SYMBOLIC POWERS AND MATROIDS

Matteo Varbaro

Dipartimento di Matematica
Università di Genova

Preliminaries and notation

Simplicial complexes

Preliminaries and notation

Simplicial complexes

Throughout $n \in \mathbb{N}$ and $[n]:=\{1, \ldots, n\}$.

Preliminaries and notation

Simplicial complexes

Throughout $n \in \mathbb{N}$ and $[n]:=\{1, \ldots, n\}$. A simplicial complex on $[n]$ is a collection Δ of subsets of $[n]$ satisfying:

Preliminaries and notation

Simplicial complexes

Throughout $n \in \mathbb{N}$ and $[n]:=\{1, \ldots, n\}$. A simplicial complex on $[n]$ is a collection Δ of subsets of $[n]$ satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;

Preliminaries and notation

Simplicial complexes

Throughout $n \in \mathbb{N}$ and $[n]:=\{1, \ldots, n\}$. A simplicial complex on $[n]$ is a collection Δ of subsets of $[n]$ satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
$-\{i\} \in \Delta \quad \forall i \in[n]$.

Preliminaries and notation

Simplicial complexes

Throughout $n \in \mathbb{N}$ and $[n]:=\{1, \ldots, n\}$. A simplicial complex on $[n]$ is a collection Δ of subsets of $[n]$ satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \quad \forall i \in[n]$.

The subsets of Δ are called faces

Preliminaries and notation

Simplicial complexes

Throughout $n \in \mathbb{N}$ and $[n]:=\{1, \ldots, n\}$. A simplicial complex on $[n]$ is a collection Δ of subsets of $[n]$ satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \quad \forall i \in[n]$.

The subsets of Δ are called faces and the faces maximal by inclusion are called facets.

Preliminaries and notation

```
Simplicial complexes
```

Throughout $n \in \mathbb{N}$ and $[n]:=\{1, \ldots, n\}$. A simplicial complex on $[n]$ is a collection Δ of subsets of $[n]$ satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \quad \forall i \in[n]$.

The subsets of Δ are called faces and the faces maximal by inclusion are called facets. We will denote the set of facets of Δ by $\mathcal{F}(\Delta)$.

Preliminaries and notation

```
Simplicial complexes
```

Throughout $n \in \mathbb{N}$ and $[n]:=\{1, \ldots, n\}$. A simplicial complex on $[n]$ is a collection Δ of subsets of $[n]$ satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \quad \forall i \in[n]$.

The subsets of Δ are called faces and the faces maximal by inclusion are called facets. We will denote the set of facets of Δ by $\mathcal{F}(\Delta)$. The dimension of a face F is $\operatorname{dim} F:=|F|-1$.

Preliminaries and notation

```
Simplicial complexes
```

Throughout $n \in \mathbb{N}$ and $[n]:=\{1, \ldots, n\}$. A simplicial complex on $[n]$ is a collection Δ of subsets of $[n]$ satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \quad \forall i \in[n]$.

The subsets of Δ are called faces and the faces maximal by inclusion are called facets. We will denote the set of facets of Δ by $\mathcal{F}(\Delta)$. The dimension of a face F is $\operatorname{dim} F:=|F|-1$. The dimension of Δ is $\operatorname{dim} \Delta:=\max \{\operatorname{dim} F: F \in \Delta\}$.

Preliminaries and notation

```
Simplicial complexes
```

Throughout $n \in \mathbb{N}$ and $[n]:=\{1, \ldots, n\}$. A simplicial complex on $[n]$ is a collection Δ of subsets of $[n]$ satisfying:

- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$;
- $\{i\} \in \Delta \quad \forall i \in[n]$.

The subsets of Δ are called faces and the faces maximal by inclusion are called facets. We will denote the set of facets of Δ by $\mathcal{F}(\Delta)$. The dimension of a face F is $\operatorname{dim} F:=|F|-1$. The dimension of Δ is $\operatorname{dim} \Delta:=\max \{\operatorname{dim} F: F \in \Delta\}$. A simplicial complex Δ is called pure if $\operatorname{dim} F=\operatorname{dim} \Delta \quad \forall F \in \mathcal{F}(\Delta)$.

Preliminaries and notation

Stanley-Reisner ideals

Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$:

Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$:

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$:

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

$\Delta(I)$ is called the independence complex of I.

Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$:

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

$\Delta(I)$ is called the independence complex of I. In the other direction, we can associate an ideal to any simplicial complex on $[n]$:

Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$:

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

$\Delta(I)$ is called the independence complex of I. In the other direction, we can associate an ideal to any simplicial complex on [n]:

$$
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \subseteq S .
$$

Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$:

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

$\Delta(I)$ is called the independence complex of I. In the other direction, we can associate an ideal to any simplicial complex on $[n]$:

$$
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \subseteq S .
$$

I_{Δ} is called the Stanley-Reisner ideal of Δ.

Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$:

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

$\Delta(I)$ is called the independence complex of I. In the other direction, we can associate an ideal to any simplicial complex on [n]:

$$
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \subseteq S .
$$

I_{Δ} is called the Stanley-Reisner ideal of Δ. Such a relationship leads to a one-to-one correspondence:

Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$:

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

$\Delta(I)$ is called the independence complex of I. In the other direction, we can associate an ideal to any simplicial complex on $[n]$:

$$
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \subseteq S .
$$

I_{Δ} is called the Stanley-Reisner ideal of Δ. Such a relationship leads to a one-to-one correspondence:
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$

Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$:

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

$\Delta(I)$ is called the independence complex of I. In the other direction, we can associate an ideal to any simplicial complex on [n]:

$$
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \subseteq S .
$$

I_{Δ} is called the Stanley-Reisner ideal of Δ. Such a relationship leads to a one-to-one correspondence:
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$
To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians.

Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$:

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

$\Delta(I)$ is called the independence complex of I. In the other direction, we can associate an ideal to any simplicial complex on [n]:

$$
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \subseteq S .
$$

I_{Δ} is called the Stanley-Reisner ideal of Δ. Such a relationship leads to a one-to-one correspondence:
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$
To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians. For example, denoting by $\wp_{A}:=\left(x_{i}: i \in A\right) \subseteq S$ (where $A \subseteq[n]$), it is easy to show that:

Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$:

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

$\Delta(I)$ is called the independence complex of I. In the other direction, we can associate an ideal to any simplicial complex on [n]:

$$
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \subseteq S .
$$

I_{Δ} is called the Stanley-Reisner ideal of Δ. Such a relationship leads to a one-to-one correspondence:
\{Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$
To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians. For example, denoting by $\wp_{A}:=\left(x_{i}: i \in A\right) \subseteq S$ (where $A \subseteq[n]$), it is easy to show that:

$$
I_{\Delta}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \backslash F} .
$$

Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$:

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

$\Delta(I)$ is called the independence complex of I. In the other direction, we can associate an ideal to any simplicial complex on $[n]$:

$$
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \subseteq S .
$$

I_{Δ} is called the Stanley-Reisner ideal of Δ. Such a relationship leads to a one-to-one correspondence:
\{Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$
To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians. For example, denoting by $\wp_{A}:=\left(x_{i}: i \in A\right) \subseteq S$ (where $A \subseteq[n]$), it is easy to show that:

$$
I_{\Delta}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \backslash F .} .
$$

This fact implies that $\operatorname{dim} \mathbb{k}[\Delta]=\operatorname{dim} \Delta+1$, where $\mathbb{k}[\Delta]:=S / I_{\Delta}$.

Preliminaries and notation

Matroids

Preliminaries and notation

Matroids
A simplicial complex Δ is a matroid if:

Preliminaries and notation

Matroids
A simplicial complex Δ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta),
$$

Preliminaries and notation

Matroids
A simplicial complex Δ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta), \quad \forall i \in F,
$$

Preliminaries and notation

Matroids
A simplicial complex Δ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \quad \exists j \in G:
$$

Preliminaries and notation

Matroids
A simplicial complex Δ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

Preliminaries and notation

Matroids
A simplicial complex Δ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta), \quad \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

EXAMPLES:

Preliminaries and notation

Matroids
A simplicial complex Δ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta), \quad \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

EXAMPLES:

Preliminaries and notation

Matroids
A simplicial complex Δ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

EXAMPLES:

- Let V be a \mathbb{k}-vector space and v_{1}, \ldots, v_{n} some vectors of V.

Preliminaries and notation

Matroids
A simplicial complex Δ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta), \quad \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

EXAMPLES:

- Let V be a \mathbb{k}-vector space and v_{1}, \ldots, v_{n} some vectors of V.

$$
\Delta:=\left\{F \subseteq[n]:|F|=\operatorname{dim}_{\mathbb{k}}<v_{i}: i \in F>\right\}
$$

Preliminaries and notation

Matroids
A simplicial complex Δ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta), \quad \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

EXAMPLES:

- Let V be a \mathbb{k}-vector space and v_{1}, \ldots, v_{n} some vectors of V.

$$
\Delta:=\left\{F \subseteq[n]:|F|=\operatorname{dim}_{\mathbb{k}}<v_{i}: i \in F>\right\}
$$

Such a Δ is easily seen to be a matroid:

Preliminaries and notation

Matroids
A simplicial complex Δ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta), \quad \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

EXAMPLES:

- Let V be a \mathbb{k}-vector space and v_{1}, \ldots, v_{n} some vectors of V.

$$
\Delta:=\left\{F \subseteq[n]:|F|=\operatorname{dim}_{\mathbb{k}}<v_{i}: i \in F>\right\}
$$

Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an "abstraction of linear independence".

Preliminaries and notation

Matroids
A simplicial complex Δ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta), \quad \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

EXAMPLES:

- Let V be a \mathbb{k}-vector space and v_{1}, \ldots, v_{n} some vectors of V.

$$
\Delta:=\left\{F \subseteq[n]:|F|=\operatorname{dim}_{\mathbb{k}}<v_{i}: i \in F>\right\}
$$

Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an "abstraction of linear independence".

