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UNMIXED GRAPHS THAT ARE DOMAINS

Bruno Benedetti1 and Matteo Varbaro2
1Institut für Mathematik, FU Berlin, Germany
2Dipartimento di Matematica, Università. degli Studi di Genova, Italy

We extend a theorem of Villareal on bipartite graphs to the class of all graphs. On
the way to this result, we study the basic covers algebra !A!G" of an arbitrary graph
G. We characterize with purely combinatorial methods the cases when 1) !A!G" is a
domain and 2) G is unmixed and !A!G" is a domain.

Key Words: Basic covers; Minimal vertex covers; Symbolic powers; Unmixed graphs.
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1. INTRODUCTION AND NOTATION

Fix a graph on n vertices and give each vertex a price; let the “cost” of an edge
be the sum of the costs of its endpoints. A nonzero price distribution such that no
edge is cheaper than k euros is called a k-cover.

A k-cover and a k′-cover of the same graph can be summed vertex-wise,
yielding a !k+ k′"-cover; one says that a k-cover is basic if it cannot be decomposed
into the sum of a k-cover and a 0-cover. Basic 1-covers of a graph are also known
as “minimal vertex covers” and have been extensively studied by graph theorists.

A graph G is called unmixed if all its basic 1-covers have the same number of
ones. For example, a square is unmixed, a pentagon is unmixed, yet a hexagon is
not unmixed. A graph G is called a domain if, for all s# t ∈ !, any s basic 1-covers
and any t basic 2-covers always add up to a basic !s + 2t"-cover. For example, the
square is a domain, while the pentagon and the hexagon are not domains.

This notation is motivated by the following algebraic interpretation (see
Herzog et al. [2], or Benedetti et al. [1] for details). Let S be a polynomial ring of n
variables over some field, and let " be its irrelevant ideal. Let I!G" be the ideal of S
generated by all the monomials xixj such that $i# j% is an edge of G. The ideal I!G"
is called edge ideal of G, and its Alexander dual J!G" = ∩$i#j%!xi# xj" is called cover
ideal of G. The symbolic fiber cone of J!G" is $A!G" = Rs!J!G""/"Rs!J!G"", where
Rs!J!G"" = ⊕i≥0J!G"!i" is the symbolic Rees algebra of J!G" and J!G"!i" is the ith
symbolic power of J!G".
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UNMIXED GRAPHS THAT ARE DOMAINS 2261

The following facts are easy to prove:

a) G is unmixed if and only if I!G" is unmixed;
b) G is a domain if and only if $A!G" is a domain;
c) if G is a domain, then $A!G" is a Cohen–Macaulay algebra (and a normal

domain).

In the present paper, we introduce three entirely combinatorial properties,
called “square condition” (SC), “weak square condition” (WSC), and “matching
square condition” (MSC).

Definition 1.1. We say that a graph G satisfies:

i) SC, if for each triple of consecutive edges $i# i′%, $i# j%, and $j# j′% of G, one has
that i′ '= j′ and $i′# j′% is also an edge of G;

ii) WSC, if G has at least one edge, and for every non-isolated vertex i there exists
an edge $i# j% such that for all edges $i# i′% and $j# j′% of G, $i′# j′% is also an edge
of G (in particular, i′ '= j′);

iii) MSC, if the graph Gred obtained by deleting all the isolated vertices of G is
nonempty, and admits a perfect matching such that for each edge $i# j% of the
matching, and for all edges $i# i′% and $j# j′% of G, one has that $i′# j′% is also an
edge of G (in particular, i′ '= j′).

We will see in Lemma 2.3 that the first property is satisfied only by bipartite
complete graphs, by isolated vertices, and by disjoint unions of these two types of
graphs.

The second property, WSC, is a weakened version of the first one. It was
studied in [1], where the authors proved that when G is bipartite, G satisfies WSC
if and only if G is a domain. We extend this result to non-bipartite graphs.

Main Theorem 1 (Theorem 2.5). A graph G satisfies WSC if and only if G is a
domain.

Finally, the third property was investigated by Villarreal [3, Theorem 1.1], who
proved that, when G is bipartite, G satisfies MSC if and only if G is unmixed. In
the present paper, we extend Villarreal’s theorem to the non-bipartite case, showing
the following theorem.

Main Theorem 2 (Theorem 2.8). A graph G satisfies MSC if and only if G is an
unmixed domain.

