# SYMBOLIC POWERS AND MATROIDS 

Matteo Varbaro

Dipartimento di Matematica
Università di Genova

## Preliminaries and notation

Stanley-Reisner ideals

## Preliminaries and notation

## Stanley-Reisner ideals

We can associate a simplicial complex on $[n]:=\{1, \ldots, n\}$ to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ :

## Preliminaries and notation

## Stanley-Reisner ideals

We can associate a simplicial complex on $[n]:=\{1, \ldots, n\}$ to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ :

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

## Preliminaries and notation

## Stanley-Reisner ideals

We can associate a simplicial complex on $[n]:=\{1, \ldots, n\}$ to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ :

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

$\Delta(I)$ is called the independence complex of $I$.

## Preliminaries and notation

## Stanley-Reisner ideals

We can associate a simplicial complex on $[n]:=\{1, \ldots, n\}$ to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ :

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

$\Delta(I)$ is called the independence complex of $I$. Conversely, to any simplicial complex on $[n]$ we can attach an ideal of $S$ :

## Preliminaries and notation

## Stanley-Reisner ideals

We can associate a simplicial complex on $[n]:=\{1, \ldots, n\}$ to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ :

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

$\Delta(I)$ is called the independence complex of $I$. Conversely, to any simplicial complex on $[n]$ we can attach an ideal of $S$ :

$$
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \subseteq S
$$

## Preliminaries and notation

## Stanley-Reisner ideals

We can associate a simplicial complex on $[n]:=\{1, \ldots, n\}$ to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ :

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

$\Delta(I)$ is called the independence complex of $I$. Conversely, to any simplicial complex on $[n]$ we can attach an ideal of $S$ :

$$
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \subseteq S
$$

$I_{\Delta}$ is called the Stanley-Reisner ideal of $\Delta$.

## Preliminaries and notation

```
Stanley-Reisner ideals
```

We can associate a simplicial complex on $[n]:=\{1, \ldots, n\}$ to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ :

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

$\Delta(I)$ is called the independence complex of $I$. Conversely, to any simplicial complex on $[n]$ we can attach an ideal of $S$ :

$$
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \subseteq S
$$

$I_{\Delta}$ is called the Stanley-Reisner ideal of $\Delta$. Such a relationship leads to a one-to-one correspondence:

## Preliminaries and notation

```
Stanley-Reisner ideals
```

We can associate a simplicial complex on $[n]:=\{1, \ldots, n\}$ to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ :

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

$\Delta(I)$ is called the independence complex of $I$. Conversely, to any simplicial complex on $[n]$ we can attach an ideal of $S$ :

$$
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \subseteq S
$$

$I_{\Delta}$ is called the Stanley-Reisner ideal of $\Delta$. Such a relationship leads to a one-to-one correspondence:
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$

## Preliminaries and notation

```
Stanley-Reisner ideals
```

We can associate a simplicial complex on $[n]:=\{1, \ldots, n\}$ to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ :

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

$\Delta(I)$ is called the independence complex of $I$. Conversely, to any simplicial complex on $[n]$ we can attach an ideal of $S$ :

$$
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \subseteq S
$$

$I_{\Delta}$ is called the Stanley-Reisner ideal of $\Delta$. Such a relationship leads to a one-to-one correspondence:
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$ Notice that, if $I \subseteq S$ is a square-free monomial ideal, then:

## Preliminaries and notation

## Stanley-Reisner ideals

We can associate a simplicial complex on $[n]:=\{1, \ldots, n\}$ to any ideal $I \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ :

$$
\Delta(I):=\left\{F \subseteq[n]: \mathbb{k}\left[x_{i}: i \in F\right] \cap I=\{0\}\right\} .
$$

$\Delta(I)$ is called the independence complex of $I$. Conversely, to any simplicial complex on $[n]$ we can attach an ideal of $S$ :

$$
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \subseteq S .
$$

$I_{\Delta}$ is called the Stanley-Reisner ideal of $\Delta$. Such a relationship leads to a one-to-one correspondence:
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$ Notice that, if $I \subseteq S$ is a square-free monomial ideal, then:

$$
\Delta(I):=\left\{\left\{i_{1}, \ldots, i_{k}\right\} \subseteq[n]: x_{i_{1}} \cdots x_{i_{k}} \notin I\right\} .
$$

## Preliminaries and notation

Stanley-Reisner ideals and matroids

## Preliminaries and notation

```
Stanley-Reisner ideals
and matroids
```

To relate combinatorial properties of $\Delta$ with algebraic ones of $I_{\Delta}$ caught the attention of several mathematicians.

## Preliminaries and notation

```
Stanley-Reisner ideals and matroids
```

To relate combinatorial properties of $\Delta$ with algebraic ones of $I_{\Delta}$ caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of $\Delta$ and the (Krull) dimension of $\mathbb{k}[\Delta]:=S / I_{\Delta}$.