- Let Δ be the i-skeleton of the $(n-1)$-simplex:

Preliminaries and notation

Matroids
A simplicial complex Δ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta), \quad \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

EXAMPLES:

- Let V be a \mathbb{k}-vector space and v_{1}, \ldots, v_{n} some vectors of V.

$$
\Delta:=\left\{F \subseteq[n]:|F|=\operatorname{dim}_{\mathbb{k}}<v_{i}: i \in F>\right\}
$$

Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an "abstraction of linear independence".

- Let Δ be the i-skeleton of the $(n-1)$-simplex:

$$
\Delta:=\{F \subseteq[n]:|F| \leq i\}
$$

Preliminaries and notation

Matroids
A simplicial complex Δ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta), \quad \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

EXAMPLES:

- Let V be a \mathbb{k}-vector space and v_{1}, \ldots, v_{n} some vectors of V.

$$
\Delta:=\left\{F \subseteq[n]:|F|=\operatorname{dim}_{\mathbb{k}}<v_{i}: i \in F>\right\}
$$

Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an "abstraction of linear independence".

- Let Δ be the i-skeleton of the $(n-1)$-simplex:

$$
\Delta:=\{F \subseteq[n]:|F| \leq i\}
$$

Such a Δ is obviously a matroid.

Preliminaries and notation

Matroids
A simplicial complex Δ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta), \quad \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

EXAMPLES:

- Let V be a \mathbb{k}-vector space and v_{1}, \ldots, v_{n} some vectors of V.

$$
\Delta:=\left\{F \subseteq[n]:|F|=\operatorname{dim}_{\mathbb{k}}<v_{i}: i \in F>\right\}
$$

Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an "abstraction of linear independence".

- Let Δ be the i-skeleton of the $(n-1)$-simplex:

$$
\Delta:=\{F \subseteq[n]:|F| \leq i\}
$$

Such a Δ is obviously a matroid.

- If an ideal $I \subseteq S$ is prime,

Preliminaries and notation

Matroids
A simplicial complex Δ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta), \quad \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

EXAMPLES:

- Let V be a \mathbb{k}-vector space and v_{1}, \ldots, v_{n} some vectors of V.

$$
\Delta:=\left\{F \subseteq[n]:|F|=\operatorname{dim}_{\mathbb{k}}<v_{i}: i \in F>\right\}
$$

Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an "abstraction of linear independence".

- Let Δ be the i-skeleton of the $(n-1)$-simplex:

$$
\Delta:=\{F \subseteq[n]:|F| \leq i\}
$$

Such a Δ is obviously a matroid.

- If an ideal $I \subseteq S$ is prime, then $\Delta(I)$ is a matroid.

Preliminaries and notation

Symbolic powers

Preliminaries and notation

Symbolic powers

The k th simbolic power of an ideal $I \subseteq S$ is the ideal of S :

Preliminaries and notation

Symbolic powers

The k th simbolic power of an ideal $I \subseteq S$ is the ideal of S :

$$
I^{(k)}:=\left(I^{k} \cdot W^{-1} S\right) \cap S
$$

where W is the multiplicative system $S \backslash\left(\bigcup_{\wp \in \operatorname{Ass}(I)} \wp\right)$.

Preliminaries and notation

Symbolic powers

The k th simbolic power of an ideal $I \subseteq S$ is the ideal of S :

$$
I^{(k)}:=\left(I^{k} \cdot W^{-1} S\right) \cap S
$$

where W is the multiplicative system $S \backslash\left(\bigcup_{\wp \in \operatorname{Ass}(I)} \wp\right)$.
$I^{k} \subseteq I^{(k)}$,

Preliminaries and notation

Symbolic powers

The k th simbolic power of an ideal $I \subseteq S$ is the ideal of S :

$$
I^{(k)}:=\left(I^{k} \cdot W^{-1} S\right) \cap S
$$

where W is the multiplicative system $S \backslash\left(\bigcup_{\wp \in \operatorname{Ass}(I)} \wp\right)$.
$I^{k} \subseteq I^{(k)}$, and equality holds if I^{k} has no embedded primes.

Preliminaries and notation

Symbolic powers

The k th simbolic power of an ideal $I \subseteq S$ is the ideal of S :

$$
I^{(k)}:=\left(I^{k} \cdot W^{-1} S\right) \cap S
$$

where W is the multiplicative system $S \backslash\left(\bigcup_{\wp \in \operatorname{Ass}(I)} \wp\right)$.
$I^{k} \subseteq I^{(k)}$, and equality holds if I^{k} has no embedded primes.

If $I=I_{\Delta}$ is a square-free monomial ideal,

Preliminaries and notation

Symbolic powers

The k th simbolic power of an ideal $I \subseteq S$ is the ideal of S :

$$
I^{(k)}:=\left(I^{k} \cdot W^{-1} S\right) \cap S
$$

where W is the multiplicative system $S \backslash\left(\bigcup_{\wp \in \operatorname{Ass}(I)} \wp\right)$.
$I^{k} \subseteq I^{(k)}$, and equality holds if I^{k} has no embedded primes.

If $I=I_{\Delta}$ is a square-free monomial ideal, then it is easy to show:

$$
I_{\Delta}^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \backslash F}^{k}
$$

The problem
Cohen-Macaulay combinatorial counterpart

The problem

```
Cohen-Macaulay combinatorial counterpart
```

Reisner, in 1976, gave a characterization in terms of the topological realization of Δ of the Cohen-Macaulay property of $\mathbb{k}[\Delta]$.

The problem

```
Cohen-Macaulay combinatorial counterpart
```

Reisner, in 1976, gave a characterization in terms of the topological realization of Δ of the Cohen-Macaulay property of $\mathbb{k}[\Delta]$. However a characterization in a combinatorial fashion still misses.

The problem

```
Cohen-Macaulay combinatorial counterpart
```

Reisner, in 1976, gave a characterization in terms of the topological realization of Δ of the Cohen-Macaulay property of $\mathbb{k}[\Delta]$. However a characterization in a combinatorial fashion still misses.

A related question is when all the rings S / I_{Δ}^{k} are Cohen-Macaulay.

The problem

```
Cohen-Macaulay combinatorial counterpart
```

Reisner, in 1976, gave a characterization in terms of the topological realization of Δ of the Cohen-Macaulay property of $\mathbb{k}[\Delta]$. However a characterization in a combinatorial fashion still misses.

A related question is when all the rings S / I_{Δ}^{k} are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

The problem

```
Cohen-Macaulay combinatorial counterpart
```

Reisner, in 1976, gave a characterization in terms of the topological realization of Δ of the Cohen-Macaulay property of $\mathbb{k}[\Delta]$. However a characterization in a combinatorial fashion still misses.

A related question is when all the rings S / I_{Δ}^{k} are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):
S / I_{Δ}^{k} is Cohen-Macaulay $\forall k \in \mathbb{Z}_{+} \Leftrightarrow I_{\Delta}$ is a complete intersection

The problem

```
Cohen-Macaulay combinatorial counterpart
```

Reisner, in 1976, gave a characterization in terms of the topological realization of Δ of the Cohen-Macaulay property of $\mathbb{k}[\Delta]$. However a characterization in a combinatorial fashion still misses.

A related question is when all the rings S / I_{Δ}^{k} are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):
S / I_{Δ}^{k} is Cohen-Macaulay $\forall k \in \mathbb{Z}_{+} \Leftrightarrow I_{\Delta}$ is a complete intersection
Notice that S / I_{Δ}^{k} Cohen-Macaulay $\Rightarrow \operatorname{Ass}\left(I_{\Delta}^{k}\right)=\operatorname{Min}\left(I_{\Delta}^{k}\right) \Rightarrow I_{\Delta}^{k}=I_{\Delta}^{(k)}$.

The problem

```
Cohen-Macaulay combinatorial counterpart
```

Reisner, in 1976, gave a characterization in terms of the topological realization of Δ of the Cohen-Macaulay property of $\mathbb{k}[\Delta]$. However a characterization in a combinatorial fashion still misses.

A related question is when all the rings S / I_{Δ}^{k} are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):
S / I_{Δ}^{k} is Cohen-Macaulay $\forall k \in \mathbb{Z}_{+} \Leftrightarrow I_{\Delta}$ is a complete intersection
Notice that S / I_{Δ}^{k} Cohen-Macaulay $\Rightarrow \operatorname{Ass}\left(I_{\Delta}^{k}\right)=\operatorname{Min}\left(I_{\Delta}^{k}\right) \Rightarrow I_{\Delta}^{k}=I_{\Delta}^{(k)}$.
Therefore it is natural to ask:

The problem

```
Cohen-Macaulay combinatorial counterpart
```

Reisner, in 1976, gave a characterization in terms of the topological realization of Δ of the Cohen-Macaulay property of $\mathbb{k}[\Delta]$. However a characterization in a combinatorial fashion still misses.

A related question is when all the rings S / I_{Δ}^{k} are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):
S / I_{Δ}^{k} is Cohen-Macaulay $\forall k \in \mathbb{Z}_{+} \Leftrightarrow I_{\Delta}$ is a complete intersection
Notice that S / I_{Δ}^{k} Cohen-Macaulay $\Rightarrow \operatorname{Ass}\left(I_{\Delta}^{k}\right)=\operatorname{Min}\left(I_{\Delta}^{k}\right) \Rightarrow I_{\Delta}^{k}=I_{\Delta}^{(k)}$.
Therefore it is natural to ask:

When is $S / I_{\Delta}^{(k)}$ Cohen-Macaulay for all $k \in \mathbb{Z}_{+}$???