This implies Villarreal’s result because in the bipartite case all unmixed
graphs are domains. However, many graphs satisfy MSC without being bipartite
(see Theorem 2.10). From an algebraic point of view, Main Theorem 2 characterizes
the graphs G for which every symbolic power of the cover ideal of G is generated
by monomials of the same degree.

We point out that the proof of Main Theorem 2 is not an extension of
Villarreal’s proof. We follow a different approach, introducing the graph G0−1,
which is obtained from G by removing the isolated vertices and then by removing all
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2262 BENEDETTI AND VARBARO

edges $i# j% such that there exists a basic 1-cover a of G for which ai + aj = 2. This
graph G0−1 always satisfies SC (see Lemma 2.4). Furthermore, G0−1 has no isolated
points if and only if the original graph G satisfied WSC (see Theorem 2.5); finally,
G0−1 admits a matching if and only if G satisfies MSC (see Theorem 2.8).

For example, let G be the graph on six vertices, given by the edges $1# 2%,
$2# 3%, $3# 4%, $1# 4%, $2# 5%, $4# 5%, and $5# 6%. This graph G has three basic 1-covers.
As G0−1 is the disjoint union of a K2#2 and a K1#1, we have that G is an unmixed
domain and satisfies MSC.

2. PROOFS OF THE MAIN THEOREMS

Lemma 2.1. Let $i# j% be an edge of a graph G. For any integer d ≥ 1, the following
are equivalent:

(1) For any k ∈ $1# & & & #d%, and for any basic k-cover a, ai + aj = k;
(2) For any basic 1-cover a, ai + aj = 1;
(3) If $i# i′% is an edge of G and $j# j′% an edge of G, then i′ '= j′ and $i′# j′% is also an

edge of G.

Proof. (2) is a special case of (1). To see that (2) implies (3), we argue by
contradiction. If G contains a triangle $i# i′%, $i# j%, $j# i′%, we claim that there is
a basic 1-cover a such that ai = aj = 1 and ai′ = 0. In fact, define a 1-cover b by
setting bi′ = 0, and bk = 1 for all k '= i′. In case b is basic we are done; otherwise,
b breaks into the sum of a basic 1-cover a and some 0-cover. This a has still the
property of yielding 0 on i′, and thus 1 on i and j, so we are done. If instead G
contains four edges $i# i′%, $i# j% and $j# j′%, but not the fourth edge $i′# j′%, we claim
that there is a basic 1-cover a such that ai = aj = 1 and ai′ = aj′ = 0. The proof is
as before: First one defines a 1-cover b by setting bi′ = bj′ = 0, and bk = 1 for all k
such that j′ '= k '= i′; then one reduces b to a basic 1-cover.

Finally, assume (1) is false: Then there is a basic k-cover a such that
ai + aj > k. For the cover to be basic, there must be a neighbour i′ of i such that
ai′ + ai = k, and a neighbour j′ of j such that aj′ + aj = k. But then ai′ + aj′ = 2k−
ai − aj < k, so $i′# j′% cannot be an edge of G: Hence, (3) is false, too. Thus (3)
implies (1). !

In the proof of the next Lemma we use a convenient shortening: we say that
a k-cover a can be “lopped at the vertex i” if replacing ai with ai − 1 in the vector
a still yields a k-cover.

Lemma 2.2. Let G be a graph. G is a domain if and only if G has at least one edge,
and for each non-isolated vertex i there exists a vertex j adjacent to i in G such that:

a) For any basic 1-cover a one has ai + aj = 1, and
b) For any basic 2-cover b one has bi + bj = 2.

Proof. The fact that G is a domain rules out the possibility that G might be
a disjoint union of points; so let us assume that G has at least one edge. G is not
a domain if and only if a nonbasic !s + 2t"-cover of G can be written as the sum
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UNMIXED GRAPHS THAT ARE DOMAINS 2263

of s basic 1-covers and t basic 2-covers, if and only if there is a vertex i such that a
certain sum c of s basic 1-covers and t basic 2-covers can be lopped at the vertex i
(and, in particular, this i cannot be isolated), if and only if there exists a non-isolated
vertex i such that, for each edge $i# j%, either there exists a basic 1-cover a such that
ai + aj > 1, or there exists a basic 2-cover b such that bi + bj > 2. !

Lemma 2.3. Let G be a connected graph. G satisfies SC if and only if G is either a
single point or a Ka#b, for some b ≥ a ≥ 1.