## Preliminaries and notation

```
Stanley-Reisner ideals and matroids
```

To relate combinatorial properties of $\Delta$ with algebraic ones of $I_{\Delta}$ caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of $\Delta$ and the (Krull) dimension of $\mathbb{k}[\Delta]:=S / I_{\Delta}$. Given $A \subseteq[n]$, let us denote by $\wp_{A}:=\left(x_{i}: i \in A\right) \subseteq S$.

## Preliminaries and notation

```
Stanley-Reisner ideals and matroids
```

To relate combinatorial properties of $\Delta$ with algebraic ones of $I_{\Delta}$ caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of $\Delta$ and the (Krull) dimension of $\mathbb{k}[\Delta]:=S / I_{\Delta}$. Given $A \subseteq[n]$, let us denote by $\wp_{A}:=\left(x_{i}: i \in A\right) \subseteq S$. It is easy to show that:

## Preliminaries and notation

```
Stanley-Reisner ideals and matroids
```

To relate combinatorial properties of $\Delta$ with algebraic ones of $I_{\Delta}$ caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of $\Delta$ and the (Krull) dimension of $\mathbb{k}[\Delta]:=S / I_{\Delta}$. Given $A \subseteq[n]$, let us denote by $\wp_{A}:=\left(x_{i}: i \in A\right) \subseteq S$. It is easy to show that:

$$
I_{\Delta}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \backslash F} .
$$

## Preliminaries and notation

```
Stanley-Reisner ideals and matroids
```

To relate combinatorial properties of $\Delta$ with algebraic ones of $I_{\Delta}$ caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of $\Delta$ and the (Krull) dimension of $\mathbb{k}[\Delta]:=S / I_{\Delta}$. Given $A \subseteq[n]$, let us denote by $\wp_{A}:=\left(x_{i}: i \in A\right) \subseteq S$. It is easy to show that:

$$
I_{\Delta}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \backslash F .} .
$$

This fact implies that $\operatorname{dim} \mathbb{k}[\Delta]=\operatorname{dim} \Delta+1$.

## Preliminaries and notation

```
Stanley-Reisner ideals and matroids
```

To relate combinatorial properties of $\Delta$ with algebraic ones of $I_{\Delta}$ caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of $\Delta$ and the (Krull) dimension of $\mathbb{k}[\Delta]:=S / I_{\Delta}$. Given $A \subseteq[n]$, let us denote by $\wp_{A}:=\left(x_{i}: i \in A\right) \subseteq S$. It is easy to show that:

$$
I_{\Delta}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \backslash F} .
$$

This fact implies that $\operatorname{dim} \mathbb{k}[\Delta]=\operatorname{dim} \Delta+1$.
A simplicial complex $\Delta$ is a matroid if:

## Preliminaries and notation

```
Stanley-Reisner ideals and matroids
```

To relate combinatorial properties of $\Delta$ with algebraic ones of $I_{\Delta}$ caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of $\Delta$ and the (Krull) dimension of $\mathbb{k}[\Delta]:=S / I_{\Delta}$. Given $A \subseteq[n]$, let us denote by $\wp_{A}:=\left(x_{i}: i \in A\right) \subseteq S$. It is easy to show that:

$$
I_{\Delta}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \backslash F} .
$$

This fact implies that $\operatorname{dim} \mathbb{k}[\Delta]=\operatorname{dim} \Delta+1$.
A simplicial complex $\Delta$ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta)
$$

## Preliminaries and notation

```
Stanley-Reisner ideals and matroids
```

To relate combinatorial properties of $\Delta$ with algebraic ones of $I_{\Delta}$ caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of $\Delta$ and the (Krull) dimension of $\mathbb{k}[\Delta]:=S / I_{\Delta}$. Given $A \subseteq[n]$, let us denote by $\wp_{A}:=\left(x_{i}: i \in A\right) \subseteq S$. It is easy to show that:

$$
I_{\Delta}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \backslash F} .
$$

This fact implies that $\operatorname{dim} \mathbb{k}[\Delta]=\operatorname{dim} \Delta+1$.
A simplicial complex $\Delta$ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta), \quad \forall i \in F,
$$

## Preliminaries and notation

```
Stanley-Reisner ideals and matroids
```

To relate combinatorial properties of $\Delta$ with algebraic ones of $I_{\Delta}$ caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of $\Delta$ and the (Krull) dimension of $\mathbb{k}[\Delta]:=S / I_{\Delta}$. Given $A \subseteq[n]$, let us denote by $\wp_{A}:=\left(x_{i}: i \in A\right) \subseteq S$. It is easy to show that:

$$
I_{\Delta}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{[n] \backslash F} .
$$

This fact implies that $\operatorname{dim} \mathbb{k}[\Delta]=\operatorname{dim} \Delta+1$.
A simplicial complex $\Delta$ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta), \quad \forall i \in F, \quad \exists j \in G:
$$