The result

The result

In this talk, we are going to answer the above question:

The result

In this talk, we are going to answer the above question:

$$
S / I_{\Delta}^{(k)} \text { is Cohen-Macaulay } \forall k \in \mathbb{Z}_{+} \Leftrightarrow \Delta \text { is a matroid }
$$

The result

In this talk, we are going to answer the above question:

$$
S / I_{\Delta}^{(k)} \text { is Cohen-Macaulay } \forall k \in \mathbb{Z}_{+} \Leftrightarrow \Delta \text { is a matroid }
$$

It is fair to say that Minh and Trung proved at the same time the same result.

The result

In this talk, we are going to answer the above question:

$$
S / I_{\Delta}^{(k)} \text { is Cohen-Macaulay } \forall k \in \mathbb{Z}_{+} \Leftrightarrow \Delta \text { is a matroid }
$$

It is fair to say that Minh and Trung proved at the same time the same result. However the two proofs are completely different.

THE PROOF

Stanley-Reisner ideals \longrightarrow cover ideals

Properties of matroids

Stanley-Reisner ideals \longrightarrow cover ideals

Properties of matroids

(i) If Δ is a matroid, then Δ is pure.

Stanley-Reisner ideals \longrightarrow cover ideals

Properties of matroids

(i) If Δ is a matroid, then Δ is pure.
(ii) Exchange property.

Stanley-Reisner ideals \longrightarrow cover ideals

Properties of matroids

(i) If Δ is a matroid, then Δ is pure.
(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G: \quad(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$

Stanley-Reisner ideals \longrightarrow cover ideals

 Properties of matroids(i) If Δ is a matroid, then Δ is pure.
(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$ and $(G \backslash\{j\}) \cup\{i\} \in \mathcal{F}(\Delta)!$

Stanley-Reisner ideals \longrightarrow cover ideals

Properties of matroids

(i) If Δ is a matroid, then Δ is pure.
(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$ and $(G \backslash\{j\}) \cup\{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of Δ is the complex Δ^{c} on $[n]$ s. t.:

Stanley-Reisner ideals \longrightarrow cover ideals

 Properties of matroids(i) If Δ is a matroid, then Δ is pure.
(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$ and $(G \backslash\{j\}) \cup\{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of Δ is the complex Δ^{c} on $[n]$ s. t.:

$$
\mathcal{F}\left(\Delta^{c}\right):=\{[n] \backslash F: F \in \mathcal{F}(\Delta)\} .
$$

Stanley-Reisner ideals \longrightarrow cover ideals

 Properties of matroids(i) If Δ is a matroid, then Δ is pure.
(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$ and $(G \backslash\{j\}) \cup\{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of Δ is the complex Δ^{c} on $[n]$ s. t.:

$$
\mathcal{F}\left(\Delta^{c}\right):=\{[n] \backslash F: F \in \mathcal{F}(\Delta)\} .
$$

(iii) Duality.

Stanley-Reisner ideals \longrightarrow cover ideals

Properties of matroids
(i) If Δ is a matroid, then Δ is pure.
(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$ and $(G \backslash\{j\}) \cup\{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of Δ is the complex Δ^{c} on $[n]$ s. t.:

$$
\mathcal{F}\left(\Delta^{c}\right):=\{[n] \backslash F: F \in \mathcal{F}(\Delta)\} .
$$

(iii) Duality. For any simplicial complex Δ on [n], we have

Stanley-Reisner ideals \longrightarrow cover ideals

Properties of matroids
(i) If Δ is a matroid, then Δ is pure.
(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$,
$\exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$ and $(G \backslash\{j\}) \cup\{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of Δ is the complex Δ^{c} on $[n]$ s. t.:

$$
\mathcal{F}\left(\Delta^{c}\right):=\{[n] \backslash F: F \in \mathcal{F}(\Delta)\} .
$$

(iii) Duality. For any simplicial complex Δ on [n], we have Δ is a matroid $\Leftrightarrow \Delta^{c}$ is a matroid.

Stanley-Reisner ideals \longrightarrow cover ideals

Stanley-Reisner ideals \longrightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

Stanley-Reisner ideals \longrightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp F,
$$

Stanley-Reisner ideals \longrightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp F,
$$

$A \subseteq[n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.

Stanley-Reisner ideals \longrightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},
$$

$A \subseteq[n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.

EXAMPLES:

Stanley-Reisner ideals \longrightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},
$$

$A \subseteq[n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.

EXAMPLES:

$\{1,2,3,4,5,6\}$ is a vertex cover

Stanley-Reisner ideals \longrightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},
$$

$A \subseteq[n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.

EXAMPLES:

$\{1,2,4,5\}$ is a vertex cover

Stanley-Reisner ideals \longrightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},
$$

$A \subseteq[n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.

EXAMPLES:

$\{1,2,4\}$ is not a vertex cover

Stanley-Reisner ideals \longrightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},
$$

$A \subseteq[n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.

Stanley-Reisner ideals \longrightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp F,
$$

$A \subseteq[n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.
One can easily check that:

$$
J(\Delta)=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \text { is a vertex cover of } \Delta\right)
$$

Stanley-Reisner ideals \longrightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp F
$$

$A \subseteq[n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.
One can easily check that:

$$
J(\Delta)=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \text { is a vertex cover of } \Delta\right)
$$

By the duality for matroids, because $I_{\Delta}=J\left(\Delta^{c}\right)$, we can pass

Stanley-Reisner ideals \longrightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp F
$$

$A \subseteq[n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.
One can easily check that:

$$
J(\Delta)=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \text { is a vertex cover of } \Delta\right)
$$

By the duality for matroids, because $I_{\Delta}=J\left(\Delta^{c}\right)$, we can pass from

$$
S / I_{\Delta}^{(k)} \text { is } C M \text { for any } k \in \mathbb{Z}_{+} \Leftrightarrow \Delta \text { is a matroid }
$$

Stanley-Reisner ideals \longrightarrow cover ideals

For a simplicial complex Δ, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp F
$$

$A \subseteq[n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.
One can easily check that:

$$
J(\Delta)=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \text { is a vertex cover of } \Delta\right)
$$

By the duality for matroids, because $I_{\Delta}=J\left(\Delta^{c}\right)$, we can pass to

$$
S / J(\Delta)^{(k)} \text { is } C M \text { for any } k \in \mathbb{Z}_{+} \Leftrightarrow \Delta \text { is a matroid }
$$

Symbolic powers and k-covers

Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.

Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$.

Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if:

Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on [n] if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$.

Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on [n] if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on [n] if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on [n] if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

EXAMPLES:

Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on [n] if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

EXAMPLES:

Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on [n] if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

EXAMPLES:

Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on [n] if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

EXAMPLES:

Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

EXAMPLES:

Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$.
A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

It is not difficult to show:

$$
J(\Delta)^{(k)}=\left(x_{1}^{\alpha(1)} \cdots x_{n}^{\alpha(n)}: \alpha \text { is a } k \text {-cover }\right)
$$

Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$.
A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

It is not difficult to show:

$$
J(\Delta)^{(k)}=\left(x_{1}^{\alpha(1)} \cdots x_{n}^{\alpha(n)}: \alpha \text { is a basic } k \text {-cover }\right)
$$

The algebra of basic covers
Definition

The algebra of basic covers
Definition

The symbolic Rees algebra of $J(\Delta)$,

The algebra of basic covers
Definition

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$,

The algebra of basic covers

Definition

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers.

The algebra of basic covers

Definition

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung,

The algebra of basic covers

Definition

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ.

The algebra of basic covers

Definition

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ. We need to deal with the special fiber of $A(\Delta)$:

The algebra of basic covers

Definition

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ. We need to deal with the special fiber of $A(\Delta)$:

$$
\bar{A}(\Delta):=A(\Delta) / \mathfrak{m} A(\Delta)=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)} / \mathfrak{m} J(\Delta)^{(k)}
$$

The algebra of basic covers

Definition

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ. We need to deal with the special fiber of $A(\Delta)$:

$$
\bar{A}(\Delta):=A(\Delta) / \mathfrak{m} A(\Delta)=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)} / \mathfrak{m} J(\Delta)^{(k)}
$$

where $\mathfrak{m}:=\left(x_{1}, \ldots, x_{n}\right) \subseteq S$.

The algebra of basic covers

Definition

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ. We need to deal with the special fiber of $A(\Delta)$:

$$
\bar{A}(\Delta):=A(\Delta) / \mathfrak{m} A(\Delta)=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)} / \mathfrak{m} J(\Delta)^{(k)}
$$

where $\mathfrak{m}:=\left(x_{1}, \ldots, x_{n}\right) \subseteq S$.
For all $k \in \mathbb{Z}_{+}$, we have:

$$
\bar{A}(\Delta)_{k}=<x^{\alpha}: \alpha \text { is a basic } k \text {-cover }>
$$

The algebra of basic covers

Definition

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ. We need to deal with the special fiber of $A(\Delta)$:

$$
\bar{A}(\Delta):=A(\Delta) / \mathfrak{m} A(\Delta)=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)} / \mathfrak{m} J(\Delta)^{(k)}
$$

where $\mathfrak{m}:=\left(x_{1}, \ldots, x_{n}\right) \subseteq S$.
For all $k \in \mathbb{Z}_{+}$, we have:

$$
\bar{A}(\Delta)_{k}=<x^{\alpha}: \alpha \text { is a basic } k \text {-cover }>
$$

For this reason, $\bar{A}(\Delta)$ is called the algebra of basic covers of Δ.

