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Preliminaries and notation
S t a n l e y - R e i s n e r i d e a l s

We can associate a simplicial complex on [n] := {1, . . . , n} to any
ideal I ⊆ S := k[x1, . . . , xn]:

∆(I ) := {F ⊆ [n] : k[xi : i ∈ F ] ∩ I = {0}}.

∆(I ) is called the independence complex of I . Conversely, to any
simplicial complex on [n] we can attach an ideal of S :

I∆ := (xi1 · · · xik : {i1, . . . , ik} /∈ ∆) ⊆ S .

I∆ is called the Stanley-Reisner ideal of ∆. Such a relationship
leads to a one-to-one correspondence:

{Square-free monomial ideals of S} ↔ {Simplicial complexes on [n]}

Notice that, if I ⊆ S is a square-free monomial ideal, then:

∆(I ) := {{i1, . . . , ik} ⊆ [n] : xi1 · · · xik /∈ I}.
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S t a n l e y - R e i s n e r i d e a l s a n d m a t r o i d s

To relate combinatorial properties of ∆ with algebraic ones of I∆
caught the attention of several mathematicians. One fitting
example is the relationship between the (combinatorial) dimension
of ∆ and the (Krull) dimension of k[∆] := S/I∆. Given A ⊆ [n],
let us denote by ℘A := (xi : i ∈ A) ⊆ S . It is easy to show that:

I∆ =
⋂

F∈F(∆)

℘[n]\F .

This fact implies that dim k[∆] = dim ∆ + 1.

A simplicial complex ∆ is a matroid if:

∀ F ,G ∈ F(∆), ∀ i ∈ F , ∃ j ∈ G : (F \ {i}) ∪ {j} ∈ F(∆)



Preliminaries and notation
S t a n l e y - R e i s n e r i d e a l s a n d m a t r o i d s

To relate combinatorial properties of ∆ with algebraic ones of I∆
caught the attention of several mathematicians.

One fitting
example is the relationship between the (combinatorial) dimension
of ∆ and the (Krull) dimension of k[∆] := S/I∆. Given A ⊆ [n],
let us denote by ℘A := (xi : i ∈ A) ⊆ S . It is easy to show that:

I∆ =
⋂

F∈F(∆)

℘[n]\F .

This fact implies that dim k[∆] = dim ∆ + 1.

A simplicial complex ∆ is a matroid if:

∀ F ,G ∈ F(∆), ∀ i ∈ F , ∃ j ∈ G : (F \ {i}) ∪ {j} ∈ F(∆)



Preliminaries and notation
S t a n l e y - R e i s n e r i d e a l s a n d m a t r o i d s

To relate combinatorial properties of ∆ with algebraic ones of I∆
caught the attention of several mathematicians. One fitting
example is the relationship between the (combinatorial) dimension
of ∆ and the (Krull) dimension of k[∆] := S/I∆.

Given A ⊆ [n],
let us denote by ℘A := (xi : i ∈ A) ⊆ S . It is easy to show that:

I∆ =
⋂

F∈F(∆)

℘[n]\F .

This fact implies that dim k[∆] = dim ∆ + 1.

A simplicial complex ∆ is a matroid if:

∀ F ,G ∈ F(∆), ∀ i ∈ F , ∃ j ∈ G : (F \ {i}) ∪ {j} ∈ F(∆)



Preliminaries and notation
S t a n l e y - R e i s n e r i d e a l s a n d m a t r o i d s

To relate combinatorial properties of ∆ with algebraic ones of I∆
caught the attention of several mathematicians. One fitting
example is the relationship between the (combinatorial) dimension
of ∆ and the (Krull) dimension of k[∆] := S/I∆. Given A ⊆ [n],
let us denote by ℘A := (xi : i ∈ A) ⊆ S .

It is easy to show that:

I∆ =
⋂

F∈F(∆)

℘[n]\F .

This fact implies that dim k[∆] = dim ∆ + 1.

A simplicial complex ∆ is a matroid if:

∀ F ,G ∈ F(∆), ∀ i ∈ F , ∃ j ∈ G : (F \ {i}) ∪ {j} ∈ F(∆)



Preliminaries and notation
S t a n l e y - R e i s n e r i d e a l s a n d m a t r o i d s

To relate combinatorial properties of ∆ with algebraic ones of I∆
caught the attention of several mathematicians. One fitting
example is the relationship between the (combinatorial) dimension
of ∆ and the (Krull) dimension of k[∆] := S/I∆. Given A ⊆ [n],
let us denote by ℘A := (xi : i ∈ A) ⊆ S . It is easy to show that:

I∆ =
⋂

F∈F(∆)

℘[n]\F .

