SYMBOLIC POWERS AND MATROIDS

Matteo Varbaro

Dipartimento di Matematica Università di Genova

Preliminaries and notation

Stanley-Reisner ideals

We can associate a simplicial complex on $[n] := \{1, ..., n\}$ to any ideal $I \subseteq S := \Bbbk[x_1, ..., x_n]$:

We can associate a simplicial complex on $[n] := \{1, ..., n\}$ to any ideal $I \subseteq S := \Bbbk[x_1, ..., x_n]$: $A(I) := \{E \subseteq [n] : \Bbbk[x_i : i \in E] \cap I = \{0\} \}$

 $\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$

We can associate a simplicial complex on $[n] := \{1, ..., n\}$ to any ideal $I \subseteq S := \Bbbk[x_1, ..., x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$$

 $\Delta(I)$ is called the *independence complex* of *I*.

We can associate a simplicial complex on $[n] := \{1, ..., n\}$ to any ideal $I \subseteq S := \Bbbk[x_1, ..., x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$$

 $\Delta(I)$ is called the *independence complex* of *I*. Conversely, to any simplicial complex on [n] we can attach an ideal of *S*:

We can associate a simplicial complex on $[n] := \{1, ..., n\}$ to any ideal $I \subseteq S := \Bbbk[x_1, ..., x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$$

 $\Delta(I)$ is called the *independence complex* of *I*. Conversely, to any simplicial complex on [n] we can attach an ideal of *S*:

$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.$$

We can associate a simplicial complex on $[n] := \{1, ..., n\}$ to any ideal $I \subseteq S := \Bbbk[x_1, ..., x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$$

 $\Delta(I)$ is called the *independence complex* of I. Conversely, to any simplicial complex on [n] we can attach an ideal of S:

$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.$$

 I_{Δ} is called the *Stanley-Reisner ideal* of Δ .

We can associate a simplicial complex on $[n] := \{1, ..., n\}$ to any ideal $I \subseteq S := \Bbbk[x_1, ..., x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$$

 $\Delta(I)$ is called the *independence complex* of I. Conversely, to any simplicial complex on [n] we can attach an ideal of S:

$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.$$

 I_{Δ} is called the *Stanley-Reisner ideal* of Δ . Such a relationship leads to a one-to-one correspondence:

We can associate a simplicial complex on $[n] := \{1, ..., n\}$ to any ideal $I \subseteq S := \Bbbk[x_1, ..., x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$$

 $\Delta(I)$ is called the *independence complex* of I. Conversely, to any simplicial complex on [n] we can attach an ideal of S:

$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.$$

 I_{Δ} is called the *Stanley-Reisner ideal* of Δ . Such a relationship leads to a one-to-one correspondence:

 $\{$ Square-free monomial ideals of $S\} \leftrightarrow \{$ Simplicial complexes on $[n]\}$

We can associate a simplicial complex on $[n] := \{1, ..., n\}$ to any ideal $I \subseteq S := \Bbbk[x_1, ..., x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$$

 $\Delta(I)$ is called the *independence complex* of I. Conversely, to any simplicial complex on [n] we can attach an ideal of S:

$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.$$

 I_{Δ} is called the *Stanley-Reisner ideal* of Δ . Such a relationship leads to a one-to-one correspondence:

{Square-free monomial ideals of S} \leftrightarrow {Simplicial complexes on [n]} Notice that, if $I \subseteq S$ is a square-free monomial ideal, then:

We can associate a simplicial complex on $[n] := \{1, ..., n\}$ to any ideal $I \subseteq S := \Bbbk[x_1, ..., x_n]$:

$$\Delta(I) := \{F \subseteq [n] : \Bbbk[x_i : i \in F] \cap I = \{0\}\}.$$

 $\Delta(I)$ is called the *independence complex* of I. Conversely, to any simplicial complex on [n] we can attach an ideal of S:

$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.$$

 I_{Δ} is called the *Stanley-Reisner ideal* of Δ . Such a relationship leads to a one-to-one correspondence:

{Square-free monomial ideals of S} \leftrightarrow {Simplicial complexes on [n]} Notice that, if $I \subseteq S$ is a square-free monomial ideal, then:

$$\Delta(I) := \{\{i_1,\ldots,i_k\} \subseteq [n] : x_{i_1}\cdots x_{i_k} \notin I\}.$$

Preliminaries and notation

Stanley-Reisner ideals and matroids

To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians.

To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of Δ and the (Krull) dimension of $\Bbbk[\Delta] := S/I_{\Delta}$.

To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of Δ and the (Krull) dimension of $\Bbbk[\Delta] := S/I_{\Delta}$. Given $A \subseteq [n]$, let us denote by $\wp_A := (x_i : i \in A) \subseteq S$.