The algebra of basic covers
How $\bar{A}(\Delta)$ comes into play

The algebra of basic covers

How $\bar{A}(\Delta)$ comes into play
(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

The algebra of basic covers

How $\bar{A}(\Delta)$ comes into play
(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.
Using a theorem of Eisenbud and Huneke, the above result yields

The algebra of basic covers

How $\bar{A}(\Delta)$ comes into play
$(H H T) . A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

Using a theorem of Eisenbud and Huneke, the above result yields

$$
\operatorname{dim} \bar{A}(\Delta)=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}
$$

The algebra of basic covers

How $\bar{A}(\Delta)$ comes into play
$(H H T) . A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.
Using a theorem of Eisenbud and Huneke, the above result yields

$$
\operatorname{dim} \Delta+1=\operatorname{ht}(J(\Delta)) \leq \operatorname{dim} \bar{A}(\Delta)=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\} .
$$

The algebra of basic covers

How $\bar{A}(\Delta)$ comes into play
(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.
Using a theorem of Eisenbud and Huneke, the above result yields

$$
\operatorname{dim} \Delta+1=\operatorname{ht}(J(\Delta)) \leq \operatorname{dim} \bar{A}(\Delta)=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\} .
$$

Therefore, since $\operatorname{dim} S / J(\Delta)=n-\operatorname{dim} \Delta-1$, we get

The algebra of basic covers
How $\bar{A}(\Delta)$ comes into play
$(H H T) . A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.
Using a theorem of Eisenbud and Huneke, the above result yields

$$
\operatorname{dim} \Delta+1=\operatorname{ht}(J(\Delta)) \leq \operatorname{dim} \bar{A}(\Delta)=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\} .
$$

Therefore, since $\operatorname{dim} S / J(\Delta)=n-\operatorname{dim} \Delta-1$, we get

$$
S / J(\Delta)^{(k)} \text { is CM for any } k \in \mathbb{Z}_{+} \Leftrightarrow \operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \Delta+1
$$

The algebra of basic covers

How $\bar{A}(\Delta)$ comes into play
(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.
Using a theorem of Eisenbud and Huneke, the above result yields

$$
\operatorname{dim} \Delta+1=\operatorname{ht}(J(\Delta)) \leq \operatorname{dim} \bar{A}(\Delta)=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\} .
$$

Therefore, since $\operatorname{dim} S / J(\Delta)=n-\operatorname{dim} \Delta-1$, we get

$$
S / J(\Delta)^{(k)} \text { is CM for any } k \in \mathbb{Z}_{+} \Leftrightarrow \operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \Delta+1 .
$$

In the next slides we are going to show that:

The algebra of basic covers

How $\bar{A}(\Delta)$ comes into play
$(H H T) . A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.
Using a theorem of Eisenbud and Huneke, the above result yields

$$
\operatorname{dim} \Delta+1=\operatorname{ht}(J(\Delta)) \leq \operatorname{dim} \bar{A}(\Delta)=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}
$$

Therefore, since $\operatorname{dim} S / J(\Delta)=n-\operatorname{dim} \Delta-1$, we get

$$
S / J(\Delta)^{(k)} \text { is CM for any } k \in \mathbb{Z}_{+} \Leftrightarrow \operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \Delta+1
$$

In the next slides we are going to show that:

$$
\operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \Delta+1 \text { whenever } \Delta \text { is a matroid. }
$$

The algebra of basic covers
A combinatorial description of $\operatorname{dim} \bar{A}(\Delta)$

The algebra of basic covers
A combinatorial description of $\operatorname{dim} \bar{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\bar{A}(\Delta)$ is a finitely generated \mathbb{k}-algebra.

The algebra of basic covers
A combinatorial description of $\operatorname{dim} \bar{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\bar{A}(\Delta)$ is a finitely generated \mathbb{k}-algebra.
This implies that there exists a positive integer δ such that:

The algebra of basic covers
A combinatorial description of $\operatorname{dim} \bar{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\bar{A}(\Delta)$ is a finitely generated \mathbb{k}-algebra.
This implies that there exists a positive integer δ such that:

$$
\bar{A}(\Delta)^{(\delta)}:=\bigoplus_{m \in \mathbb{N}} \bar{A}(\Delta)_{\delta m} \text { is a standard graded } \mathbb{k} \text {-algebra. }
$$

The algebra of basic covers
A combinatorial description of $\operatorname{dim} \bar{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\bar{A}(\Delta)$ is a finitely generated \mathbb{k}-algebra.
This implies that there exists a positive integer δ such that:

$$
\bar{A}(\Delta)^{(\delta)}:=\bigoplus_{m \in \mathbb{N}} \bar{A}(\Delta)_{\delta m} \text { is a standard graded } \mathbb{k} \text {-algebra. }
$$

$\bar{A}(\Delta)$ fin. gen. $\bar{A}(\Delta)^{(\delta)}$-module $\Rightarrow \operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \bar{A}(\Delta)^{(\delta)}$.

The algebra of basic covers
A combinatorial description of $\operatorname{dim} \bar{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\bar{A}(\Delta)$ is a finitely generated \mathbb{k}-algebra.
This implies that there exists a positive integer δ such that:

$$
\bar{A}(\Delta)^{(\delta)}:=\bigoplus_{m \in \mathbb{N}} \bar{A}(\Delta)_{\delta m} \text { is a standard graded } \mathbb{k} \text {-algebra. }
$$

$\bar{A}(\Delta)$ fin. gen. $\bar{A}(\Delta)^{(\delta)}$-module $\Rightarrow \operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \bar{A}(\Delta)^{(\delta)}$.
Because $\bar{A}(\Delta)^{(\delta)}$ is standard graded, it has a Hilbert polynomial.

The algebra of basic covers
A combinatorial description of $\operatorname{dim} \bar{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\bar{A}(\Delta)$ is a finitely generated \mathbb{k}-algebra.
This implies that there exists a positive integer δ such that:

$$
\bar{A}(\Delta)^{(\delta)}:=\bigoplus_{m \in \mathbb{N}} \bar{A}(\Delta)_{\delta m} \text { is a standard graded } \mathbb{k} \text {-algebra. }
$$

$\bar{A}(\Delta)$ fin. gen. $\bar{A}(\Delta)^{(\delta)}$-module $\Rightarrow \operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \bar{A}(\Delta)^{(\delta)}$. Because $\bar{A}(\Delta)^{(\delta)}$ is standard graded, it has a Hilbert polynomial.
I.e. a polynomial $P \in \mathbb{Q}[T]$, of $\operatorname{degree} \operatorname{dim} \bar{A}(\Delta)^{(\delta)}-1$, such that:

The algebra of basic covers
A combinatorial description of $\operatorname{dim} \bar{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\bar{A}(\Delta)$ is a finitely generated \mathbb{k}-algebra.
This implies that there exists a positive integer δ such that:

$$
\bar{A}(\Delta)^{(\delta)}:=\bigoplus_{m \in \mathbb{N}} \bar{A}(\Delta)_{\delta m} \text { is a standard graded } \mathbb{k} \text {-algebra. }
$$

$\bar{A}(\Delta)$ fin. gen. $\bar{A}(\Delta)^{(\delta)}$-module $\Rightarrow \operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \bar{A}(\Delta)^{(\delta)}$. Because $\bar{A}(\Delta)^{(\delta)}$ is standard graded, it has a Hilbert polynomial.
I.e. a polynomial $P \in \mathbb{Q}[T]$, of $\operatorname{degree} \operatorname{dim} \bar{A}(\Delta)^{(\delta)}-1$, such that:

$$
P(m)=\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{\delta m}\right) \quad \forall m \gg 0 .
$$

The algebra of basic covers

A combinatorial description of $\operatorname{dim} \bar{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\bar{A}(\Delta)$ is a finitely generated \mathbb{k}-algebra.
This implies that there exists a positive integer δ such that:

$$
\bar{A}(\Delta)^{(\delta)}:=\bigoplus_{m \in \mathbb{N}} \bar{A}(\Delta)_{\delta m} \text { is a standard graded } \mathbb{k} \text {-algebra. }
$$

$\bar{A}(\Delta)$ fin. gen. $\bar{A}(\Delta)^{(\delta)}$-module $\Rightarrow \operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \bar{A}(\Delta)^{(\delta)}$. Because $\bar{A}(\Delta)^{(\delta)}$ is standard graded, it has a Hilbert polynomial. I.e. a polynomial $P \in \mathbb{Q}[T]$, of $\operatorname{degree} \operatorname{dim} \bar{A}(\Delta)^{(\delta)}-1$, such that:

$$
P(m)=\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{\delta m}\right) \quad \forall m \gg 0 .
$$

Therefore, since $\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{\delta m}\right)=\mid\{$ basic δm-cover of $\Delta\} \mid$,

The algebra of basic covers
A combinatorial description of $\operatorname{dim} \bar{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\bar{A}(\Delta)$ is a finitely generated \mathbb{k}-algebra.
This implies that there exists a positive integer δ such that:

$$
\bar{A}(\Delta)^{(\delta)}:=\bigoplus_{m \in \mathbb{N}} \bar{A}(\Delta)_{\delta m} \text { is a standard graded } \mathbb{k} \text {-algebra. }
$$

$\bar{A}(\Delta)$ fin. gen. $\bar{A}(\Delta)^{(\delta)}$-module $\Rightarrow \operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \bar{A}(\Delta)^{(\delta)}$.
Because $\bar{A}(\Delta)^{(\delta)}$ is standard graded, it has a Hilbert polynomial.
I.e. a polynomial $P \in \mathbb{Q}[T]$, of $\operatorname{degree} \operatorname{dim} \bar{A}(\Delta)^{(\delta)}-1$, such that:

$$
P(m)=\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{\delta m}\right) \quad \forall m \gg 0 .
$$

Therefore, since $\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{\delta m}\right)=\mid\{$ basic δm-cover of $\Delta\} \mid$,

$$
\text { if } \mid\{\text { basic } k \text {-covers }\} \mid=O\left(k^{s-1}\right),
$$

The algebra of basic covers
A combinatorial description of $\operatorname{dim} \bar{A}(\Delta)$

Since $A(\Delta)$ is Noetherian, $\bar{A}(\Delta)$ is a finitely generated \mathbb{k}-algebra.
This implies that there exists a positive integer δ such that:

$$
\bar{A}(\Delta)^{(\delta)}:=\bigoplus_{m \in \mathbb{N}} \bar{A}(\Delta)_{\delta m} \text { is a standard graded } \mathbb{k} \text {-algebra. }
$$

$\bar{A}(\Delta)$ fin. gen. $\bar{A}(\Delta)^{(\delta)}$-module $\Rightarrow \operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \bar{A}(\Delta)^{(\delta)}$.
Because $\bar{A}(\Delta)^{(\delta)}$ is standard graded, it has a Hilbert polynomial.
I.e. a polynomial $P \in \mathbb{Q}[T]$, of $\operatorname{degree} \operatorname{dim} \bar{A}(\Delta)^{(\delta)}-1$, such that:

$$
P(m)=\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{\delta m}\right) \quad \forall m \gg 0 .
$$

Therefore, since $\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{\delta m}\right)=\mid\{$ basic δm-cover of $\Delta\} \mid$, if $\mid\{$ basic k-covers $\} \mid=O\left(k^{s-1}\right)$, then $\operatorname{dim}(\bar{A}(\Delta)) \leq s$.

