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Preliminaries and notation
S i m p l i c i a l c o m p l e x e s

Throughout n ∈ N and [n] := {1, . . . , n}. A simplicial complex on

[n] is a collection ∆ of subsets of [n] satisfying:

- F ∈ ∆ and G ⊆ F ⇒ G ∈ ∆;

- {i} ∈ ∆ ∀ i ∈ [n].

The subsets of ∆ are called faces and the faces maximal by

inclusion are called facets. We will denote the set of facets of ∆ by

F(∆). The dimension of a face F is dim F := |F | − 1. The

dimension of ∆ is dim ∆ := max{dim F : F ∈ ∆}. A simplicial

complex ∆ is called pure if dim F = dim ∆ ∀ F ∈ F(∆).
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Preliminaries and notation
S t a n l e y - R e i s n e r i d e a l s

We can associate a simplicial complex to any ideal I ⊆ S := k[x1, . . . , xn]:

∆(I ) := {F ⊆ [n] : k[xi : i ∈ F ] ∩ I = {0}}.

∆(I ) is called the independence complex of I . In the other direction, we
can associate an ideal to any simplicial complex on [n]:

I∆ := (xi1 · · · xik : {i1, . . . , ik} /∈ ∆) ⊆ S .

I∆ is called the Stanley-Reisner ideal of ∆. Such a relationship leads to a
one-to-one correspondence:

{Square-free monomial ideals of S} ↔ {Simplicial complexes on [n]}

To relate combinatorial properties of ∆ with algebraic ones of I∆ caught
the attention of several mathematicians. For example, denoting by
℘A := (xi : i ∈ A) ⊆ S (where A ⊆ [n]), it is easy to show that:

I∆ =
⋂

F∈F(∆)

℘[n]\F .

This fact implies that dim k[∆] = dim ∆ + 1, where k[∆] := S/I∆.
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Preliminaries and notation
M a t r o i d s

A simplicial complex ∆ is a matroid if:

∀ F ,G ∈ F(∆), ∀ i ∈ F , ∃ j ∈ G : (F \ {i}) ∪ {j} ∈ F(∆)

EXAMPLES:

- Let V be a k-vector space and v1, . . . , vn some vectors of V .

∆ := {F ⊆ [n] : |F | = dimk < vi : i ∈ F >}

Such a ∆ is easily seen to be a matroid: Actually, the concept
of matroid is an “abstraction of linear independence”.

- Let ∆ be the i-skeleton of the (n − 1)-simplex:

∆ := {F ⊆ [n] : |F | ≤ i}.

Such a ∆ is obviously a matroid.

- If an ideal I ⊆ S is prime, then ∆(I ) is a matroid.
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The problem
C o h e n - M a c a u l a y c o m b i n a t o r i a l c o u n t e r p a r t

Reisner, in 1976, gave a characterization in terms of the topological
realization of ∆ of the Cohen-Macaulay property of k[∆]. However a
characterization in a combinatorial fashion still misses.

A related question is when all the rings S/I k
∆ are Cohen-Macaulay. An

answer is provided by a general result of Cowsik and Nori (1977):

S/I k
∆ is Cohen-Macaulay ∀ k ∈ Z+ ⇔ I∆ is a complete intersection

Notice that S/I k
∆ Cohen-Macaulay ⇒ Ass(I k

∆) = Min(I k
∆)⇒ I k

∆ = I
(k)
∆ .

Therefore it is natural to ask:

When is S/I
(k)
∆ Cohen-Macaulay for all k ∈ Z+???
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The result

In this talk, we are going to answer the above question:

S/I
(k)
∆ is Cohen-Macaulay ∀ k ∈ Z+ ⇔ ∆ is a matroid

It is fair to say that Minh and Trung proved at the same time the

same result. However the two proofs are completely different.
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THE PROOF



Stanley-Reisner ideals −→ cover ideals
P r o p e r t i e s o f m a t r o i d s

(i) If ∆ is a matroid, then ∆ is pure.

(ii) Exchange property. If ∆ is a matroid, then ∀F ,G ∈ F(∆), ∀i ∈ F ,

∃j ∈ G : (F \ {i}) ∪ {j} ∈ F(∆) and (G \ {j}) ∪ {i} ∈ F(∆)!

The dual simplicial complex of ∆ is the complex ∆c on [n] s. t.:

F(∆c) := {[n] \ F : F ∈ F(∆)}.

(iii) Duality. For any simplicial complex ∆ on [n], we have

∆ is a matroid ⇔ ∆c is a matroid.
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(iii) Duality. For any simplicial complex ∆ on [n], we have

∆ is a matroid ⇔ ∆c is a matroid.
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For a simplicial complex ∆, its cover ideal is J(∆) := I∆c , so:

J(∆) =
⋂

F∈F(∆)

℘F ,

A ⊆ [n] is a vertex cover of ∆ if A ∩ F 6= ∅ ∀ F ∈ F(∆).

