_{1},j} \cdot x_{i_{2},1}, \dots, \prod_{j=1}^{k} x_{i_{d},j}),$ $F := \{i_{1}, \dots, i_{d}\} \ (d = \dim \Delta + 1).$ We need to describe $\operatorname{Ass}(\widetilde{\wp}_{F}^{k})$:

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

Since $\widetilde{J(\Delta)^{(k)}} = \bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_F^k}$, we can focus in understanding: $\widetilde{\wp_F^k} = (\prod_{j=1}^k x_{i_1,j}, \prod_{j=1}^{k-1} x_{i_1,j} \cdot x_{i_2,1}, \dots, \prod_{j=1}^k x_{i_d,j}),$ $F := \{i_1, \dots, i_d\} \ (d = \dim \Delta + 1).$ We need to describe $\operatorname{Ass}(\widetilde{\wp_F^k})$: For each vector $\mathbf{a} = (a_1, \dots, a_d) \in \mathbb{N}^d$ with $1 \le a_i \le k$, set

 $\wp_{F,\mathbf{a}} := (x_{i_1,a_1}, x_{i_2,a_2}, \ldots, x_{i_d,a_d}) \subseteq \widetilde{S}.$

If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$... The associated primes of $\widetilde{J(\Delta)^{(k)}}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

Since $J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp}_{F}^{k}$, we can focus in understanding: $\widetilde{\wp}_{F}^{k} = (\prod_{j=1}^{k} x_{i_{1}j}, \prod_{j=1}^{k-1} x_{i_{1}j} \cdot x_{i_{2},1}, \dots, \prod_{j=1}^{k} x_{i_{d},j}),$ $F := \{i_{1}, \dots, i_{d}\} \ (d = \dim \Delta + 1).$ We need to describe $\operatorname{Ass}(\widetilde{\wp}_{F}^{k})$: For each vector $\mathbf{a} = (a_{1}, \dots, a_{d}) \in \mathbb{N}^{d}$ with $1 \le a_{i} \le k$, set $\widetilde{\wp}_{F} := \{x_{i_{1}}, \dots, x_{d_{d}}\} \subset \widetilde{S}$

$$\wp_{\boldsymbol{F},\boldsymbol{\mathsf{a}}} := (x_{i_1,a_1}, x_{i_2,a_2}, \ldots, x_{i_d,a_d}) \subseteq \boldsymbol{S}.$$

One can prove that for any prime ideal $\wp \subseteq \widetilde{S}$,

If $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_+$... The associated primes of $\widetilde{J(\Delta)^{(k)}}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

Since $\widetilde{J(\Delta)^{(k)}} = \bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp}_{F}^{k}$, we can focus in understanding: $\widetilde{\wp}_{F}^{k} = (\prod_{j=1}^{k} x_{i_{1},j}, \prod_{j=1}^{k-1} x_{i_{1},j} \cdot x_{i_{2},1}, \dots, \prod_{j=1}^{k} x_{i_{d},j}),$ $F := \{i_{1}, \dots, i_{d}\} (d = \dim \Delta + 1).$ We need to describe $\operatorname{Ass}(\widetilde{\wp}_{F}^{k})$:

For each vector $\mathbf{a} = (a_1, \dots, a_d) \in \mathbb{N}^d$ with $1 \le a_i \le k$, set

$$\wp_{\boldsymbol{F},\boldsymbol{\mathsf{a}}} := (x_{i_1,a_1}, x_{i_2,a_2}, \ldots, x_{i_d,a_d}) \subseteq \tilde{\boldsymbol{S}}.$$

One can prove that for any prime ideal $\wp \subseteq \widetilde{S}$,

 $\wp \in \operatorname{Ass}(\wp_F^k) \Leftrightarrow \wp = \wp_{F,\mathbf{a}} \text{ with } |\mathbf{a}| = a_1 + \ldots + a_d \leq k + d - 1.$

Assume by contradiction that Δ is not a matroid.

Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

 $(F \setminus \{i\}) \cup \{j\}$ is not a facet of Δ for every $j \in G$.

Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

 $(F \setminus \{i\}) \cup \{j\}$ is not a facet of Δ for every $j \in G$.

Let us assume that $F = \{i_1, \ldots, i_d\}$, $G = \{j_1, \ldots, j_d\}$ and $i = i_1$.

Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

 $(F \setminus \{i\}) \cup \{j\}$ is not a facet of Δ for every $j \in G$.