To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of Δ and the (Krull) dimension of $\Bbbk[\Delta] := S/I_{\Delta}$. Given $A \subseteq [n]$, let us denote by $\wp_A := (x_i : i \in A) \subseteq S$. It is easy to show that:

To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of Δ and the (Krull) dimension of $\Bbbk[\Delta] := S/I_{\Delta}$. Given $A \subseteq [n]$, let us denote by $\wp_A := (x_i : i \in A) \subseteq S$. It is easy to show that:

$$I_{\Delta} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \setminus F}.$$

To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of Δ and the (Krull) dimension of $\Bbbk[\Delta] := S/I_{\Delta}$. Given $A \subseteq [n]$, let us denote by $\wp_A := (x_i : i \in A) \subseteq S$. It is easy to show that:

$$I_{\Delta} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \setminus F}.$$

This fact implies that dim $k[\Delta] = \dim \Delta + 1$.

To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of Δ and the (Krull) dimension of $\Bbbk[\Delta] := S/I_{\Delta}$. Given $A \subseteq [n]$, let us denote by $\wp_A := (x_i : i \in A) \subseteq S$. It is easy to show that:

$$I_{\Delta} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \setminus F}.$$

This fact implies that dim $k[\Delta] = \dim \Delta + 1$.

A simplicial complex Δ is a matroid if:

To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of Δ and the (Krull) dimension of $\Bbbk[\Delta] := S/I_{\Delta}$. Given $A \subseteq [n]$, let us denote by $\wp_A := (x_i : i \in A) \subseteq S$. It is easy to show that:

$$I_{\Delta} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \setminus F}.$$

This fact implies that dim $k[\Delta] = \dim \Delta + 1$.

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta),$

To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of Δ and the (Krull) dimension of $\Bbbk[\Delta] := S/I_{\Delta}$. Given $A \subseteq [n]$, let us denote by $\wp_A := (x_i : i \in A) \subseteq S$. It is easy to show that:

$$I_{\Delta} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \setminus F}.$$

This fact implies that dim $k[\Delta] = \dim \Delta + 1$.

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F,$

To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of Δ and the (Krull) dimension of $\Bbbk[\Delta] := S/I_{\Delta}$. Given $A \subseteq [n]$, let us denote by $\wp_A := (x_i : i \in A) \subseteq S$. It is easy to show that:

$$I_{\Delta} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \setminus F}.$$

This fact implies that dim $k[\Delta] = \dim \Delta + 1$.

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G :$

To relate combinatorial properties of Δ with algebraic ones of I_{Δ} caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of Δ and the (Krull) dimension of $\Bbbk[\Delta] := S/I_{\Delta}$. Given $A \subseteq [n]$, let us denote by $\wp_A := (x_i : i \in A) \subseteq S$. It is easy to show that:

$$I_{\Delta} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \setminus F}.$$

This fact implies that dim $k[\Delta] = \dim \Delta + 1$.

A simplicial complex Δ is a matroid if:

 $\forall F, G \in \mathcal{F}(\Delta), \ \forall i \in F, \quad \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

Preliminaries and notation

Symbolic powers

Preliminaries and notation

Symbolic powers

The *k*th simbolic power of an ideal $I \subseteq S$ is the ideal of *S*:

The *k*th simbolic power of an ideal $I \subseteq S$ is the ideal of *S*:

$$I^{(k)} := (I^k \cdot W^{-1}S) \cap S,$$

The *k*th simbolic power of an ideal $I \subseteq S$ is the ideal of *S*:

$$I^{(k)} := (I^k \cdot W^{-1}S) \cap S,$$

where W is the multiplicative system $S \setminus (\bigcup_{\wp \in Ass(I)} \wp)$.

The *k*th simbolic power of an ideal $I \subseteq S$ is the ideal of *S*:

$$I^{(k)} := (I^k \cdot W^{-1}S) \cap S,$$

where *W* is the multiplicative system $S \setminus (\bigcup_{\wp \in Ass(I)} \wp)$.

 $I^k \subseteq I^{(k)}$,

The *k*th simbolic power of an ideal $I \subseteq S$ is the ideal of *S*:

$$I^{(k)} := (I^k \cdot W^{-1}S) \cap S,$$

where *W* is the multiplicative system $S \setminus (\bigcup_{\wp \in Ass(I)} \wp)$.

 $I^k \subseteq I^{(k)}$, and equality holds if I^k has no embedded primes.

The *k*th simbolic power of an ideal $I \subseteq S$ is the ideal of *S*:

$$I^{(k)} := (I^k \cdot W^{-1}S) \cap S,$$

where *W* is the multiplicative system $S \setminus (\bigcup_{\wp \in Ass(I)} \wp)$.

 $I^k \subseteq I^{(k)}$, and equality holds if I^k has no embedded primes.

If I is a square-free monomial ideal,

The *k*th simbolic power of an ideal $I \subseteq S$ is the ideal of *S*:

$$I^{(k)} := (I^k \cdot W^{-1}S) \cap S,$$

where *W* is the multiplicative system $S \setminus (\bigcup_{\wp \in Ass(I)} \wp)$.

 $I^k \subseteq I^{(k)}$, and equality holds if I^k has no embedded primes.