If Δ is a matroid ...
The claim

If Δ is a matroid ...

The claim

Set $d:=\operatorname{dim}(\Delta)+1$.

If Δ is a matroid ...

The claim

Set $d:=\operatorname{dim}(\Delta)+1$. Being a matroid, Δ is pure, so:

If Δ is a matroid ...

The claim

Set $d:=\operatorname{dim}(\Delta)+1$. Being a matroid, Δ is pure, so: d is the cardinality of each facet of Δ.

If Δ is a matroid ...

The claim

Set $d:=\operatorname{dim}(\Delta)+1$. Being a matroid, Δ is pure, so: d is the cardinality of each facet of Δ.

In order to show that $S / J(\Delta)^{k}$ is Cohen-Macaulay $\forall k \in \mathbb{Z}_{+}$,

If Δ is a matroid ...

Theclaim

Set $d:=\operatorname{dim}(\Delta)+1$. Being a matroid, Δ is pure, so: d is the cardinality of each facet of Δ.

In order to show that $S / J(\Delta)^{k}$ is Cohen-Macaulay $\forall k \in \mathbb{Z}_{+}$, we have to prove that $\operatorname{dim} \bar{A}(\Delta)=d$.

If Δ is a matroid ...

The claim

Set $d:=\operatorname{dim}(\Delta)+1$. Being a matroid, Δ is pure, so: d is the cardinality of each facet of Δ.

In order to show that $S / J(\Delta)^{k}$ is Cohen-Macaulay $\forall k \in \mathbb{Z}_{+}$, we have to prove that $\operatorname{dim} \bar{A}(\Delta)=d$. So:

Claim: $\mid\{$ basic k-covers of $\Delta\} \mid=O\left(k^{d-1}\right)$.

If Δ is a $(d-1)$-dimensional matroid \ldots
The rigidity of the basic covers of a matroid

If Δ is a $(d-1)$-dimensional matroid \ldots
The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ.

If Δ is a $(d-1)$-dimensional matroid \ldots
The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

If Δ is a $(d-1)$-dimensional matroid \ldots
The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

If Δ is a $(d-1)$-dimensional matroid \ldots
The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.

If Δ is a $(d-1)$-dimensional matroid \ldots
The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F. In fact, let j_{0} be in $[n] \backslash F$.

If Δ is a $(d-1)$-dimensional matroid \ldots
The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F. In fact, let j_{0} be in $[n] \backslash F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

If Δ is a $(d-1)$-dimensional matroid \ldots
The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F. In fact, let j_{0} be in $[n] \backslash F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

If Δ is a $(d-1)$-dimensional matroid \ldots
The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.
In fact, let j_{0} be in $[n] \backslash F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids \Rightarrow there exists $i_{0} \in F$ such that

If Δ is a $(d-1)$-dimensional matroid \ldots
The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F. In fact, let j_{0} be in $[n] \backslash F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids \Rightarrow there exists $i_{0} \in F$ such that
(I) $F^{\prime}:=\left(F \backslash\left\{i_{0}\right\}\right) \cup\left\{j_{0}\right\} \in \mathcal{F}(\Delta)$ and
(II) $G^{\prime}:=\left(G \backslash\left\{j_{0}\right\}\right) \cup\left\{i_{0}\right\} \in \mathcal{F}(\Delta)$.

If Δ is a $(d-1)$-dimensional matroid \ldots
The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.
In fact, let j_{0} be in $[n] \backslash F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids \Rightarrow there exists $i_{0} \in F$ such that
(I) $F^{\prime}:=\left(F \backslash\left\{i_{0}\right\}\right) \cup\left\{j_{0}\right\} \in \mathcal{F}(\Delta)$ and
(II) $G^{\prime}:=\left(G \backslash\left\{j_{0}\right\}\right) \cup\left\{i_{0}\right\} \in \mathcal{F}(\Delta)$.
$(\mathrm{I}) \Longrightarrow \sum_{i \in F^{\prime}} \alpha(i) \geq k$

If Δ is a $(d-1)$-dimensional matroid \ldots
The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.
In fact, let j_{0} be in $[n] \backslash F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids \Rightarrow there exists $i_{0} \in F$ such that

$$
\begin{aligned}
& \text { (I) } F^{\prime}:=\left(F \backslash\left\{i_{0}\right\}\right) \cup\left\{j_{0}\right\} \in \mathcal{F}(\Delta) \text { and (II) } G^{\prime}:=\left(G \backslash\left\{j_{0}\right\}\right) \cup\left\{i_{0}\right\} \in \mathcal{F}(\Delta) . \\
& \text { (I) } \Longrightarrow \sum_{i \in F^{\prime}} \alpha(i) \geq k \Longrightarrow \alpha\left(j_{0}\right) \geq \alpha\left(i_{0}\right) .
\end{aligned}
$$

If Δ is a $(d-1)$-dimensional matroid \ldots
The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.
In fact, let j_{0} be in $[n] \backslash F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids \Rightarrow there exists $i_{0} \in F$ such that
(I) $F^{\prime}:=\left(F \backslash\left\{i_{0}\right\}\right) \cup\left\{j_{0}\right\} \in \mathcal{F}(\Delta)$ and
(II) $G^{\prime}:=\left(G \backslash\left\{j_{0}\right\}\right) \cup\left\{i_{0}\right\} \in \mathcal{F}(\Delta)$.
(II) $\Longrightarrow \sum_{j \in G^{\prime}} \alpha(j) \geq k$

If Δ is a $(d-1)$-dimensional matroid \ldots
The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.
In fact, let j_{0} be in $[n] \backslash F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids \Rightarrow there exists $i_{0} \in F$ such that

$$
\begin{aligned}
& \text { (I) } F^{\prime}:=\left(F \backslash\left\{i_{0}\right\}\right) \cup\left\{j_{0}\right\} \in \mathcal{F}(\Delta) \text { and (II) } G^{\prime}:=\left(G \backslash\left\{j_{0}\right\}\right) \cup\left\{i_{0}\right\} \in \mathcal{F}(\Delta) . \\
& \text { (II) } \Longrightarrow \sum_{j \in G^{\prime}} \alpha(j) \geq k \Longrightarrow \alpha\left(i_{0}\right) \geq \alpha\left(j_{0}\right) .
\end{aligned}
$$

If Δ is a $(d-1)$-dimensional matroid \ldots
The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.
In fact, let j_{0} be in $[n] \backslash F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids \Rightarrow there exists $i_{0} \in F$ such that
(I) $F^{\prime}:=\left(F \backslash\left\{i_{0}\right\}\right) \cup\left\{j_{0}\right\} \in \mathcal{F}(\Delta)$ and
(II) $G^{\prime}:=\left(G \backslash\left\{j_{0}\right\}\right) \cup\left\{i_{0}\right\} \in \mathcal{F}(\Delta)$.

Therefore (I) and (II) together yield $\alpha\left(j_{0}\right)=\alpha\left(i_{0}\right)$.

If Δ is a $(d-1)$-dimensional matroid \ldots
The conclusion

If Δ is a $(d-1)$-dimensional matroid \ldots
The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta),|F|=d$.

If Δ is a $(d-1)$-dimensional matroid \ldots
The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta),|F|=d$.

$$
\left|\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}: a_{1}+\ldots+a_{d}=k\right\}\right|=\binom{k+d-1}{k} .
$$

If Δ is a $(d-1)$-dimensional matroid \ldots
The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta),|F|=d$.

$$
\left|\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}: a_{1}+\ldots+a_{d}=k\right\}\right|=\binom{k+d-1}{k} .
$$

So

If Δ is a $(d-1)$-dimensional matroid \ldots
The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta),|F|=d$.

$$
\left|\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}: a_{1}+\ldots+a_{d}=k\right\}\right|=\binom{k+d-1}{k} .
$$

So

$$
\left\lvert\,\{\text { basic } k \text {-covers }\}\left|\leq|\mathcal{F}(\Delta)|\binom{k+d-1}{k}\right.\right.
$$

If Δ is a $(d-1)$-dimensional matroid \ldots
The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta),|F|=d$.

$$
\left|\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}: a_{1}+\ldots+a_{d}=k\right\}\right|=\binom{k+d-1}{k} .
$$

So

$$
\left\lvert\,\{\text { basic } k \text {-covers }\}\left|\leq|\mathcal{F}(\Delta)|\binom{k+d-1}{k}=O\left(k^{d-1}\right)\right.\right.
$$

If Δ is a $(d-1)$-dimensional matroid \ldots
The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta),|F|=d$.

$$
\left|\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}: a_{1}+\ldots+a_{d}=k\right\}\right|=\binom{k+d-1}{k} .
$$

So

$$
\left\lvert\,\{\text { basic } k \text {-covers }\}\left|\leq|\mathcal{F}(\Delta)|\binom{k+d-1}{k}=O\left(k^{d-1}\right)\right.\right.
$$

Therefore $\operatorname{dim} \bar{A}(\Delta)=d=\operatorname{dim} \Delta+1$.