This fact implies that dim k[∆] = dim ∆ + 1.

A simplicial complex ∆ is a matroid if:

∀ F ,G ∈ F(∆), ∀ i ∈ F , ∃ j ∈ G : (F \ {i}) ∪ {j} ∈ F(∆)



Preliminaries and notation
S t a n l e y - R e i s n e r i d e a l s a n d m a t r o i d s

To relate combinatorial properties of ∆ with algebraic ones of I∆
caught the attention of several mathematicians. One fitting
example is the relationship between the (combinatorial) dimension
of ∆ and the (Krull) dimension of k[∆] := S/I∆. Given A ⊆ [n],
let us denote by ℘A := (xi : i ∈ A) ⊆ S . It is easy to show that:

I∆ =
⋂

F∈F(∆)

℘[n]\F .

This fact implies that dim k[∆] = dim ∆ + 1.

A simplicial complex ∆ is a matroid if:

∀ F ,G ∈ F(∆), ∀ i ∈ F , ∃ j ∈ G : (F \ {i}) ∪ {j} ∈ F(∆)



Preliminaries and notation
S t a n l e y - R e i s n e r i d e a l s a n d m a t r o i d s

To relate combinatorial properties of ∆ with algebraic ones of I∆
caught the attention of several mathematicians. One fitting
example is the relationship between the (combinatorial) dimension
of ∆ and the (Krull) dimension of k[∆] := S/I∆. Given A ⊆ [n],
let us denote by ℘A := (xi : i ∈ A) ⊆ S . It is easy to show that:

I∆ =
⋂

F∈F(∆)

℘[n]\F .

This fact implies that dim k[∆] = dim ∆ + 1.

A simplicial complex ∆ is a matroid if:

∀ F ,G ∈ F(∆), ∀ i ∈ F , ∃ j ∈ G : (F \ {i}) ∪ {j} ∈ F(∆)



Preliminaries and notation
S t a n l e y - R e i s n e r i d e a l s a n d m a t r o i d s

To relate combinatorial properties of ∆ with algebraic ones of I∆
caught the attention of several mathematicians. One fitting
example is the relationship between the (combinatorial) dimension
of ∆ and the (Krull) dimension of k[∆] := S/I∆. Given A ⊆ [n],
let us denote by ℘A := (xi : i ∈ A) ⊆ S . It is easy to show that:

I∆ =
⋂

F∈F(∆)

℘[n]\F .

This fact implies that dim k[∆] = dim ∆ + 1.

A simplicial complex ∆ is a matroid if:

∀ F ,G ∈ F(∆), ∀ i ∈ F , ∃ j ∈ G : (F \ {i}) ∪ {j} ∈ F(∆)



Preliminaries and notation
S t a n l e y - R e i s n e r i d e a l s a n d m a t r o i d s

To relate combinatorial properties of ∆ with algebraic ones of I∆
caught the attention of several mathematicians. One fitting
example is the relationship between the (combinatorial) dimension
of ∆ and the (Krull) dimension of k[∆] := S/I∆. Given A ⊆ [n],
let us denote by ℘A := (xi : i ∈ A) ⊆ S . It is easy to show that:

I∆ =
⋂

F∈F(∆)

℘[n]\F .

This fact implies that dim k[∆] = dim ∆ + 1.

A simplicial complex ∆ is a matroid if:

∀ F ,G ∈ F(∆),

∀ i ∈ F , ∃ j ∈ G : (F \ {i}) ∪ {j} ∈ F(∆)



Preliminaries and notation
S t a n l e y - R e i s n e r i d e a l s a n d m a t r o i d s

To relate combinatorial properties of ∆ with algebraic ones of I∆
caught the attention of several mathematicians. One fitting
example is the relationship between the (combinatorial) dimension
of ∆ and the (Krull) dimension of k[∆] := S/I∆. Given A ⊆ [n],
let us denote by ℘A := (xi : i ∈ A) ⊆ S . It is easy to show that:

I∆ =
⋂

F∈F(∆)

℘[n]\F .

This fact implies that dim k[∆] = dim ∆ + 1.