Proof. The fact that a Ka#b satisfies SC is obvious. For the converse implication,
first note that a graph G satisfying SC cannot contain triangles; moreover, if G
contained a !2d + 1"-cycle, by SC we could replace three edges of this cycle by a
single edge, hence G would contain a !2d − 1"-cycle as well. By induction on d
we conclude that G contains no odd cycle. So G is bipartite: If 'n( = A ∪ B is the
bipartition of its vertices, we claim that any vertex in A is adjacent to any vertex in
B. In fact, if G has no three consecutive edges, then G is either a point or a K1#b
(for some positive integer b) and there is nothing to prove. Otherwise, take a ∈ A
and b ∈ B: Since G is connected, there is an (odd length) path from a to b. By SC,
the first three edges of such a path can be replaced by a single edge, yielding a path
that is two steps shorter. Iterating the trick, we eventually find a path of length 1
(that is, an edge) from a to b. !

Definition 2.1. Let G be a graph with at least one edge. We denote by G0−1 the
graph that has:

a) As vertices, the vertices of Gred;
b) As edges, the edges $i# j% of G such that for every basic 1-cover a of G one has

ai + aj = 1.

Lemma 2.4. Let G be an arbitrary graph with at least one edge. Then G0−1 satisfies
SC.

Proof. Assume $h# i%, $i# j% and $j# k% are three consecutive edges of G0−1. For
any basic 1-cover a, ah + ai = 1, ai + aj = 1 and aj + ak = 1. Summing up the three
equations, we obtain that ah + 2ai + 2aj + ak = 3, thus ah + ak = 1: so all we need
to prove is that $h# k% is an edge of G. But by Lemma 2.1, this follows from the fact
that for any basic 1-cover a one has ai + aj = 1. !

Theorem 2.5. Let G be a graph with at least one edge. Then the following are
equivalent:

(1) G satisfies WSC;
(2) G is a domain;
(3) $A!G" is a domain;
(4) G0−1 has no isolated points.

Proof. The equivalence of (1) and (2) follows from combining Lemma 2.1 and
Lemma 2.2. The equivalence of (2) and (3) was explained in the Introduction. The
equivalence of (1) and (4) is straightforward from Lemma 2.1. !
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2264 BENEDETTI AND VARBARO

Lemma 2.6. Let G be a domain. Let H1, & & & , Hk be the connected components of
G0−1; let Ai ∪ Bi be the bipartition of the vertices of Hi, for i = 1# & & & # k. Then:

(1) If G contains a triangle, all three edges are not in G0−1; in particular, two vertices
of the same Bi (or of the same Ai) are not adjacent in G;

(2) If G contains an edge between a vertex of Ai and a vertex of Aj , then it contains
also edges between any vertex of Ai and any vertex of Aj;

(3) If G contains an edge between Ai and Aj , then it contains no edge between
Bi and Bj;

(4) If G contains an edge between Ai and Aj and another edge between Bi and Bk, then
it contains an edge between Aj and Bk;

(5) If G contains an edge between Ah and Ai and another edge between Ah and Aj ,
then G contains no edge between Bi and Bj .

Proof. (1) Choose a vertex v of the triangle, and take a basic 1-cover that yields
0 on v. This 1-cover yields 1 on the other two vertices, so the edge opposite to v
does not belong to G0−1. The second part of the claim follows from the fact that
each Hi is complete bipartite: Were two adjacent vertices both in Ai (or both in Bi),
they would have a common neighbour in G0−1, so there would be a triangle in G
with two edges in G0−1, a contradiction.

(2) Take a vertex i of Ai adjacent in G to a point j of Aj . Let i′ be any point
of Ai different from i. By contradiction, there is a vertex j′ of Aj that is not adjacent
to i′. Construct a basic 1-cover c that yields 0 on i′, and 0 on Aj (c is well defined
because no two vertices of Aj can be adjacent, by the previous item). Since cj = 0,
ci must be 1; and since ci′ = 0, c yields 1 on Bi; but then all edges $i# b% with b ∈ Bi

are not in G0−1, a contradiction.

(3) Assume G contains an edge $i# j% between Ai and Aj , and choose any
vertex x of Bi, and any vertex y of Bj . Take a basic 1-cover a such that ai + aj = 2.
Since $x# i% and $y# j% are in G0−1, ai + ax = aj + ay = 1; thus ax = ay = 0, which
implies that there cannot be an edge in G from x to y.