If Δ is a $(d-1)$-dimensional matroid \ldots
The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta),|F|=d$.

$$
\left|\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}: a_{1}+\ldots+a_{d}=k\right\}\right|=\binom{k+d-1}{k} .
$$

So

$$
\left\lvert\,\{\text { basic } k \text {-covers }\}\left|\leq|\mathcal{F}(\Delta)|\binom{k+d-1}{k}=O\left(k^{d-1}\right) .\right.\right.
$$

Therefore $\operatorname{dim} \bar{A}(\Delta)=d=\operatorname{dim} \Delta+1$.
Hence $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for any $k \in \mathbb{Z}_{+}$!

IF $S / J(\Delta)^{(k)}$ IS COHEN-MACAULAY FOR ALL $k \in \mathbb{Z}_{+} \ldots$

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \cdots$
The polarization of a monomial ideal

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The polarization of a monomial ideal

Given a monomial $u \in S$, say $u:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$, its polarization is:

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The polarization of a monomial ideal

Given a monomial $u \in S$, say $u:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$, its polarization is:

$$
\widetilde{u}:=\prod_{j=1}^{\alpha_{1}} x_{1, j} \cdot \prod_{j=1}^{\alpha_{2}} x_{2, j} \cdots \prod_{j=1}^{\alpha_{n}} x_{n, j} \in \mathbb{k}\left[x_{i, j}: i \in[n], j \in[\operatorname{deg} u]\right] .
$$

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \cdots$ The polarization of a monomial ideal

Given a monomial $u \in S$, say $u:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$, its polarization is:

$$
\widetilde{u}:=\prod_{j=1}^{\alpha_{1}} x_{1, j} \cdot \prod_{j=1}^{\alpha_{2}} x_{2, j} \cdots \prod_{j=1}^{\alpha_{n}} x_{n, j} \in \mathbb{k}\left[x_{i, j}: i \in[n], j \in[\operatorname{deg} u]\right] .
$$

If $I \subseteq S$ is a monomial ideal with minimal monomial generators u_{1}, \ldots, u_{m},

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The polarization of a monomial ideal

Given a monomial $u \in S$, say $u:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$, its polarization is:

$$
\widetilde{u}:=\prod_{j=1}^{\alpha_{1}} x_{1, j} \cdot \prod_{j=1}^{\alpha_{2}} x_{2, j} \cdots \prod_{j=1}^{\alpha_{n}} x_{n, j} \in \mathbb{k}\left[x_{i, j}: i \in[n], j \in[\operatorname{deg} u]\right] .
$$

If $I \subseteq S$ is a monomial ideal with minimal monomial generators u_{1}, \ldots, u_{m}, its polarization is the square-free monomial ideal:

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The polarization of a monomial ideal

Given a monomial $u \in S$, say $u:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$, its polarization is:

$$
\widetilde{u}:=\prod_{j=1}^{\alpha_{1}} x_{1, j} \cdot \prod_{j=1}^{\alpha_{2}} x_{2, j} \cdots \prod_{j=1}^{\alpha_{n}} x_{n, j} \in \mathbb{k}\left[x_{i, j}: i \in[n], j \in[\operatorname{deg} u]\right]
$$

If $I \subseteq S$ is a monomial ideal with minimal monomial generators u_{1}, \ldots, u_{m}, its polarization is the square-free monomial ideal:

$$
\widetilde{I}:=\left(\widetilde{u_{1}}, \ldots, \widetilde{u_{m}}\right) \subseteq \widetilde{S}:=\mathbb{k}\left[x_{i, j}: i \in[n], j \in\left[\max _{i}\left\{\operatorname{deg} u_{i}\right\}\right]\right] .
$$

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The polarization of a monomial ideal

Given a monomial $u \in S$, say $u:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$, its polarization is:

$$
\widetilde{u}:=\prod_{j=1}^{\alpha_{1}} x_{1, j} \cdot \prod_{j=1}^{\alpha_{2}} x_{2, j} \cdots \prod_{j=1}^{\alpha_{n}} x_{n, j} \in \mathbb{k}\left[x_{i, j}: i \in[n], j \in[\operatorname{deg} u]\right]
$$

If $I \subseteq S$ is a monomial ideal with minimal monomial generators u_{1}, \ldots, u_{m}, its polarization is the square-free monomial ideal:

$$
\widetilde{I}:=\left(\widetilde{u_{1}}, \ldots, \widetilde{u_{m}}\right) \subseteq \widetilde{S}:=\mathbb{k}\left[x_{i, j}: i \in[n], j \in\left[\max _{i}\left\{\operatorname{deg} u_{i}\right\}\right]\right] .
$$

\widetilde{I} has the same height and graded Betti numbers of I.

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The polarization of a monomial ideal

Given a monomial $u \in S$, say $u:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$, its polarization is:

$$
\widetilde{u}:=\prod_{j=1}^{\alpha_{1}} x_{1, j} \cdot \prod_{j=1}^{\alpha_{2}} x_{2, j} \cdots \prod_{j=1}^{\alpha_{n}} x_{n, j} \in \mathbb{k}\left[x_{i, j}: i \in[n], j \in[\operatorname{deg} u]\right]
$$

If $I \subseteq S$ is a monomial ideal with minimal monomial generators u_{1}, \ldots, u_{m}, its polarization is the square-free monomial ideal:

$$
\widetilde{I}:=\left(\widetilde{u_{1}}, \ldots, \widetilde{u_{m}}\right) \subseteq \widetilde{S}:=\mathbb{k}\left[x_{i, j}: i \in[n], j \in\left[\max _{i}\left\{\operatorname{deg} u_{i}\right\}\right]\right] .
$$

\widetilde{I} has the same height and graded Betti numbers of I. In particular: S / I is Cohen-Maculay $\Leftrightarrow \widetilde{S} / \widetilde{I}$ is Cohen-Macaulay.

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The associated primes of $\widetilde{J(\Delta)^{(k)}}$

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The associated primes of $\widetilde{J(\Delta)^{(k)}}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The associated primes of $\widetilde{J(\Delta)^{(k)}}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;
Since $\widetilde{J(\Delta)^{(k)}}=\bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_{F}^{k}}$,

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The associated primes of $\widetilde{J(\Delta)^{(k)}}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;
Since $\widetilde{J(\Delta)^{(k)}}=\bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_{F}^{k}}$, we can focus in understanding:

$$
\widetilde{\wp_{F}^{k}}=\left(\prod_{j=1}^{k} x_{i_{1}, j}, \quad \prod_{j=1}^{k-1} x_{i_{1}, j} \cdot x_{i_{2}, 1}, \quad \ldots, \quad \prod_{j=1}^{k} x_{i_{d}, j}\right)
$$

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The associated primes of $\widetilde{J(\Delta)^{(k)}}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;
Since $\widetilde{J(\Delta)^{(k)}}=\bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_{F}^{k}}$, we can focus in understanding:

$$
\widetilde{\wp_{F}^{k}}=\left(\prod_{j=1}^{k} x_{i_{1}, j}, \quad \prod_{j=1}^{k-1} x_{i_{1}, j} \cdot x_{i_{2}, 1}, \quad \ldots, \quad \prod_{j=1}^{k} x_{i_{d}, j}\right)
$$

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The associated primes of $\widetilde{J(\Delta)^{(k)}}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;
Since $\widetilde{J(\Delta)^{(k)}}=\bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_{F}^{k}}$, we can focus in understanding:

$$
\begin{aligned}
& \widetilde{\wp_{F}^{k}}=\left(\prod_{j=1}^{k} x_{i_{1}, j}, \quad \prod_{j=1}^{k-1} x_{i_{1}, j} \cdot x_{i_{2}, 1}, \quad \ldots, \quad \prod_{j=1}^{k} x_{i_{d}, j}\right), \\
F:= & \left\{i_{1}, \ldots, i_{d}\right\}(d=\operatorname{dim} \Delta+1) .
\end{aligned}
$$

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The associated primes of $\widetilde{J(\Delta)^{(k)}}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;
Since $\widetilde{J(\Delta)^{(k)}}=\bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_{F}^{k}}$, we can focus in understanding:

$$
\widetilde{\wp_{F}^{k}}=\left(\prod_{j=1}^{k} x_{i_{1}, j}, \quad \prod_{j=1}^{k-1} x_{i_{1}, j} \cdot x_{i_{2}, 1}, \quad \ldots, \quad \prod_{j=1}^{k} x_{i_{d}, j}\right)
$$

$F:=\left\{i_{1}, \ldots, i_{d}\right\}(d=\operatorname{dim} \Delta+1)$. We need to describe $\operatorname{Ass}\left(\widetilde{\wp_{F}^{k}}\right)$:

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The associated primes of $\widetilde{J(\Delta)^{(k)}}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;
Since $\widetilde{J(\Delta)^{(k)}}=\bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_{F}^{k}}$, we can focus in understanding:

$$
\widetilde{\wp_{F}^{k}}=\left(\prod_{j=1}^{k} x_{i_{1}, j}, \quad \prod_{j=1}^{k-1} x_{i_{1}, j} \cdot x_{i_{2}, 1}, \quad \ldots, \quad \prod_{j=1}^{k} x_{i_{d}, j}\right)
$$