If I is a square-free monomial ideal, then there is a collection \mathcal{F} of subsets of [n]

The *k*th simbolic power of an ideal $I \subseteq S$ is the ideal of *S*:

$$I^{(k)} := (I^k \cdot W^{-1}S) \cap S,$$

where *W* is the multiplicative system $S \setminus (\bigcup_{\wp \in Ass(I)} \wp)$.

 $I^k \subseteq I^{(k)}$, and equality holds if I^k has no embedded primes.

If *I* is a square-free monomial ideal, then there is a collection \mathcal{F} of subsets of [n] such that $I = \bigcap_{A \in \mathcal{F}} \wp_A$.

The *k*th simbolic power of an ideal $I \subseteq S$ is the ideal of *S*:

$$I^{(k)} := (I^k \cdot W^{-1}S) \cap S,$$

where *W* is the multiplicative system $S \setminus (\bigcup_{\wp \in Ass(I)} \wp)$.

 $I^k \subseteq I^{(k)}$, and equality holds if I^k has no embedded primes.

If *I* is a square-free monomial ideal, then there is a collection \mathcal{F} of subsets of [n] such that $I = \bigcap_{A \in \mathcal{F}} \wp_A$. Then it is easy to show:

$$I^{(k)} = \bigcap_{A \in \mathcal{F}} \wp_A^k.$$

The problem Cohen-Macaulay combinatorial counterpart

The problem

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the *topological* realization of Δ of the Cohen-Macaulay property of $\Bbbk[\Delta]$.
Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the *topological* realization of Δ of the Cohen-Macaulay property of $\Bbbk[\Delta]$. However a characterization in a *combinatorial* fashion still misses.

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the *topological* realization of Δ of the Cohen-Macaulay property of $\Bbbk[\Delta]$. However a characterization in a *combinatorial* fashion still misses.

A related question is when all the rings S/I_{Δ}^k are Cohen-Macaulay.

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the *topological* realization of Δ of the Cohen-Macaulay property of $\Bbbk[\Delta]$. However a characterization in a *combinatorial* fashion still misses.

A related question is when all the rings S/I_{Δ}^k are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the *topological* realization of Δ of the Cohen-Macaulay property of $\Bbbk[\Delta]$. However a characterization in a *combinatorial* fashion still misses.

A related question is when all the rings S/I_{Δ}^{k} are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

 S/I_{Δ}^k is CM $\forall k \Leftrightarrow \Delta$ is complete $(n - \dim \Delta - 1)$ -partite

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the *topological* realization of Δ of the Cohen-Macaulay property of $\Bbbk[\Delta]$. However a characterization in a *combinatorial* fashion still misses.

A related question is when all the rings S/I_{Δ}^k are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

 S/I_{Δ}^k is CM $\forall k \Leftrightarrow \Delta$ is complete $(n - \dim \Delta - 1)$ -partite

Notice that S/I^k_{Δ} CM $\Rightarrow I^k_{\Delta}$ has no embedded primes $\Rightarrow I^k_{\Delta} = I^{(k)}_{\Delta}$.

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the *topological* realization of Δ of the Cohen-Macaulay property of $\Bbbk[\Delta]$. However a characterization in a *combinatorial* fashion still misses.

A related question is when all the rings S/I_{Δ}^k are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

 S/I_{Δ}^k is CM $\forall k \Leftrightarrow \Delta$ is complete $(n - \dim \Delta - 1)$ -partite

Notice that S/I_{Δ}^k CM $\Rightarrow I_{\Delta}^k$ has no embedded primes $\Rightarrow I_{\Delta}^k = I_{\Delta}^{(k)}$.

Therefore it is natural to ask:

Cohen-Macaulay combinatorial counterpart

Reisner, in 1976, gave a characterization in terms of the *topological* realization of Δ of the Cohen-Macaulay property of $\Bbbk[\Delta]$. However a characterization in a *combinatorial* fashion still misses.

A related question is when all the rings S/I_{Δ}^k are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

 S/I_{Δ}^k is CM $\forall k \Leftrightarrow \Delta$ is complete $(n - \dim \Delta - 1)$ -partite

Notice that S/I^k_{Δ} CM $\Rightarrow I^k_{\Delta}$ has no embedded primes $\Rightarrow I^k_{\Delta} = I^{(k)}_{\Delta}$.

Therefore it is natural to ask:

When is $S/I_{\Delta}^{(k)}$ Cohen-Macaulay for all positive integers k???

In this talk, we are going to answer the above question:

In this talk, we are going to answer the above question:

 $S/I^{(k)}_{\Delta}$ is Cohen-Macaulay $\forall \ k \ \Leftrightarrow \ \Delta$ is a matroid

In this talk, we are going to answer the above question:

$$S/I_{\Delta}^{(k)}$$
 is Cohen-Macaulay $\forall k \Leftrightarrow \Delta$ is a matroid

It is fair to say that *Minh* and *Trung* proved at the same time the same result.

In this talk, we are going to answer the above question:

 $S/I_{\Delta}^{(k)}$ is Cohen-Macaulay $\forall \ k \ \Leftrightarrow \ \Delta$ is a matroid

It is fair to say that *Minh* and *Trung* proved at the same time the same result. However the two proofs are completely different.