(4) Fix a vertex i of Ai and use the WSC property (which G satisfies by
Theorem 2.5): There exists a x adjacent to i such that for any edge $i# j% and for
any edge $x# y% of G, $j# y% is also an edge of G. By Lemma 2.1, ai + ax = 1 for each
basic 1-cover a; that is to say, $i# x% is in G0−1. This implies that x is in Bi. So if G
contains an edge $i# j%, with j ∈ Aj , and an edge $x# y%, with y in some Bk, then G
contains also the edge $j# y% from Aj to Bk.

(5) By contradiction, assume there is an edge between Bi and Bj . By the
previous item, since there is an edge between Ah and Aj , there is also an edge
between Ah and Bi; but this contradicts the item (1), since there is an edge between
Ah and Ai. !

Lemma 2.7. Let G be a domain. Let H be a single connected component of G0−1, and
let A ∪ B be the bipartition of the vertices of H . There exists a basic 1-cover a of G that
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UNMIXED GRAPHS THAT ARE DOMAINS 2265

yields 1 on A, 0 on B, and such that the cover b defined as

bi =
{
1− ai if i ∈ H#

ai otherwise

is a basic 1-cover that yields 1 on B and 0 on A.

Proof. Let H1# & & & #Hk denote the other connected components of G0−1, and let
Ai ∪ Bi be the bipartition of the vertices of Hi. By Lemma 2.6 [item (1)], no two
points in Bi are adjacent. If in G there is an edge from A to some Ai, then Bi is not
connected to B by any edge (cf. Lemma 2.6, item (3)); if in addition there are edges
from A to some Aj with j '= i, by 2.6, item (5), there is no edge between Bi and Bj

either. Therefore, the vector that yields:

a) 0 on B,
b) 0 on all the Bi’s such that Ai is connected with an edge to A, and
c) 1 everywhere else,

is a 1-cover of G. If this 1-cover is basic, call it a; otherwise, decompose it into
the sum of a basic 1-cover a and a 0-cover c. In any case, a satisfies the desired
properties. !

Definition 2.2. By norm of a k-cover we mean the sum of all its entries. We denote
this as *a* )= ∑n

i=1 ai.

Theorem 2.8. Let G be a graph with n vertices, all of them non-isolated. Then the
following are equivalent:

(1) G satisfies MSC;
(2) Every basic k-cover of G has norm kn

2 ;
(3) For any k, the norm of all basic k-covers of G is the same;
(4) G is an unmixed domain;
(5) $A!G" is a domain, and I!G" is unmixed;
(6) Every connected component of G0−1 is a Ka#a, for some positive integer a;
(7) G0−1 admits a matching;
(8) G admits a matching, and all the basic 1-covers of G have exactly n

2 ones.

Proof. (1) ⇒ (2) The matching consists of n
2 edges, so if we show that for every

edge $i# j% of the matching and for every basic k-cover one has ai + aj = k, we are
done. But this follows from Lemma 2.1, since $i′# j′% must be an edge of G whenever
$i# i′% and $j# j′% are edges of G.

(2) ⇒ (3) Obvious.

(3) ⇒ (4) Setting k = 1 we get the definition of unmixedness. Now, denote by
f!k" the norm of any basic k-cover. Since twice a basic 1-cover yields a basic 2-cover,
2 · f!1" = f!2"; and in general k · f!1" = f!k". Suppose that an !s + 2t"-cover a can
be written as the sum of s basic 1-covers and t basic 2-covers. The norm of a
can be computed via its summands, yielding *a* = s · f!1"+ t · f!2" = !s + 2t" · f!1"&
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2266 BENEDETTI AND VARBARO

Were a non-basic, it could be written as the sum of a basic !s + 2t"-cover b and
a 0-cover c, whence *a* = *b*+ *c* ≥ *b*+ 1 = f!s + 2t"+ 1 = !s + 2t" · f!1"+ 1,
a contradiction. This proves that G is a domain.

(4) ⇔ (5) Explained in the Introduction.

(4) ⇒ (6) Let H be a connected component of G0−1. By Theorem 2.5, since
G is a domain, H is bipartite complete; let A ∪ B be the bipartition of the vertices
of H . Construct the basic 1-covers a and b as in Lemma 2.7; they have a different
number of ones unless *A* = *B*, so by unmixedness we conclude.

(6) ⇒ (7), (6) ⇒ (8) Obvious.