Let us assume that $F = \{i_1, \ldots, i_d\}$, $G = \{j_1, \ldots, j_d\}$ and $i = i_1$.

Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. (d+1+d-1=2d).

Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

 $(F \setminus \{i\}) \cup \{j\}$ is not a facet of Δ for every $j \in G$.

Let us assume that $F = \{i_1, \dots, i_d\}$, $G = \{j_1, \dots, j_d\}$ and $i = i_1$. Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. (d+1+d-1=2d).

By the previous slide, $\wp_{F,\mathbf{a}}$ and $\wp_{G,\mathbf{b}}$ belong to $\operatorname{Ass}(\mathcal{H})$, where $\mathbf{a} := (d + 1, 1, \dots, 1) \in \mathbb{N}^d$ and $\mathbf{b} := (2, 2, \dots, 2) \in \mathbb{N}^d$ $(|\mathbf{a}| = |\mathbf{b}| = 2d)$.

Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

 $(F \setminus \{i\}) \cup \{j\}$ is not a facet of Δ for every $j \in G$.

Let us assume that $F = \{i_1, \dots, i_d\}$, $G = \{j_1, \dots, j_d\}$ and $i = i_1$. Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. (d+1+d-1=2d).

By the previous slide, $\wp_{F,\mathbf{a}}$ and $\wp_{G,\mathbf{b}}$ belong to $\operatorname{Ass}(\mathcal{H})$, where $\mathbf{a} := (d + 1, 1, \dots, 1) \in \mathbb{N}^d$ and $\mathbf{b} := (2, 2, \dots, 2) \in \mathbb{N}^d$ $(|\mathbf{a}| = |\mathbf{b}| = 2d)$.

Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

 $(F \setminus \{i\}) \cup \{j\}$ is not a facet of Δ for every $j \in G$.

Let us assume that $F = \{i_1, \dots, i_d\}$, $G = \{j_1, \dots, j_d\}$ and $i = i_1$. Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. (d+1+d-1=2d).

By the previous slide, $\wp_{F,\mathbf{a}}$ and $\wp_{G,\mathbf{b}}$ belong to $Ass(\mathcal{H})$, where $\mathbf{a} := (d+1, 1, ..., 1) \in \mathbb{N}^d$ and $\mathbf{b} := (2, 2, ..., 2) \in \mathbb{N}^d$ $(|\mathbf{a}| = |\mathbf{b}| = 2d)$.

We will show that $R:=\widetilde{S}/\mathcal{H}$ is not Cohen-Macaulay,

Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

 $(F \setminus \{i\}) \cup \{j\}$ is not a facet of Δ for every $j \in G$.

Let us assume that $F = \{i_1, \dots, i_d\}$, $G = \{j_1, \dots, j_d\}$ and $i = i_1$. Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. (d+1+d-1=2d).

By the previous slide, $\wp_{F,\mathbf{a}}$ and $\wp_{G,\mathbf{b}}$ belong to $Ass(\mathcal{H})$, where $\mathbf{a} := (d+1, 1, ..., 1) \in \mathbb{N}^d$ and $\mathbf{b} := (2, 2, ..., 2) \in \mathbb{N}^d$ $(|\mathbf{a}| = |\mathbf{b}| = 2d)$.

We will show that $R := \tilde{S}/\mathcal{H}$ is not Cohen-Macaulay, contradicting the hypothesis that $S/J(\Delta)^{(d+1)}$ is Cohen-Macaulay.

Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

 $(F \setminus \{i\}) \cup \{j\}$ is not a facet of Δ for every $j \in G$.

Let us assume that $F = \{i_1, \dots, i_d\}$, $G = \{j_1, \dots, j_d\}$ and $i = i_1$. Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. (d+1+d-1=2d).

By the previous slide, $\wp_{F,\mathbf{a}}$ and $\wp_{G,\mathbf{b}}$ belong to $Ass(\mathcal{H})$, where $\mathbf{a} := (d+1, 1, ..., 1) \in \mathbb{N}^d$ and $\mathbf{b} := (2, 2, ..., 2) \in \mathbb{N}^d$ $(|\mathbf{a}| = |\mathbf{b}| = 2d)$.

We will show that $R := \tilde{S}/\mathcal{H}$ is not Cohen-Macaulay, contradicting the hypothesis that $S/J(\Delta)^{(d+1)}$ is Cohen-Macaulay. Were it, $R_{\wp_{F,a}+\wp_{G,b}}$ would be Cohen-Macaulay too.