$F:=\left\{i_{1}, \ldots, i_{d}\right\}(d=\operatorname{dim} \Delta+1)$. We need to describe $\operatorname{Ass}\left(\widetilde{\wp_{F}^{k}}\right)$:
For each vector $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}$ with $1 \leq a_{i} \leq k$, set

$$
\wp F_{, \mathrm{a}}:=\left(x_{i_{1}, \mathrm{a}_{1}}, \quad x_{i_{2}, a_{2}}, \ldots, \quad x_{i_{d}, a_{d}}\right) \subseteq \widetilde{S}
$$

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The associated primes of $\widetilde{J(\Delta)^{(k)}}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;
Since $\widetilde{J(\Delta)^{(k)}}=\bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_{F}^{k}}$, we can focus in understanding:

$$
\widetilde{\wp_{F}^{k}}=\left(\prod_{j=1}^{k} x_{i_{1}, j}, \quad \prod_{j=1}^{k-1} x_{i_{1}, j} \cdot x_{i_{2}, 1}, \quad \ldots, \quad \prod_{j=1}^{k} x_{i_{d}, j}\right)
$$

$F:=\left\{i_{1}, \ldots, i_{d}\right\}(d=\operatorname{dim} \Delta+1)$. We need to describe $\operatorname{Ass}\left(\widetilde{\wp_{F}^{k}}\right)$:
For each vector $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}$ with $1 \leq a_{i} \leq k$, set

$$
\wp F, \mathrm{a}:=\left(x_{i_{1}, \mathrm{a}_{1}}, \quad x_{i_{2}, a_{2}}, \ldots, \quad x_{i_{d}, a_{d}}\right) \subseteq \widetilde{S}
$$

One can prove that for any prime ideal $\wp \subseteq \widetilde{S}$,

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \cdots$ The associated primes of $\widetilde{J(\Delta)^{(k)}}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;
Since $\widetilde{J(\Delta)^{(k)}}=\bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_{F}^{k}}$, we can focus in understanding:

$$
\widetilde{\wp_{F}^{k}}=\left(\prod_{j=1}^{k} x_{i_{1}, j}, \quad \prod_{j=1}^{k-1} x_{i_{1}, j} \cdot x_{i_{2}, 1}, \quad \ldots, \quad \prod_{j=1}^{k} x_{i_{d}, j}\right)
$$

$F:=\left\{i_{1}, \ldots, i_{d}\right\}(d=\operatorname{dim} \Delta+1)$. We need to describe $\operatorname{Ass}\left(\widetilde{\wp_{F}^{k}}\right)$:
For each vector $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}$ with $1 \leq a_{i} \leq k$, set

$$
\wp F_{, \mathrm{a}}:=\left(\begin{array}{llll}
x_{i_{1}, \mathrm{a}_{1}}, & x_{i_{2}, \mathrm{a}_{2}}, & \ldots, & x_{i_{d}, a_{d}}
\end{array}\right) \subseteq \widetilde{S} .
$$

One can prove that for any prime ideal $\wp \subseteq \widetilde{S}$,

$$
\wp \in \operatorname{Ass}\left(\widetilde{\wp_{F}^{k}}\right) \Leftrightarrow \wp=\wp_{F, \mathbf{a}} \text { with }|\mathbf{a}|=a_{1}+\ldots+a_{d} \leq k+d-1 .
$$

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$
The lack of connectedness

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$
The lack of connectedness
Assume by contradiction that Δ is not a matroid.

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$
The lack of connectedness
Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta), i \in F$, such that:
$(F \backslash\{i\}) \cup\{j\}$ is not a facet of Δ for every $j \in G$.

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta), i \in F$, such that:
$(F \backslash\{i\}) \cup\{j\}$ is not a facet of Δ for every $j \in G$.
Let us assume that $F=\left\{i_{1}, \ldots, i_{d}\right\}, G=\left\{j_{1}, \ldots, j_{d}\right\}$ and $i=i_{1}$.

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta), i \in F$, such that: $(F \backslash\{i\}) \cup\{j\}$ is not a facet of Δ for every $j \in G$.
Let us assume that $F=\left\{i_{1}, \ldots, i_{d}\right\}, G=\left\{j_{1}, \ldots, j_{d}\right\}$ and $i=i_{1}$.
Eventually, consider $\mathcal{H}:=J(\Delta)^{(d+1)} .(d+1+d-1=2 d)$.

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta), i \in F$, such that:

$$
(F \backslash\{i\}) \cup\{j\} \text { is not a facet of } \Delta \text { for every } j \in G
$$

Let us assume that $F=\left\{i_{1}, \ldots, i_{d}\right\}, G=\left\{j_{1}, \ldots, j_{d}\right\}$ and $i=i_{1}$.
Eventually, consider $\mathcal{H}:=J(\Delta)^{(d+1)} .(d+1+d-1=2 d)$.
By the previous slide, $\wp_{F, \mathbf{a}}$ and \wp_{G},b belong to $\operatorname{Ass}(\mathcal{H})$, where

$$
\mathbf{a}:=(d+1,1, \ldots, 1) \in \mathbb{N}^{d} \text { and } \mathbf{b}:=(2,2, \ldots, 2) \in \mathbb{N}^{d}(|\mathbf{a}|=|\mathbf{b}|=2 d) .
$$

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta), i \in F$, such that:

$$
(F \backslash\{i\}) \cup\{j\} \text { is not a facet of } \Delta \text { for every } j \in G
$$

Let us assume that $F=\left\{i_{1}, \ldots, i_{d}\right\}, G=\left\{j_{1}, \ldots, j_{d}\right\}$ and $i=i_{1}$.
Eventually, consider $\mathcal{H}:=J(\Delta)^{(d+1)} .(d+1+d-1=2 d)$.
By the previous slide, $\wp_{F, \mathbf{a}}$ and \wp_{G},b belong to $\operatorname{Ass}(\mathcal{H})$, where

$$
\mathbf{a}:=(d+1,1, \ldots, 1) \in \mathbb{N}^{d} \text { and } \mathbf{b}:=(2,2, \ldots, 2) \in \mathbb{N}^{d}(|\mathbf{a}|=|\mathbf{b}|=2 d) .
$$

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta), i \in F$, such that:

$$
(F \backslash\{i\}) \cup\{j\} \text { is not a facet of } \Delta \text { for every } j \in G .
$$

Let us assume that $F=\left\{i_{1}, \ldots, i_{d}\right\}, G=\left\{j_{1}, \ldots, j_{d}\right\}$ and $i=i_{1}$.
Eventually, consider $\mathcal{H}:=J(\Delta)^{(d+1)} .(d+1+d-1=2 d)$.
By the previous slide, $\wp_{F, \mathbf{a}}$ and \wp_{G},b belong to $\operatorname{Ass}(\mathcal{H})$, where

$$
\mathbf{a}:=(d+1,1, \ldots, 1) \in \mathbb{N}^{d} \text { and } \mathbf{b}:=(2,2, \ldots, 2) \in \mathbb{N}^{d}(|\mathbf{a}|=|\mathbf{b}|=2 d) .
$$

We will show that $R:=\widetilde{S} / \mathcal{H}$ is not Cohen-Macaulay,

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

$$
(F \backslash\{i\}) \cup\{j\} \text { is not a facet of } \Delta \text { for every } j \in G .
$$

Let us assume that $F=\left\{i_{1}, \ldots, i_{d}\right\}, G=\left\{j_{1}, \ldots, j_{d}\right\}$ and $i=i_{1}$.
Eventually, consider $\mathcal{H}:=J(\triangle)^{(d+1)} .(d+1+d-1=2 d)$.
By the previous slide, $\wp_{F, \mathbf{a}}$ and \wp_{G},b belong to $\operatorname{Ass}(\mathcal{H})$, where

$$
\mathbf{a}:=(d+1,1, \ldots, 1) \in \mathbb{N}^{d} \text { and } \mathbf{b}:=(2,2, \ldots, 2) \in \mathbb{N}^{d}(|\mathbf{a}|=|\mathbf{b}|=2 d) .
$$

We will show that $R:=\widetilde{S} / \mathcal{H}$ is not Cohen-Macaulay, contradicting the hypothesis that $S / J(\Delta)^{(d+1)}$ is Cohen-Macaulay.

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta), i \in F$, such that:

$$
(F \backslash\{i\}) \cup\{j\} \text { is not a facet of } \Delta \text { for every } j \in G
$$

Let us assume that $F=\left\{i_{1}, \ldots, i_{d}\right\}, G=\left\{j_{1}, \ldots, j_{d}\right\}$ and $i=i_{1}$.
Eventually, consider $\mathcal{H}:=J(\Delta)^{(d+1)} .(d+1+d-1=2 d)$.
By the previous slide, $\wp_{F, \mathbf{a}}$ and $\wp_{G, \mathbf{b}}$ belong to $\operatorname{Ass}(\mathcal{H})$, where

$$
\mathbf{a}:=(d+1,1, \ldots, 1) \in \mathbb{N}^{d} \text { and } \mathbf{b}:=(2,2, \ldots, 2) \in \mathbb{N}^{d}(|\mathbf{a}|=|\mathbf{b}|=2 d) .
$$

We will show that $R:=\widetilde{S} / \mathcal{H}$ is not Cohen-Macaulay, contradicting the hypothesis that $S / J(\Delta)^{(d+1)}$ is Cohen-Macaulay.
Were it, $R_{\wp_{F, \mathrm{a}}+\wp_{G, \mathrm{~b}}}$ would be Cohen-Macaulay too.