(7) ⇒ (6) By Lemmas 2.3 and 2.4 every connected component of G0−1 is
either a point or a bipartite complete graph; in order for G0−1 to admit a matching,
each connected component of G0−1 must be of the form Ka#a, for some integer a.

(8) ⇒ (1) Let # be the given matching. In view of Lemma 2.1, we only need
to show that for every edge $i# j% of # and for every basic 1-cover a one has ai +
aj = 1. Yet for any basic 1-cover a one has

n

2
=

n∑

i=1

ai =
∑

$i#j%∈#
ai + aj#

and a sum of n
2 positive integers equals n

2 only if each summand equals 1. !

Corollary 2.9 (Villarreal). Let G be a bipartite graph without isolated points. G is
unmixed if and only if G satisfies MSC.

Proof. In the bipartite case, “unmixed” implies “domain” (see, e.g., [1, 2]). So the
condition (3) in Theorem 2.8 is equivalent to unmixedness. !

The next result shows how to produce many examples of graphs (not
necessarily bipartite) that satisfy the assumptions above.

Theorem 2.10. Let G be an arbitrary graph.

a) Let G+ be the graph obtained by attaching a pendant to each vertex of G. Then G+

satifies MSC. Moreover, G+ is bipartite if and only if G is bipartite.
b) Let G′ be the graph obtained from G attaching a pendant to each of those vertex

of G that appear as isolated vertices in G0−1. Then G′ satisfies WSC. Moreover, G′

satisfies MSC if and only if G0−1 is unmixed.

Proof. Let us show the second item first. By definition of G0−1 (and by
Lemma 2.1), the isolated vertices of G0−1 are exactly the vertices of G at which the
WSC property does not hold. By attaching a pendant j at the vertex i, the property
“if $i# i′% and $j# j′% are edges, then $i′# j′% is also an edge” holds true trivially, since
j′ must coincide with i.

Of course, in a matching of G′ each pendant should be paired with the vertex
it was attached to. By Theorem 2.8, !G′" satisfies MSC if and only if !G′"0−1 has
a matching, if and only if the graph obtained removing all isolated vertices from
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UNMIXED GRAPHS THAT ARE DOMAINS 2267

G0−1 has a matching. This happens if and only if each connected component of
G0−1 is either a single point or a Ka#a, for some positive integer a. This characterizes
unmixedness within the class of graphs satifying the SC property.

To prove the first item, label 1+# 2+# & & & # n+ the pendants attached to 1# 2# & & & # n,
respectively. The requested matching is $1# 1+%# $2# 2+%# & & & # $n# n+%. The possible
presence of an odd-cycle in G reflects in the presence of the same odd cycle in G′. !

Examples and Remarks

1. The complete graph G = K4 is unmixed and has a matching, but it does
not satisfy MSC (it is not even a domain in fact). Every 1-cover has three ones, while
n
2 = 2. Note that the property “all basic 1-covers have norm n

2 ” is strictly stronger
than unmixedness, while the property “for each k, all basic k-covers have norm kn

2 ”
is equivalent to “for each k, the norm of all basic k-covers is the same.”

2. In Theorem 2.8, the assumption that no vertex is isolated was introduced
only to simplify the notation. In general, an arbitrary graph G (with at least one
edge) is an unmixed domain if and only if the reduced graph Gred, obtained by
deleting from G the isolated points, is an unmixed domain. Clearly, the basic
1-covers of G will have exactly *Gred *

2 ones, and so on.

3. In view of Proposition 2.10, one might think that attaching pendants will
make it more likely for a given graph to be a domain. However, let G be the graph
with edges $1# 2%, $2# 3%, $3# 4%, $4# 1%, and $2# 5% (a square with a pendant attached).
This G is a domain, yet if we attach a pendant to the vertex 3 the resulting graph is
not a domain.

4. A basic 2-cover that cannot be the sum of two 1-covers is said to be
indecomposable. Bipartite graphs have no indecomposable 2-covers [2], so in some
sense the number of indecomposable 2-covers of a graph measures its “distance”
from being bipartite. Suppose G contains an odd cycle and a vertex i none of whose
neighbours is part of the cycle. One can see then that G admits a basic 2-cover a that
yields 0 on i and 1 on the cycle; such an a is indecomposable, i.e., it cannot be the
sum of two 1-covers. Now, the property of containing an odd cycle and a “distant”
vertex is clearly inherited by G+, which satisfies MSC. This way one can see that
the distance of an unmixed domain from being bipartite can be arbitrarily large.
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