Assume by contradiction that Δ is not a matroid.

Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

 $(F \setminus \{i\}) \cup \{j\}$ is not a facet of Δ for every $j \in G$.

Let us assume that $F = \{i_1, \dots, i_d\}$, $G = \{j_1, \dots, j_d\}$ and $i = i_1$. Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. (d+1+d-1=2d).

By the previous slide, $\wp_{F,\mathbf{a}}$ and $\wp_{G,\mathbf{b}}$ belong to $Ass(\mathcal{H})$, where $\mathbf{a} := (d+1, 1, ..., 1) \in \mathbb{N}^d$ and $\mathbf{b} := (2, 2, ..., 2) \in \mathbb{N}^d$ $(|\mathbf{a}| = |\mathbf{b}| = 2d)$.

We will show that $R := \tilde{S}/\mathcal{H}$ is not Cohen-Macaulay, contradicting the hypothesis that $S/J(\Delta)^{(d+1)}$ is Cohen-Macaulay. Were it, $R_{\wp_{F,a}+\wp_{G,b}}$ would be Cohen-Macaulay too. Particularly, $R_{\wp_{F,a}+\wp_{G,b}}$ would be connected in codimension 1.

So, there should be a prime $\wp \in Ass(\mathcal{H})$ such that:

So, there should be a prime $\wp \in Ass(\mathcal{H})$ such that:

(i) $\wp \subseteq \wp_{F,\mathbf{a}} + \wp_{G,\mathbf{b}};$

So, there should be a prime $\wp \in Ass(\mathcal{H})$ such that:

(i)
$$\wp \subseteq \wp_{F,\mathbf{a}} + \wp_{G,\mathbf{b}};$$

(ii) $\operatorname{ht}(\wp + \wp_{F,\mathbf{a}}) = d + 1.$

So, there should be a prime $\wp \in Ass(\mathcal{H})$ such that:

(i)
$$\wp \subseteq \wp_{F,\mathbf{a}} + \wp_{G,\mathbf{b}};$$

(ii) $\operatorname{ht}(\wp + \wp_{F,\mathbf{a}}) = d + 1$

In other words, there should be $p, q \in [d]$ such that:

So, there should be a prime $\wp \in Ass(\mathcal{H})$ such that:

(i)
$$\wp \subseteq \wp_{F,\mathbf{a}} + \wp_{G,\mathbf{b}};$$

(ii) $\operatorname{ht}(\wp + \wp_{F,\mathbf{a}}) = d + 1.$

In other words, there should be $p, q \in [d]$ such that:

$$\wp = (x_{i_s,a_s}, x_{j_q,b_q} : s \in [d] \setminus \{p\}).$$

So, there should be a prime $\wp \in Ass(\mathcal{H})$ such that:

(i)
$$\wp \subseteq \wp_{F,\mathbf{a}} + \wp_{G,\mathbf{b}};$$

(ii) $\operatorname{ht}(\wp + \wp_{F,\mathbf{a}}) = d + 1.$

In other words, there should be $p, q \in [d]$ such that:

$$\wp = (x_{i_s,a_s}, x_{j_q,b_q} : s \in [d] \setminus \{p\}).$$

But this is impossible:

So, there should be a prime $\wp \in Ass(\mathcal{H})$ such that:

(i)
$$\wp \subseteq \wp_{F,\mathbf{a}} + \wp_{G,\mathbf{b}};$$

(ii) $\operatorname{ht}(\wp + \wp_{F,\mathbf{a}}) = d + 1.$

In other words, there should be $p, q \in [d]$ such that:

$$\wp = (x_{i_s,a_s}, x_{j_q,b_q} : s \in [d] \setminus \{p\}).$$

But this is impossible:

If p = 1, then $(F \setminus \{i_1\}) \cup \{j_q\} \in \mathcal{F}(\Delta)$, a contradiction.

So, there should be a prime $\wp \in Ass(\mathcal{H})$ such that:

In other words, there should be $p, q \in [d]$ such that:

$$\wp = (x_{i_s,a_s}, x_{j_q,b_q} : s \in [d] \setminus \{p\}).$$

But this is impossible:

If p = 1, then $(F \setminus \{i_1\}) \cup \{j_q\} \in \mathcal{F}(\Delta)$, a contradiction. If $p \neq 1$, then $(d+1) + \underbrace{1 + \ldots + 1}_{d-2} + 2 > 2d$, a contradiction.