SKETCH OF THE PROOF

(i) If Δ is a matroid, then Δ is pure.

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property.

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta) \text{ and } (G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)!$

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta) \text{ and } (G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of Δ is the complex Δ^c on [n] s. t.:

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta) \text{ and } (G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of Δ is the complex Δ^c on [n] s. t.: $\mathcal{F}(\Delta^c) := \{[n] \setminus F : F \in \mathcal{F}(\Delta)\}.$

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta) \text{ and } (G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of Δ is the complex Δ^c on [n] s. t.: $\mathcal{F}(\Delta^c) := \{[n] \setminus F : F \in \mathcal{F}(\Delta)\}.$

(iii) *Duality*.

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta) \text{ and } (G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of Δ is the complex Δ^c on [n] s. t.: $\mathcal{F}(\Delta^c) := \{[n] \setminus F : F \in \mathcal{F}(\Delta)\}.$

(iii) *Duality.* For any simplicial complex Δ on [n], we have

(i) If Δ is a matroid, then Δ is pure.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta) \text{ and } (G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of Δ is the complex Δ^c on [n] s. t.: $\mathcal{F}(\Delta^c) := \{[n] \setminus F : F \in \mathcal{F}(\Delta)\}.$

(iii) *Duality.* For any simplicial complex Δ on [n], we have Δ is a matroid $\Leftrightarrow \Delta^c$ is a matroid.

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so:

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so:

$$J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$$

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so:

$$J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$$

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so:

$$J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$$

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so: $J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so: $J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so: $J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so: $J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so: $J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$

 $A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \ \forall \ F \in \mathcal{F}(\Delta)$.

One can easily check that:

 $J(\Delta) = (x_{i_1} \cdots x_{i_k} : \{i_1, \dots, i_k\}$ is a vertex cover of Δ).

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so: $J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$

 $A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \ \forall \ F \in \mathcal{F}(\Delta)$.

One can easily check that:

 $J(\Delta) = (x_{i_1} \cdots x_{i_k} : \{i_1, \dots, i_k\} \text{ is a vertex cover of } \Delta).$

By the duality for matroids, because $I_{\Delta} = J(\Delta^c)$, we can pass

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so: $J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$

 $A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \ \forall \ F \in \mathcal{F}(\Delta)$.

One can easily check that:

 $J(\Delta) = (x_{i_1} \cdots x_{i_k} : \{i_1, \dots, i_k\} \text{ is a vertex cover of } \Delta).$

By the duality for matroids, because $I_{\Delta} = J(\Delta^c)$, we can pass from

 $S/I^{(k)}_{\Delta}$ is CM for any $k \ \Leftrightarrow \ \Delta$ is a matroid

For a simplicial complex Δ , its cover ideal is $J(\Delta) := I_{\Delta^c}$, so: $J(\Delta) = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$

 $A \subseteq [n]$ is a vertex cover of Δ if $A \cap F \neq \emptyset \ \forall \ F \in \mathcal{F}(\Delta)$.

One can easily check that:

 $J(\Delta) = (x_{i_1} \cdots x_{i_k} : \{i_1, \dots, i_k\} \text{ is a vertex cover of } \Delta).$

By the duality for matroids, because $I_{\Delta} = J(\Delta^c)$, we can pass to

 $S/J(\Delta)^{(k)}$ is CM for any $k \ \Leftrightarrow \ \Delta$ is a matroid
We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$.

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a *k*-cover of a simplicial complex Δ on [n] if:

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a *k*-cover of a simplicial complex Δ on [n] if: $\sum_{i \in F} \alpha(i) \ge k \quad \forall F \in \mathcal{F}(\Delta)$.

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a *k*-cover of a simplicial complex Δ on [n] if: $\sum_{i \in F} \alpha(i) \ge k \quad \forall F \in \mathcal{F}(\Delta)$. A *k*-cover α is basic if there is not a *k*-cover β with $\beta < \alpha$.

It is not difficult to show:

$$J(\Delta)^{(k)} = (\mathbf{x}^{lpha} := x_1^{lpha(1)} \cdots x_n^{lpha(n)} \ : \ lpha \ ext{is a} \ k ext{-cover}).$$

We have
$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a *k*-cover of a simplicial complex Δ on [n] if: $\sum_{i \in F} \alpha(i) \ge k \quad \forall F \in \mathcal{F}(\Delta)$. A *k*-cover α is basic if there is not a *k*-cover β with $\beta < \alpha$.