A simplicial complex ∆ is a matroid if:

∀ F ,G ∈ F(∆), ∀ i ∈ F ,

∃ j ∈ G : (F \ {i}) ∪ {j} ∈ F(∆)



Preliminaries and notation
S t a n l e y - R e i s n e r i d e a l s a n d m a t r o i d s

To relate combinatorial properties of ∆ with algebraic ones of I∆
caught the attention of several mathematicians. One fitting
example is the relationship between the (combinatorial) dimension
of ∆ and the (Krull) dimension of k[∆] := S/I∆. Given A ⊆ [n],
let us denote by ℘A := (xi : i ∈ A) ⊆ S . It is easy to show that:

I∆ =
⋂

F∈F(∆)

℘[n]\F .

This fact implies that dim k[∆] = dim ∆ + 1.

A simplicial complex ∆ is a matroid if:

∀ F ,G ∈ F(∆), ∀ i ∈ F , ∃ j ∈ G :

(F \ {i}) ∪ {j} ∈ F(∆)



Preliminaries and notation
S t a n l e y - R e i s n e r i d e a l s a n d m a t r o i d s

To relate combinatorial properties of ∆ with algebraic ones of I∆
caught the attention of several mathematicians. One fitting
example is the relationship between the (combinatorial) dimension
of ∆ and the (Krull) dimension of k[∆] := S/I∆. Given A ⊆ [n],
let us denote by ℘A := (xi : i ∈ A) ⊆ S . It is easy to show that:

I∆ =
⋂

F∈F(∆)

℘[n]\F .

This fact implies that dim k[∆] = dim ∆ + 1.

A simplicial complex ∆ is a matroid if:

∀ F ,G ∈ F(∆), ∀ i ∈ F , ∃ j ∈ G : (F \ {i}) ∪ {j} ∈ F(∆)



Preliminaries and notation
S y m b o l i c p o w e r s

The kth simbolic power of an ideal I ⊆ S is the ideal of S :

I (k) := (I k ·W−1S) ∩ S ,

where W is the multiplicative system S \ (
⋃
℘∈Ass(I ) ℘).

I k ⊆ I (k), and equality holds if I k has no embedded primes.

If I is a square-free monomial ideal, then there is a collection F

of subsets of [n] such that I =
⋂

A∈F ℘A. Then it is easy to show:

I (k) =
⋂

A∈F
℘k

A.
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The problem
C o h e n - M a c a u l a y c o m b i n a t o r i a l c o u n t e r p a r t

Reisner, in 1976, gave a characterization in terms of the topological
realization of ∆ of the Cohen-Macaulay property of k[∆]. However a
characterization in a combinatorial fashion still misses.

A related question is when all the rings S/I k
∆ are Cohen-Macaulay. An

answer is provided by a general result of Cowsik and Nori (1977):

S/I k
∆ is CM ∀ k ⇔ ∆ is complete (n − dim ∆− 1)-partite

Notice that S/I k
∆ CM ⇒ I k

∆ has no embedded primes ⇒ I k
∆ = I

(k)
∆ .

Therefore it is natural to ask:

When is S/I
(k)
∆ Cohen-Macaulay for all positive integers k???
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The result

In this talk, we are going to answer the above question:

S/I
(k)
∆ is Cohen-Macaulay ∀ k ⇔ ∆ is a matroid

It is fair to say that Minh and Trung proved at the same time the

same result. However the two proofs are completely different.
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SKETCH OF THE PROOF



Stanley-Reisner ideals −→ cover ideals
P r o p e r t i e s o f m a t r o i d s

(i) If ∆ is a matroid, then ∆ is pure.

(ii) Exchange property. If ∆ is a matroid, then ∀F ,G ∈ F(∆), ∀i ∈ F ,

∃j ∈ G : (F \ {i}) ∪ {j} ∈ F(∆) and (G \ {j}) ∪ {i} ∈ F(∆)!

The dual simplicial complex of ∆ is the complex ∆c on [n] s. t.:

F(∆c) := {[n] \ F : F ∈ F(∆)}.

(iii) Duality. For any simplicial complex ∆ on [n], we have

∆ is a matroid ⇔ ∆c is a matroid.
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For a simplicial complex ∆, its cover ideal is J(∆) := I∆c , so:

J(∆) =
⋂

F∈F(∆)

℘F ,

A ⊆ [n] is a vertex cover of ∆ if A ∩ F 6= ∅ ∀ F ∈ F(∆).