One can easily check that:

J(∆) = (xi1 · · · xik : {i1, . . . , ik} is a vertex cover of ∆).
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J(∆) = (xi1 · · · xik : {i1, . . . , ik} is a vertex cover of ∆).
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2

6

4 {1, 2, 4} is not a vertex cover
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Stanley-Reisner ideals −→ cover ideals

For a simplicial complex ∆, its cover ideal is J(∆) := I∆c , so:

J(∆) =
⋂

F∈F(∆)

℘F ,

A ⊆ [n] is a vertex cover of ∆ if A ∩ F 6= ∅ ∀ F ∈ F(∆).

One can easily check that:

J(∆) = (xi1 · · · xik : {i1, . . . , ik} is a vertex cover of ∆).

By the duality for matroids, because I∆ = J(∆c), we can pass to

S/J(∆)(k) is CM for any k ∈ Z+ ⇔ ∆ is a matroid



Symbolic powers and k-covers

We have J(∆)(k) =
⋂

F∈F(∆)

℘k
F ∀ k ∈ N.

We want to describe which monomials belong to J(∆)(k). For each

k ∈ N, a nonzero function α : [n]→ N is called a k-cover of

a simplicial complex ∆ on [n] if:
∑

i∈F α(i) ≥ k ∀ F ∈ F(∆).

A k-cover α is basic if there is not a k-cover β with β < α.
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i∈F α(i) ≥ k ∀ F ∈ F(∆).

A k-cover α is basic if there is not a k-cover β with β < α.

It is not difficult to show:

J(∆)(k) = (x
α(1)
1 · · · xα(n)

n : α is a k-cover).
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⋂
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F ∀ k ∈ N.

We want to describe which monomials belong to J(∆)(k). For each

k ∈ N, a nonzero function α : [n]→ N is called a k-cover of

a simplicial complex ∆ on [n] if:
∑
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J(∆)(k) = (x
α(1)
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The algebra of basic covers
D e f i n i t i o n

The symbolic Rees algebra of J(∆), i.e. A(∆) :=
⊕

k∈N J(∆)(k),

has an obvious interpretation in terms of k-covers. It has been

introduced by Herzog, Hibi and Trung, and it is called the vertex

cover algebra of ∆. We need to deal with the special fiber of A(∆):

Ā(∆) := A(∆)/mA(∆) =
⊕

k∈N J(∆)(k)/mJ(∆)(k),

where m := (x1, . . . , xn) ⊆ S .

For all k ∈ Z+, we have:

Ā(∆)k =< xα : α is a basic k-cover >
.

For this reason, Ā(∆) is called the algebra of basic covers of ∆.



The algebra of basic covers
D e f i n i t i o n

The symbolic Rees algebra of J(∆),

i.e. A(∆) :=
⊕

k∈N J(∆)(k),

has an obvious interpretation in terms of k-covers. It has been

introduced by Herzog, Hibi and Trung, and it is called the vertex

cover algebra of ∆. We need to deal with the special fiber of A(∆):
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Ā(∆) := A(∆)/mA(∆) =
⊕

k∈N J(∆)(k)/mJ(∆)(k),

where m := (x1, . . . , xn) ⊆ S .

For all k ∈ Z+, we have:
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The algebra of basic covers
H o w Ā(∆) c o m e s i n t o p l a y

(HHT). A(∆) is a Cohen-Macaulay, finitely generated S-algebra.

Using a theorem of Eisenbud and Huneke, the above result yields

dim ∆ + 1 = ht(J(∆)) ≤

dim Ā(∆) = n − min
k∈N>0

{depth(S/J(∆)(k))}

.

Therefore, since dim S/J(∆) = n − dim ∆− 1, we get

S/J(∆)(k) is CM for any k ∈ Z+ ⇔ dim Ā(∆) = dim ∆ + 1.

In the next slides we are going to show that:

dim Ā(∆) = dim ∆ + 1 whenever ∆ is a matroid.
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H o w Ā(∆) c o m e s i n t o p l a y

(HHT). A(∆) is a Cohen-Macaulay, finitely generated S-algebra.

Using a theorem of Eisenbud and Huneke, the above result yields

dim ∆ + 1 = ht(J(∆)) ≤dim Ā(∆) = n − min
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The algebra of basic covers
A c o m b i n a t o r i a l d e s c r i p t i o n o f dim Ā(∆)

Since A(∆) is Noetherian, Ā(∆) is a finitely generated k-algebra.