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

$$
(F \backslash\{i\}) \cup\{j\} \text { is not a facet of } \Delta \text { for every } j \in G
$$

Let us assume that $F=\left\{i_{1}, \ldots, i_{d}\right\}, G=\left\{j_{1}, \ldots, j_{d}\right\}$ and $i=i_{1}$.
Eventually, consider $\mathcal{H}:=J(\triangle)^{(d+1)} .(d+1+d-1=2 d)$.
By the previous slide, $\wp_{F, \mathbf{a}}$ and \wp_{G},b belong to $\operatorname{Ass}(\mathcal{H})$, where

$$
\mathbf{a}:=(d+1,1, \ldots, 1) \in \mathbb{N}^{d} \text { and } \mathbf{b}:=(2,2, \ldots, 2) \in \mathbb{N}^{d}(|\mathbf{a}|=|\mathbf{b}|=2 d) .
$$

We will show that $R:=\widetilde{S} / \mathcal{H}$ is not Cohen-Macaulay, contradicting the hypothesis that $S / J(\Delta)^{(d+1)}$ is Cohen-Macaulay.
Were it, $R_{\wp \vdash, \mathbf{a}}+\wp_{G, \mathrm{~b}}$ would be Cohen-Macaulay too.
Particularly, $R_{\wp \vdash, \mathrm{a}}+\wp_{G, \mathrm{~b}}$ would be connected in codimension 1.

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The conclusion

So, there should be a prime $\wp \in \operatorname{Ass}(\mathcal{H})$ such that:

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The conclusion

So, there should be a prime $\wp \in \operatorname{Ass}(\mathcal{H})$ such that:
(i) $\wp \subseteq \wp_{F, \mathbf{a}}+\wp_{G, \mathbf{b}}$;

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The conclusion

So, there should be a prime $\wp \in \operatorname{Ass}(\mathcal{H})$ such that:
(i) $\wp \subseteq \wp_{F, \mathbf{a}}+\wp_{G, \mathbf{b}}$;
(ii) $h t\left(\wp+\wp_{F, \mathrm{a}}\right)=d+1$.

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \cdots$ The conclusion

So, there should be a prime $\wp \in \operatorname{Ass}(\mathcal{H})$ such that:
(i) $\wp \subseteq \wp_{F, \mathbf{a}}+\wp_{G, \mathbf{b}}$;
(ii) $\operatorname{ht}\left(\wp+\wp_{F, \mathrm{a}}\right)=d+1$.

In other words, there should be $p, q \in[d]$ such that:

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \cdots$ The conclusion

So, there should be a prime $\wp \in \operatorname{Ass}(\mathcal{H})$ such that:
(i) $\wp \subseteq \wp_{F, \mathbf{a}}+\wp_{G, \mathbf{b}}$;
(ii) $\operatorname{ht}\left(\wp+\wp_{F, \mathrm{a}}\right)=d+1$.

In other words, there should be $p, q \in[d]$ such that:

$$
\wp=\left(x_{i_{s}, a_{s}}, \quad x_{j_{q}, b_{q}}: s \in[d] \backslash\{p\}\right)
$$

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \cdots$ The conclusion

So, there should be a prime $\wp \in \operatorname{Ass}(\mathcal{H})$ such that:
(i) $\wp \subseteq \wp_{F, \mathbf{a}}+\wp_{G, \mathbf{b}}$;
(ii) $\operatorname{ht}\left(\wp+\wp_{F, \mathrm{a}}\right)=d+1$.

In other words, there should be $p, q \in[d]$ such that:

$$
\wp=\left(x_{i_{s}, a_{s}}, \quad x_{j_{q}, b_{q}}: s \in[d] \backslash\{p\}\right) .
$$

But this is impossible:

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \cdots$ The conclusion

So, there should be a prime $\wp \in \operatorname{Ass}(\mathcal{H})$ such that:
(i) $\wp \subseteq \wp_{F, \mathbf{a}}+\wp_{G, \mathbf{b}}$;
(ii) $\operatorname{ht}\left(\wp+\wp_{F, \mathrm{a}}\right)=d+1$.

In other words, there should be $p, q \in[d]$ such that:

$$
\wp=\left(x_{i_{s}, a_{s}}, \quad x_{j q, b_{q}}: s \in[d] \backslash\{p\}\right) .
$$

But this is impossible:
If $p=1$, then $\left(F \backslash\left\{i_{1}\right\}\right) \cup\left\{j_{q}\right\} \in \mathcal{F}(\Delta)$, a contradiction.

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The conclusion

So, there should be a prime $\wp \in \operatorname{Ass}(\mathcal{H})$ such that:
(i) $\wp \subseteq \wp_{F, \mathbf{a}}+\wp_{G, \mathbf{b}}$;
(ii) $\operatorname{ht}\left(\wp+\wp_{F, \mathrm{a}}\right)=d+1$.

In other words, there should be $p, q \in[d]$ such that:

$$
\wp=\left(x_{i_{s}, a_{s}}, \quad x_{j q, b_{q}}: s \in[d] \backslash\{p\}\right) .
$$

But this is impossible:
If $p=1$, then $\left(F \backslash\left\{i_{1}\right\}\right) \cup\left\{j_{q}\right\} \in \mathcal{F}(\Delta)$, a contradiction.
If $p \neq 1$, then $(d+1)+\underbrace{1+\ldots+1}_{d-2}+2>2 d$, a contradiction.

If $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for all $k \in \mathbb{Z}_{+} \ldots$ The conclusion

So, there should be a prime $\wp \in \operatorname{Ass}(\mathcal{H})$ such that:
(i) $\wp \subseteq \wp_{F, \mathbf{a}}+\wp_{G, \mathbf{b}}$;
(ii) $\operatorname{ht}\left(\wp+\wp_{F, \mathrm{a}}\right)=d+1$.

In other words, there should be $p, q \in[d]$ such that:

$$
\wp=\left(x_{i_{s}, a_{s}}, \quad x_{j_{q}, b_{q}}: s \in[d] \backslash\{p\}\right) .
$$

But this is impossible:
If $p=1$, then $\left(F \backslash\left\{i_{1}\right\}\right) \cup\left\{j_{q}\right\} \in \mathcal{F}(\Delta)$, a contradiction.
If $p \neq 1$, then $(d+1)+\underbrace{1+\ldots+1}_{d-2}+2>2 d$, a contradiction.
So, Δ has to be a matroid!

A related problem

A related problem

As we noticed, for any Δ, we have $\operatorname{dim} \bar{A}(\Delta) \geq \operatorname{dim} \Delta+1$.

A related problem

As we noticed, for any Δ, we have $\operatorname{dim} \bar{A}(\Delta) \geq \operatorname{dim} \Delta+1$. We showed that equality holds true exactly when Δ is a matroid.

A related problem

As we noticed, for any Δ, we have $\operatorname{dim} \bar{A}(\Delta) \geq \operatorname{dim} \Delta+1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

A related problem

As we noticed, for any Δ, we have $\operatorname{dim} \bar{A}(\Delta) \geq \operatorname{dim} \Delta+1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

Looking for a combinatorial characterization of $\operatorname{dim} \bar{A}(\Delta)$.

A related problem

As we noticed, for any Δ, we have $\operatorname{dim} \bar{A}(\Delta) \geq \operatorname{dim} \Delta+1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

Looking for a combinatorial characterization of $\operatorname{dim} \bar{A}(\Delta)$.

Together with Constantinescu, we solved this problem when $\operatorname{dim} \Delta=1$, that is when $\Delta=G$ is a graph.

A related problem

As we noticed, for any Δ, we have $\operatorname{dim} \bar{A}(\Delta) \geq \operatorname{dim} \Delta+1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

Looking for a combinatorial characterization of $\operatorname{dim} \bar{A}(\Delta)$.

Together with Constantinescu, we solved this problem when $\operatorname{dim} \Delta=1$, that is when $\Delta=G$ is a graph. A little more precisely, we defined an invariant of G,

A related problem

As we noticed, for any Δ, we have $\operatorname{dim} \bar{A}(\Delta) \geq \operatorname{dim} \Delta+1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

Looking for a combinatorial characterization of $\operatorname{dim} \bar{A}(\Delta)$.

Together with Constantinescu, we solved this problem when $\operatorname{dim} \Delta=1$, that is when $\Delta=G$ is a graph. A little more precisely, we defined an invariant of G, called ordered matching number and denoted by $\nu_{0}(G)$,

A related problem

As we noticed, for any Δ, we have $\operatorname{dim} \bar{A}(\Delta) \geq \operatorname{dim} \Delta+1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

Looking for a combinatorial characterization of $\operatorname{dim} \bar{A}(\Delta)$.

Together with Constantinescu, we solved this problem when $\operatorname{dim} \Delta=1$, that is when $\Delta=G$ is a graph. A little more precisely, we defined an invariant of G, called ordered matching number and denoted by $\nu_{\circ}(G)$, and we showed that $\operatorname{dim} \bar{A}(G)=\nu_{\circ}(G)+1$.

A related problem

As we noticed, for any Δ, we have $\operatorname{dim} \bar{A}(\Delta) \geq \operatorname{dim} \Delta+1$. We showed that equality holds true exactly when Δ is a matroid. So, the following is a natural problem:

Looking for a combinatorial characterization of $\operatorname{dim} \bar{A}(\Delta)$.

Together with Constantinescu, we solved this problem when $\operatorname{dim} \Delta=1$, that is when $\Delta=G$ is a graph. A little more precisely, we defined an invariant of G, called ordered matching number and denoted by $\nu_{\circ}(G)$, and we showed that $\operatorname{dim} \bar{A}(G)=\nu_{\circ}(G)+1$.

Already in this case things are complicated!

References

- Constantinescu, Varbaro, Koszulness, Krull dimension and other properties of graph-related algebras, to appear in J. Algebraic Combin., available online on ArXiv.
- Herzog, Hibi, Trung, Symbolic powers of monomial ideals and vertex cover algebras, Adv. Math. (2007).
- Minh, Trung, Cohen-Macaulayness of monomial ideals and symbolic powers of Stanley-Reisner ideals, to appear in Adv. Math., available online on ArXiv.
- Varbaro, Symbolic powers and matroids, to appear in Proc. Amer. Math. Soc., available online on ArXiv.