It is not difficult to show:

$$J(\Delta)^{(k)} = (\mathbf{x}^{\alpha} : \alpha \text{ is a basic } k\text{-cover}).$$

The algebra of basic covers of a simplicial complex Δ is:

 $\overline{A}(\Delta) := \bigoplus_{k \in \mathbb{N}} \overline{A}(\Delta)_k$

The algebra of basic covers of a simplicial complex Δ is:

$$ar{\mathsf{A}}(\Delta) := igoplus_{k \in \mathbb{N}} ar{\mathsf{A}}(\Delta)_k$$

٠

 $- \bar{A}(\Delta)_{\mathbf{0}} := \Bbbk.$

$$\overline{A}(\Delta) := \bigoplus_{k \in \mathbb{N}} \overline{A}(\Delta)_k$$

$$\begin{array}{l} - \ \bar{A}(\Delta)_{\mathbf{0}} := \Bbbk. \\ - \ \bar{A}(\Delta)_{\mathbf{k}} := \langle \mathbf{x}^{\alpha} : \alpha \text{ is a basic } k \text{-cover} \rangle \text{ for all } k > 0. \end{array}$$

$$\overline{A}(\Delta) := \bigoplus_{k \in \mathbb{N}} \overline{A}(\Delta)_k$$

- $\bar{A}(\Delta)_{\mathbf{0}} := \Bbbk.$
- $\bar{A}(\Delta)_k := \langle \mathbf{x}^{lpha} : \alpha \text{ is a basic } k \text{-cover} \rangle$ for all k > 0.
- If α is a basic *k*-cover and β is a basic *h*-cover, then

$$\mathbf{x}^{lpha}\mathbf{x}^{eta} := \left\{ \left. \left. \right. \right. \right. \right.$$

$$\overline{A}(\Delta) := \bigoplus_{k \in \mathbb{N}} \overline{A}(\Delta)_k$$

- $\bar{A}(\Delta)_0 := \mathbb{k}$. - $\bar{A}(\Delta)_k := \langle \mathbf{x}^{\alpha} : \alpha \text{ is a basic } k \text{-cover} \rangle$ for all k > 0.
- If α is a basic k-cover and β is a basic h-cover, then

$$\mathbf{x}^{\alpha}\mathbf{x}^{\beta} := \begin{cases} \mathbf{x}^{\alpha+\beta} & \text{ if } \alpha+\beta \text{ is a basic } (h+k)\text{-cover,} \end{cases}$$

$$\overline{A}(\Delta) := \bigoplus_{k \in \mathbb{N}} \overline{A}(\Delta)_k$$

- $\bar{A}(\Delta)_0 := \mathbb{k}$. - $\bar{A}(\Delta)_k := \langle \mathbf{x}^{\alpha} : \alpha \text{ is a basic } k \text{-cover} \rangle \text{ for all } k > 0$.
- If α is a basic *k*-cover and β is a basic *h*-cover, then

$$\mathbf{x}^{\alpha}\mathbf{x}^{\beta} := \begin{cases} \mathbf{x}^{\alpha+\beta} & \text{ if } \alpha+\beta \text{ is a basic } (h+k)\text{-cover,} \\ 0 & \text{ otherwise.} \end{cases}$$

The algebra of basic covers of a simplicial complex Δ is:

$$\overline{A}(\Delta) := \bigoplus_{k \in \mathbb{N}} \overline{A}(\Delta)_k$$

- Ā(Δ)₀ := k.
- Ā(Δ)_k := ⟨x^α : α is a basic k-cover⟩ for all k > 0.
- If α is a basic k-cover and β is a basic h-cover, then

$$\mathbf{x}^{\alpha}\mathbf{x}^{\beta} := \begin{cases} \mathbf{x}^{\alpha+\beta} & \text{ if } \alpha+\beta \text{ is a basic } (h+k)\text{-cover,} \\ 0 & \text{ otherwise.} \end{cases}$$

EXAMPLE:

The algebra of basic covers of a simplicial complex Δ is:

$$\bar{A}(\Delta) := \bigoplus_{k \in \mathbb{N}} \bar{A}(\Delta)_k$$

- $\bar{A}(\Delta)_0 := \mathbb{k}$. - $\bar{A}(\Delta)_k := \langle \mathbf{x}^{\alpha} : \alpha \text{ is a basic } k \text{-cover} \rangle$ for all k > 0. - If α is a basic k-cover and β is a basic h-cover, then $\left(\mathbf{x}^{\alpha+\beta} \quad \text{if } \alpha + \beta \text{ is a basic } (h+k)\right)$ -cover

 $\mathbf{x}^{\alpha}\mathbf{x}^{\beta} := \begin{cases} \mathbf{x}^{\alpha+\beta} & \text{if } \alpha+\beta \text{ is a basic } (h+k)\text{-cover,} \\ 0 & \text{otherwise.} \end{cases}$

EXAMPLE:

The algebra of basic covers of a simplicial complex Δ is:

$$\bar{A}(\Delta) := \bigoplus_{k \in \mathbb{N}} \bar{A}(\Delta)_k$$

 $- \bar{A}(\Delta)_{\mathbf{0}} := \mathbb{k}.$ - $\bar{A}(\Delta)_k := \langle \mathbf{x}^{\alpha} : \alpha \text{ is a basic } k \text{-cover} \rangle$ for all k > 0. - If α is a basic k-cover and β is a basic h-cover, then $\mathbf{x}^{\alpha}\mathbf{x}^{\beta} := \begin{cases} \mathbf{x}^{\alpha+\beta} & \text{if } \alpha+\beta \text{ is a basic } (h+k)\text{-cover,} \\ 0 & \text{otherwise.} \end{cases}$ EXAMPLE:

The algebra of basic covers of a simplicial complex Δ is:

$$\overline{A}(\Delta) := \bigoplus_{k \in \mathbb{N}} \overline{A}(\Delta)_k$$

 $- \overline{A}(\Delta)_0 := \mathbb{k}.$ - $\bar{A}(\Delta)_k := \langle \mathbf{x}^{\alpha} : \alpha \text{ is a basic } k \text{-cover} \rangle$ for all k > 0. - If α is a basic k-cover and β is a basic h-cover, then $\mathbf{x}^{\alpha}\mathbf{x}^{\beta} := \begin{cases} \mathbf{x}^{\alpha+\beta} & \text{if } \alpha+\beta \text{ is a basic } (h+k)\text{-cover,} \\ 0 & \text{otherwise.} \end{cases}$ EXAMPLE: Ω

The algebra of basic covers of a simplicial complex Δ is:

$$\overline{A}(\Delta) := \bigoplus_{k \in \mathbb{N}} \overline{A}(\Delta)_k$$

 $- \overline{A}(\Delta)_0 := \mathbb{k}.$ - $\bar{A}(\Delta)_k := \langle \mathbf{x}^{\alpha} : \alpha \text{ is a basic } k \text{-cover} \rangle$ for all k > 0. - If α is a basic k-cover and β is a basic h-cover, then $\mathbf{x}^{\alpha}\mathbf{x}^{\beta} := \begin{cases} \mathbf{x}^{\alpha+\beta} & \text{if } \alpha+\beta \text{ is a basic } (h+k)\text{-cover,} \\ 0 & \text{otherwise.} \end{cases}$ EXAMPLE: Ω

Using tools and result from blow-up algebras, we have:

Using tools and result from blow-up algebras, we have:

 $\dim \Delta + 1 = \operatorname{ht}(J(\Delta)) \leq \dim \bar{A}(\Delta) = n - \min_{k \in \mathbb{N}_{>0}} \{\operatorname{depth}(S/J(\Delta)^{(k)})\}$

Using tools and result from blow-up algebras, we have:

 $\dim \Delta + 1 = \operatorname{ht}(J(\Delta)) \leq \dim \bar{A}(\Delta) = n - \min_{k \in \mathbb{N}_{>0}} \{\operatorname{depth}(S/J(\Delta)^{(k)})\}$

Notice that dim $S/J(\Delta)^{(k)} = \dim S/J(\Delta)$

Using tools and result from blow-up algebras, we have:

 $\dim \Delta + 1 = \operatorname{ht}(J(\Delta)) \leq \dim \bar{A}(\Delta) = n - \min_{k \in \mathbb{N}_{>0}} \{\operatorname{depth}(S/J(\Delta)^{(k)})\}$

Notice that dim $S/J(\Delta)^{(k)} = \dim S/J(\Delta) = n - \dim \Delta - 1$.

Using tools and result from blow-up algebras, we have:

 $\dim \Delta + 1 = \operatorname{ht}(J(\Delta)) \leq \dim \bar{A}(\Delta) = n - \min_{k \in \mathbb{N}_{>0}} \{\operatorname{depth}(S/J(\Delta)^{(k)})\}$

Notice that dim $S/J(\Delta)^{(k)} = \dim S/J(\Delta) = n - \dim \Delta - 1$. So to show that all the rings $S/J(\Delta)^{(k)}$ are Cohen-Macaulay,

Using tools and result from blow-up algebras, we have:

 $\dim \Delta + 1 = \operatorname{ht}(J(\Delta)) \leq \dim \bar{A}(\Delta) = n - \min_{k \in \mathbb{N}_{>0}} \{\operatorname{depth}(S/J(\Delta)^{(k)})\}$

Notice that dim $S/J(\Delta)^{(k)} = \dim S/J(\Delta) = n - \dim \Delta - 1$. So to show that all the rings $S/J(\Delta)^{(k)}$ are Cohen-Macaulay, that is equivalent to show that $\min_{k \in \mathbb{N}_{>0}} \{ \operatorname{depth}(S/J(\Delta)^{(k)}) \} = n - \dim \Delta - 1$,

Using tools and result from blow-up algebras, we have:

 $\dim \Delta + 1 = \operatorname{ht}(J(\Delta)) \leq \dim \bar{A}(\Delta) = n - \min_{k \in \mathbb{N}_{>0}} \{\operatorname{depth}(S/J(\Delta)^{(k)})\}$

Notice that dim $S/J(\Delta)^{(k)} = \dim S/J(\Delta) = n - \dim \Delta - 1$. So to show that all the rings $S/J(\Delta)^{(k)}$ are Cohen-Macaulay, that is equivalent to show that $\min_{k \in \mathbb{N}_{>0}} \{ \operatorname{depth}(S/J(\Delta)^{(k)}) \} = n - \dim \Delta - 1$, we have to show that
The algebra of basic covers How $\bar{A}(\Delta)$ comes into play

Using tools and result from blow-up algebras, we have:

 $\dim \Delta + 1 = \operatorname{ht}(J(\Delta)) \leq \dim \bar{A}(\Delta) = n - \min_{k \in \mathbb{N}_{>0}} \{\operatorname{depth}(S/J(\Delta)^{(k)})\}$

Notice that dim $S/J(\Delta)^{(k)} = \dim S/J(\Delta) = n - \dim \Delta - 1$. So to show that all the rings $S/J(\Delta)^{(k)}$ are Cohen-Macaulay, that is equivalent to show that $\min_{k \in \mathbb{N}_{>0}} \{ \operatorname{depth}(S/J(\Delta)^{(k)}) \} = n - \dim \Delta - 1$, we have to show that dim $\overline{A}(\Delta) \leq \dim \Delta + 1$.