This implies that there exists a positive integer δ such that:

Ā(∆)(δ) :=
⊕

m∈N Ā(∆)δm is a standard graded k-algebra.

Ā(∆) fin. gen. Ā(∆)(δ)-module ⇒ dim Ā(∆) = dim Ā(∆)(δ).

Because Ā(∆)(δ) is standard graded, it has a Hilbert polynomial.

I.e. a polynomial P ∈ Q[T ], of degree dim Ā(∆)(δ) − 1, such that:

P(m) = dimk(Ā(∆)δm) ∀ m� 0.

Therefore, since dimk(Ā(∆)δm) = |{basic δm-cover of ∆}|,

if |{basic k-covers}| = O(ks−1), then dim(Ā(∆)) ≤ s.
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P(m) = dimk(Ā(∆)δm) ∀ m� 0.
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Ā(∆)(δ) :=
⊕
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m∈N Ā(∆)δm is a standard graded k-algebra.
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m∈N Ā(∆)δm is a standard graded k-algebra.
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If ∆ is a matroid ...
T h e c l a i m

Set d := dim(∆) + 1. Being a matroid, ∆ is pure, so:

d is the cardinality of each facet of ∆.

In order to show that S/J(∆)k is Cohen-Macaulay ∀ k ∈ Z+,

we have to prove that dim Ā(∆) = d . So:

Claim: |{basic k-covers of ∆}| = O(kd−1).
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If ∆ is a (d − 1)-dimensional matroid ...
T h e r i g i d i t y o f t h e b a s i c c o v e r s o f a m a t r o i d

Let α be a basic k-cover of ∆. Since α is basic, ∃ F ∈ F(∆):∑
i∈F α(i) = k.

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F .

In fact, let j0 be in [n] \ F . Again, since α is basic, ∃ G ∈ F(∆):

j0 ∈ G and
∑

j∈G α(j) = k .

Exchange property for matroids ⇒ there exists i0 ∈ F such that

(I) F ′ := (F \ {i0}) ∪ {j0} ∈ F(∆) and (II) G ′ := (G \ {j0}) ∪ {i0} ∈ F(∆).
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If ∆ is a (d − 1)-dimensional matroid ...
T h e c o n c l u s i o n

Let us recall that, since F ∈ F(∆), |F | = d .

|{(a1, . . . , ad) ∈ Nd : a1 + . . .+ ad = k}| =

(
k + d − 1

k

)
.

So

|{basic k-covers}| ≤ |F(∆)|
(

k + d − 1

k

)
= O(kd−1).

Therefore dim Ā(∆) = d = dim ∆ + 1.

Hence S/J(∆)(k) is Cohen-Macaulay for any k ∈ Z+!
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Therefore dim Ā(∆) = d = dim ∆ + 1.

Hence S/J(∆)(k) is Cohen-Macaulay for any k ∈ Z+!



If ∆ is a (d − 1)-dimensional matroid ...
T h e c o n c l u s i o n

Let us recall that, since F ∈ F(∆), |F | = d .

|{(a1, . . . , ad) ∈ Nd : a1 + . . .+ ad = k}| =

(
k + d − 1

k

)
.

So

|{basic k-covers}| ≤ |F(∆)|
(

k + d − 1

k

)

= O(kd−1).
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Therefore dim Ā(∆) = d = dim ∆ + 1.

Hence S/J(∆)(k) is Cohen-Macaulay for any k ∈ Z+!



If ∆ is a (d − 1)-dimensional matroid ...
T h e c o n c l u s i o n

Let us recall that, since F ∈ F(∆), |F | = d .

|{(a1, . . . , ad) ∈ Nd : a1 + . . .+ ad = k}| =

(
k + d − 1

k

)
.

So

|{basic k-covers}| ≤ |F(∆)|
(

k + d − 1

k

)
= O(kd−1).
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IF S/J(∆)(k) IS COHEN-MACAULAY FOR ALL k ∈ Z+...



If S/J(∆)(k) is Cohen-Macaulay for all k ∈ Z+ ...
T h e p o l a r i z a t i o n o f a m o n o m i a l i d e a l

Given a monomial u ∈ S , say u := xα1
1 · · · xαn

n , its polarization is:

ũ :=

α1∏
j=1

x1,j ·
α2∏
j=1

x2,j · · ·
αn∏
j=1

xn,j ∈ k[xi ,j : i ∈ [n], j ∈ [deg u]].

If I ⊆ S is a monomial ideal with minimal monomial generators

u1, . . . , um, its polarization is the square-free monomial ideal:

Ĩ := (ũ1, . . . , ũm) ⊆ S̃ := k[xi ,j : i ∈ [n], j ∈ [maxi{deg ui}]].