So, there should be a prime $\wp \in Ass(\mathcal{H})$ such that:

(i)
$$\wp \subseteq \wp_{F,\mathbf{a}} + \wp_{G,\mathbf{b}};$$

(ii) $\operatorname{ht}(\wp + \wp_{F,\mathbf{a}}) = d + 1.$

In other words, there should be $p, q \in [d]$ such that:

$$\wp = (x_{i_s,a_s}, x_{j_q,b_q} : s \in [d] \setminus \{p\}).$$

But this is impossible:

If p = 1, then $(F \setminus \{i_1\}) \cup \{j_q\} \in \mathcal{F}(\Delta)$, a contradiction. If $p \neq 1$, then $(d+1) + \underbrace{1 + \ldots + 1}_{d-2} + 2 > 2d$, a contradiction.

So, Δ has to be a matroid!

As we noticed, for any Δ , we have dim $\overline{A}(\Delta) \ge \dim \Delta + 1$.

As we noticed, for any Δ , we have dim $\overline{A}(\Delta) \ge \dim \Delta + 1$. We showed that equality holds true exactly when Δ is a matroid.

As we noticed, for any Δ , we have dim $\overline{A}(\Delta) \ge \dim \Delta + 1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

As we noticed, for any Δ , we have dim $\overline{A}(\Delta) \ge \dim \Delta + 1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

Looking for a combinatorial characterization of dim $\overline{A}(\Delta)$.

As we noticed, for any Δ , we have dim $\overline{A}(\Delta) \ge \dim \Delta + 1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

Looking for a combinatorial characterization of dim $\bar{A}(\Delta)$.

Together with *Constantinescu*, we solved this problem when dim $\Delta = 1$, that is when $\Delta = G$ is a graph.

As we noticed, for any Δ , we have dim $\overline{A}(\Delta) \ge \dim \Delta + 1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

Looking for a combinatorial characterization of dim $\bar{A}(\Delta)$.

Together with *Constantinescu*, we solved this problem when dim $\Delta = 1$, that is when $\Delta = G$ is a graph. A little more precisely, we defined an invariant of G,

As we noticed, for any Δ , we have dim $\overline{A}(\Delta) \ge \dim \Delta + 1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

Looking for a combinatorial characterization of dim $\bar{A}(\Delta)$.

Together with *Constantinescu*, we solved this problem when dim $\Delta = 1$, that is when $\Delta = G$ is a graph. A little more precisely, we defined an invariant of *G*, called *ordered matching number* and denoted by $\nu_{\circ}(G)$,

As we noticed, for any Δ , we have dim $\overline{A}(\Delta) \ge \dim \Delta + 1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

Looking for a combinatorial characterization of dim $\overline{A}(\Delta)$.

Together with *Constantinescu*, we solved this problem when dim $\Delta = 1$, that is when $\Delta = G$ is a graph. A little more precisely, we defined an invariant of *G*, called *ordered matching number* and denoted by $\nu_{\circ}(G)$, and we showed that dim $\bar{A}(G) = \nu_{\circ}(G) + 1$.

As we noticed, for any Δ , we have dim $\overline{A}(\Delta) \ge \dim \Delta + 1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

Looking for a combinatorial characterization of dim $\overline{A}(\Delta)$.

Together with *Constantinescu*, we solved this problem when dim $\Delta = 1$, that is when $\Delta = G$ is a graph. A little more precisely, we defined an invariant of *G*, called *ordered matching number* and denoted by $\nu_{\circ}(G)$, and we showed that dim $\bar{A}(G) = \nu_{\circ}(G) + 1$.

Already in this case things are complicated!

References

- Constantinescu, Varbaro, *Koszulness, Krull dimension and other properties of graph-related algebras*, to appear in J. Algebraic Combin., available online on ArXiv.

- Herzog, Hibi, Trung, *Symbolic powers of monomial ideals and vertex cover algebras*, Adv. Math. (2007).

- Minh, Trung, *Cohen-Macaulayness of monomial ideals and symbolic powers of Stanley-Reisner ideals*, to appear in Adv. Math., available online on ArXiv.

- Varbaro, *Symbolic powers and matroids*, to appear in Proc. Amer. Math. Soc., available online on ArXiv.