One can easily check that:

J(∆) = (xi1 · · · xik : {i1, . . . , ik} is a vertex cover of ∆).
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Symbolic powers and k-covers

We have J(∆)(k) =
⋂

F∈F(∆)

℘k
F ∀ k ∈ N.

We want to describe which monomials belong to J(∆)(k). For each

k ∈ N, a nonzero function α : [n]→ N is called a k-cover of

a simplicial complex ∆ on [n] if:
∑

i∈F α(i) ≥ k ∀ F ∈ F(∆).

A k-cover α is basic if there is not a k-cover β with β < α.
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The algebra of basic covers
D e f i n i t i o n

The algebra of basic covers of a simplicial complex ∆ is:

Ā(∆) :=
⊕

k∈N Ā(∆)k

- Ā(∆)0 := k.

- Ā(∆)k := 〈xα : α is a basic k-cover〉 for all k > 0

.

- If α is a basic k-cover and β is a basic h-cover, then

xαxβ :=

{

xα+β if α + β is a basic (h + k)-cover,

0 otherwise.

EXAMPLE:

1

10

+

1

01

=

11
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- Ā(∆)0 := k.
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The algebra of basic covers
H o w Ā(∆) c o m e s i n t o p l a y

Using tools and result from blow-up algebras, we have:

dim ∆ + 1 = ht(J(∆)) ≤ dim Ā(∆) = n − min
k∈N>0

{depth(S/J(∆)(k))}

Notice that dim S/J(∆)(k) = dim S/J(∆) = n − dim ∆− 1. So to show

that all the rings S/J(∆)(k) are Cohen-Macaulay, that is equivalent to

show that mink∈N>0{depth(S/J(∆)(k))} = n − dim ∆− 1, we have to

show that dim Ā(∆) ≤ dim ∆ + 1.

In the next slides we will show that:

dim Ā(∆) ≤ dim ∆ + 1 whenever ∆ is a matroid.
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show that dim Ā(∆) ≤ dim ∆ + 1.

In the next slides we will show that:
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The algebra of basic covers
A c o m b i n a t o r i a l d e s c r i p t i o n o f dim Ā(∆)

By meaning of the Hilbert polynomial, if dimk(Ā(∆)k) = O(ks−1),

then dim(Ā(∆)) ≤ s. So to get our goal, because

dimk(Ā(∆)k) = |{basic k-covers of ∆}|,

we have to say that the basic k-covers of matroids are “few”:

More precisely, our purpose is to prove that if ∆ is a matroid

of dimension d − 1, then |{basic k-covers of ∆}| = O(kd).
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then dim(Ā(∆)) ≤ s. So to get our goal, because
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More precisely, our purpose is to prove that if ∆ is a matroid

of dimension d − 1,

then |{basic k-covers of ∆}| = O(kd).
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If ∆ is a (d − 1)-dimensional matroid ...
T h e r i g i d i t y o f t h e b a s i c c o v e r s o f a m a t r o i d

Let α be a basic k-cover of ∆. Since α is basic, ∃ F ∈ F(∆):∑
i∈F α(i) = k.

Claim: F fixes α. I.e., all the values of α are determined by those on F .

In fact, let j0 be in [n] \ F . Again, since α is basic, ∃ G ∈ F(∆):

j0 ∈ G and
∑

j∈G α(j) = k .

Exchange property for matroids ⇒ there exists i0 ∈ F such that

(I) F ′ := (F \ {i0}) ∪ {j0} ∈ F(∆) and (II) G ′ := (G \ {j0}) ∪ {i0} ∈ F(∆).
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Let α be a basic k-cover of ∆. Since α is basic, ∃ F ∈ F(∆):∑
i∈F α(i) = k.

Claim: F fixes α. I.e., all the values of α are determined by those on F .
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If ∆ is a (d − 1)-dimensional matroid ...
T h e c o n c l u s i o n

Since ∆ is pure, |F | = d . So the number of ways in which we can

give natural values to the vertices of F so that the sum is k is:

|{(a1, . . . , ad) ∈ Nd : a1 + . . .+ ad = k}| =

(
k + d − 1

k

)
.

Therefore, because F can vary among the facets of ∆,

|{basic k-covers}| ≤ |F(∆)|
(

k + d − 1

k

)
= O(kd−1).

Therefore dim Ā(∆) = d = dim ∆ + 1.

Hence S/J(∆)(k) is Cohen-Macaulay for any k !!!
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