Ĩ has the same height and graded Betti numbers of I . In particular:

S/I is Cohen-Maculay ⇔ S̃/Ĩ is Cohen-Macaulay.
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ũ :=

α1∏
j=1

x1,j ·
α2∏
j=1

x2,j · · ·
αn∏
j=1

xn,j ∈ k[xi ,j : i ∈ [n], j ∈ [deg u]].

If I ⊆ S is a monomial ideal with minimal monomial generators

u1, . . . , um, its polarization is the square-free monomial ideal:
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If S/J(∆)(k) is Cohen-Macaulay for all k ∈ Z+ ...
T h e a s s o c i a t e d p r i m e s o f ˜J(∆)(k)

The trick is in understanding the polarization of J(∆)(k);

Since ˜J(∆)(k) =
⋂

F∈F(∆) ℘̃
k
F , we can focus in understanding:

℘̃k
F = (

∏k
j=1 xi1,j ,

∏k−1
j=1 xi1,j · xi2,1, . . . ,

∏k
j=1 xid ,j),

F := {i1, . . . , id} (d = dim ∆ + 1). We need to describe Ass(℘̃k
F ):

For each vector a = (a1, . . . , ad) ∈ Nd with 1 ≤ ai ≤ k, set

℘F ,a := (xi1,a1 , xi2,a2 , . . . , xid ,ad
) ⊆ S̃ .

One can prove that for any prime ideal ℘ ⊆ S̃ ,

℘ ∈ Ass(℘̃k
F )⇔ ℘ = ℘F ,a with |a| = a1 + . . .+ ad ≤ k + d − 1.
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If S/J(∆)(k) is Cohen-Macaulay for all k ∈ Z+ ...
T h e l a c k o f c o n n e c t e d n e s s

Assume by contradiction that ∆ is not a matroid.

Then there exist F ,G ∈ F(∆), i ∈ F , such that:

(F \ {i}) ∪ {j} is not a facet of ∆ for every j ∈ G .

Let us assume that F = {i1, . . . , id}, G = {j1, . . . , jd} and i = i1.

Eventually, consider H := ˜J(∆)(d+1). (d + 1 + d − 1 = 2d).

By the previous slide, ℘F ,a and ℘G ,b belong to Ass(H), where

a := (d + 1, 1, . . . , 1) ∈ Nd and b := (2, 2, . . . , 2) ∈ Nd (|a| = |b| = 2d).

We will show that R := S̃/H is not Cohen-Macaulay, contradicting

the hypothesis that S/J(∆)(d+1) is Cohen-Macaulay.

Were it, R℘F ,a+℘G ,b would be Cohen-Macaulay too.

Particularly, R℘F ,a+℘G ,b would be connected in codimension 1.
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T h e c o n c l u s i o n

So, there should be a prime ℘ ∈ Ass(H) such that:

(i) ℘ ⊆ ℘F ,a + ℘G ,b;

(ii) ht(℘+ ℘F ,a) = d + 1.

In other words, there should be p, q ∈ [d ] such that:

℘ = (xis ,as , xjq ,bq : s ∈ [d ] \ {p}).

But this is impossible:

If p = 1, then (F \ {i1}) ∪ {jq} ∈ F(∆), a contradiction.

If p 6= 1, then (d + 1) + 1 + . . .+ 1︸ ︷︷ ︸
d−2

+2 > 2d , a contradiction.

So, ∆ has to be a matroid!
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A related problem

As we noticed, for any ∆, we have dim Ā(∆) ≥ dim ∆ + 1. We

showed that equality holds true exactly when ∆ is a matroid. So,

the following is a natural problem:

Looking for a combinatorial characterization of dim Ā(∆).

Together with Constantinescu, we solved this problem when

dim ∆ = 1, that is when ∆ = G is a graph. A little more precisely,

we defined an invariant of G , called ordered matching number and

denoted by ν◦(G ), and we showed that dim Ā(G ) = ν◦(G ) + 1.

Already in this case things are complicated!
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showed that equality holds true exactly when ∆ is a matroid. So,

the following is a natural problem:

Looking for a combinatorial characterization of dim Ā(∆).
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Already in this case things are complicated!



References

- Constantinescu, Varbaro, Koszulness, Krull dimension and other
properties of graph-related algebras, to appear in J. Algebraic
Combin., available online on ArXiv.

- Herzog, Hibi, Trung, Symbolic powers of monomial ideals and
vertex cover algebras, Adv. Math. (2007).

- Minh, Trung, Cohen-Macaulayness of monomial ideals and
symbolic powers of Stanley-Reisner ideals, to appear in Adv.
Math., available online on ArXiv.

- Varbaro, Symbolic powers and matroids, to appear in Proc.
Amer. Math. Soc., available online on ArXiv.