The algebra of basic covers How $\bar{A}(\Delta)$ comes into play

Using tools and result from blow-up algebras, we have:

 $\dim \Delta + 1 = \operatorname{ht}(J(\Delta)) \leq \dim \bar{A}(\Delta) = n - \min_{k \in \mathbb{N}_{>0}} \{\operatorname{depth}(S/J(\Delta)^{(k)})\}$

Notice that dim $S/J(\Delta)^{(k)} = \dim S/J(\Delta) = n - \dim \Delta - 1$. So to show that all the rings $S/J(\Delta)^{(k)}$ are Cohen-Macaulay, that is equivalent to show that $\min_{k \in \mathbb{N}_{>0}} \{ \operatorname{depth}(S/J(\Delta)^{(k)}) \} = n - \dim \Delta - 1$, we have to show that dim $\overline{A}(\Delta) \leq \dim \Delta + 1$.

In the next slides we will show that:

The algebra of basic covers How $\bar{A}(\Delta)$ comes into play

Using tools and result from blow-up algebras, we have:

 $\dim \Delta + 1 = \operatorname{ht}(J(\Delta)) \leq \dim \bar{A}(\Delta) = n - \min_{k \in \mathbb{N}_{>0}} \{\operatorname{depth}(S/J(\Delta)^{(k)})\}$

Notice that dim $S/J(\Delta)^{(k)} = \dim S/J(\Delta) = n - \dim \Delta - 1$. So to show that all the rings $S/J(\Delta)^{(k)}$ are Cohen-Macaulay, that is equivalent to show that $\min_{k \in \mathbb{N}_{>0}} \{ \operatorname{depth}(S/J(\Delta)^{(k)}) \} = n - \dim \Delta - 1$, we have to show that dim $\overline{A}(\Delta) \leq \dim \Delta + 1$.

In the next slides we will show that:

dim $\overline{A}(\Delta) \leq \dim \Delta + 1$ whenever Δ is a matroid.

A combinatorial description of $\dim \overline{A}(\Delta)$

A combinatorial description of dim $\overline{A}(\Delta)$

By meaning of the Hilbert polynomial, if $\dim_{\Bbbk}(\bar{A}(\Delta)_k) = O(k^{s-1})$,

A combinatorial description of dim $\overline{A}(\Delta)$

By meaning of the Hilbert polynomial, if $\dim_{\mathbb{K}}(\bar{A}(\Delta)_k) = O(k^{s-1})$, then $\dim(\bar{A}(\Delta)) \leq s$.

A combinatorial description of dim $\overline{A}(\Delta)$

By meaning of the Hilbert polynomial, if $\dim_{\mathbb{k}}(\bar{A}(\Delta)_k) = O(k^{s-1})$, then $\dim(\bar{A}(\Delta)) \leq s$. So to get our goal, because

 $\dim_{\Bbbk}(\bar{A}(\Delta)_k) = |\{\text{basic } k\text{-covers of }\Delta\}|,\$

A combinatorial description of dim $\overline{A}(\Delta)$

By meaning of the Hilbert polynomial, if $\dim_{\mathbb{K}}(\bar{A}(\Delta)_k) = O(k^{s-1})$, then $\dim(\bar{A}(\Delta)) \leq s$. So to get our goal, because

 $\dim_{\mathbb{k}}(\bar{A}(\Delta)_k) = |\{\text{basic } k \text{-covers of } \Delta\}|,\$

we have to say that the basic k-covers of matroids are "few":

A combinatorial description of dim $\overline{A}(\Delta)$

By meaning of the Hilbert polynomial, if $\dim_{\mathbb{K}}(\bar{A}(\Delta)_k) = O(k^{s-1})$, then $\dim(\bar{A}(\Delta)) \leq s$. So to get our goal, because

 $\dim_{\mathbb{k}}(\bar{A}(\Delta)_k) = |\{\text{basic } k \text{-covers of } \Delta\}|,\$

we have to say that the basic k-covers of matroids are "few": More precisely, our purpose is to prove that if Δ is a matroid of dimension d - 1,

A combinatorial description of dim $\overline{A}(\Delta)$

By meaning of the Hilbert polynomial, if $\dim_{\mathbb{K}}(\bar{A}(\Delta)_k) = O(k^{s-1})$, then $\dim(\bar{A}(\Delta)) \leq s$. So to get our goal, because

 $\dim_{\Bbbk}(\bar{A}(\Delta)_k) = |\{\text{basic } k\text{-covers of }\Delta\}|,\$

we have to say that the basic k-covers of matroids are "few": More precisely, our purpose is to prove that if Δ is a matroid of dimension d - 1, then $|\{\text{basic }k\text{-covers of }\Delta\}| = O(k^d)$.

Let α be a basic *k*-cover of Δ .

Let α be a basic *k*-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

Let α be a basic *k*-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

 $\sum_{i\in \mathbf{F}} \alpha(i) = k.$

Let α be a basic *k*-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

 $\sum_{i\in F} \alpha(i) = k.$

Claim: F fixes α . I.e., all the values of α are determined by those on F.

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

 $\sum_{i\in \mathbf{F}} \alpha(i) = k.$

Claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$.

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

(I) $F' := (F \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta)$ and (II) $G' := (G \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta)$.

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

(I) $F' := (F \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta)$ and (II) $G' := (G \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta)$. (I) $\Longrightarrow \sum_{i \in F'} \alpha(i) \ge k$

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

(I) $F' := (F \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta)$ and (II) $G' := (G \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta)$.

(I) $\Longrightarrow \sum_{i \in F'} \alpha(i) \ge k \Longrightarrow \alpha(j_0) \ge \alpha(i_0).$

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

(I) $F' := (F \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta)$ and (II) $G' := (G \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta)$. (II) $\Longrightarrow \sum_{j \in G'} \alpha(j) \ge k$

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

(I) $F' := (F \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta)$ and (II) $G' := (G \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta)$.

 $(\mathsf{II}) \Longrightarrow \sum_{j \in \mathcal{G}'} \alpha(j) \ge k \Longrightarrow \alpha(i_0) \ge \alpha(j_0).$

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

(I) $F' := (F \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta)$ and (II) $G' := (G \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta)$.

Therefore (I) and (II) together yield $\alpha(j_0) = \alpha(i_0)$.

Since Δ is pure, |F| = d.

Since Δ is pure, |F| = d. So the number of ways in which we can give natural values to the vertices of F so that the sum is k is:

Since Δ is pure, |F| = d. So the number of ways in which we can give natural values to the vertices of F so that the sum is k is:

$$|\{(a_1,\ldots,a_d)\in\mathbb{N}^d:a_1+\ldots+a_d=k\}|=\binom{k+d-1}{k}$$

Since Δ is pure, |F| = d. So the number of ways in which we can give natural values to the vertices of F so that the sum is k is:

$$|\{(a_1,\ldots,a_d)\in\mathbb{N}^d:a_1+\ldots+a_d=k\}|=\binom{k+d-1}{k}$$

Therefore, because F can vary among the facets of Δ ,

Since Δ is pure, |F| = d. So the number of ways in which we can give natural values to the vertices of F so that the sum is k is:

$$|\{(a_1,\ldots,a_d)\in\mathbb{N}^d:a_1+\ldots+a_d=k\}|=\binom{k+d-1}{k}$$

Therefore, because F can vary among the facets of Δ ,

$$|\{\text{basic }k\text{-covers}\}| \leq |\mathcal{F}(\Delta)| \binom{k+d-1}{k}$$

Since Δ is pure, |F| = d. So the number of ways in which we can give natural values to the vertices of F so that the sum is k is:

$$|\{(a_1,\ldots,a_d)\in\mathbb{N}^d:a_1+\ldots+a_d=k\}|=\binom{k+d-1}{k}$$

Therefore, because F can vary among the facets of Δ ,

$$|\{\text{basic }k\text{-covers}\}| \leq |\mathcal{F}(\Delta)| \binom{k+d-1}{k} = O(k^{d-1}).$$

Since Δ is pure, |F| = d. So the number of ways in which we can give natural values to the vertices of F so that the sum is k is:

$$|\{(a_1,\ldots,a_d)\in\mathbb{N}^d:a_1+\ldots+a_d=k\}|=\binom{k+d-1}{k}$$

Therefore, because F can vary among the facets of Δ ,

$$|\{\text{basic }k\text{-covers}\}| \leq |\mathcal{F}(\Delta)| \binom{k+d-1}{k} = O(k^{d-1}).$$

Therefore dim $\overline{A}(\Delta) = d = \dim \Delta + 1$.

Since Δ is pure, |F| = d. So the number of ways in which we can give natural values to the vertices of F so that the sum is k is:

$$|\{(a_1,\ldots,a_d)\in\mathbb{N}^d:a_1+\ldots+a_d=k\}|=\binom{k+d-1}{k}$$

Therefore, because F can vary among the facets of Δ ,

$$|\{\text{basic }k\text{-covers}\}| \leq |\mathcal{F}(\Delta)| \binom{k+d-1}{k} = O(k^{d-1}).$$

Therefore dim $\overline{A}(\Delta) = d = \dim \Delta + 1$.

Hence $S/J(\Delta)^{(k)}$ is Cohen-Macaulay for any k !!!