## Preliminaries and notation

```
Stanley-Reisner ideals and matroids
```

To relate combinatorial properties of $\Delta$ with algebraic ones of $I_{\Delta}$ caught the attention of several mathematicians. One fitting example is the relationship between the (combinatorial) dimension of $\Delta$ and the (Krull) dimension of $\mathbb{k}[\Delta]:=S / I_{\Delta}$. Given $A \subseteq[n]$, let us denote by $\wp_{A}:=\left(x_{i}: i \in A\right) \subseteq S$. It is easy to show that:

$$
I_{\Delta}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp[n] \backslash F .
$$

This fact implies that $\operatorname{dim} \mathbb{k}[\Delta]=\operatorname{dim} \Delta+1$.
A simplicial complex $\Delta$ is a matroid if:

$$
\forall F, G \in \mathcal{F}(\Delta), \quad \forall i \in F, \quad \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

## Preliminaries and notation

Symbolic powers

## Preliminaries and notation

Symbolic powers

The $k$ th simbolic power of an ideal $I \subseteq S$ is the ideal of $S$ :

## Preliminaries and notation

## Symbolic powers

The $k$ th simbolic power of an ideal $I \subseteq S$ is the ideal of $S$ :

$$
I^{(k)}:=\left(I^{k} \cdot W^{-1} S\right) \cap S
$$

## Preliminaries and notation

Symbolic powers

The $k$ th simbolic power of an ideal $I \subseteq S$ is the ideal of $S$ :

$$
I^{(k)}:=\left(I^{k} \cdot W^{-1} S\right) \cap S,
$$

where $W$ is the multiplicative system $S \backslash\left(\bigcup_{\wp \in \operatorname{Ass}(I)} \wp\right)$.

## Preliminaries and notation

Symbolic powers

The $k$ th simbolic power of an ideal $I \subseteq S$ is the ideal of $S$ :

$$
I^{(k)}:=\left(I^{k} \cdot W^{-1} S\right) \cap S,
$$

where $W$ is the multiplicative system $S \backslash\left(\bigcup_{\wp \in \operatorname{Ass}(I)} \wp\right)$.
$I^{k} \subseteq I^{(k)}$,

## Preliminaries and notation

Symbolic powers

The $k$ th simbolic power of an ideal $I \subseteq S$ is the ideal of $S$ :

$$
I^{(k)}:=\left(I^{k} \cdot W^{-1} S\right) \cap S,
$$

where $W$ is the multiplicative system $S \backslash\left(\bigcup_{\wp \in \operatorname{Ass}(I)} \wp\right)$.
$I^{k} \subseteq I^{(k)}$, and equality holds if $I^{k}$ has no embedded primes.

## Preliminaries and notation

Symbolic powers

The $k$ th simbolic power of an ideal $I \subseteq S$ is the ideal of $S$ :

$$
I^{(k)}:=\left(I^{k} \cdot W^{-1} S\right) \cap S,
$$

where $W$ is the multiplicative system $S \backslash\left(\bigcup_{\wp \in \operatorname{Ass}(I)} \wp\right)$.
$I^{k} \subseteq I^{(k)}$, and equality holds if $I^{k}$ has no embedded primes.
If $I$ is a square-free monomial ideal,

## Preliminaries and notation

Symbolic powers

The $k$ th simbolic power of an ideal $I \subseteq S$ is the ideal of $S$ :

$$
I^{(k)}:=\left(I^{k} \cdot W^{-1} S\right) \cap S,
$$

where $W$ is the multiplicative system $S \backslash\left(\bigcup_{\wp \in \operatorname{Ass}(I)} \wp\right)$.
$I^{k} \subseteq I^{(k)}$, and equality holds if $I^{k}$ has no embedded primes.
If $I$ is a square-free monomial ideal, then there is a collection $\mathcal{F}$ of subsets of $[n]$

## Preliminaries and notation

Symbolic powers

The $k$ th simbolic power of an ideal $I \subseteq S$ is the ideal of $S$ :

$$
I^{(k)}:=\left(I^{k} \cdot W^{-1} S\right) \cap S,
$$

where $W$ is the multiplicative system $S \backslash\left(\bigcup_{\wp \in \operatorname{Ass}(I)} \wp\right)$.
$I^{k} \subseteq I^{(k)}$, and equality holds if $I^{k}$ has no embedded primes.
If $I$ is a square-free monomial ideal, then there is a collection $\mathcal{F}$ of subsets of $[n]$ such that $I=\bigcap_{A \in \mathcal{F}} \wp_{A}$.

## Preliminaries and notation

## Symbolic powers

The $k$ th simbolic power of an ideal $I \subseteq S$ is the ideal of $S$ :

$$
I^{(k)}:=\left(I^{k} \cdot W^{-1} S\right) \cap S,
$$

where $W$ is the multiplicative system $S \backslash\left(\bigcup_{\wp \in \operatorname{Ass}(I)} \wp\right)$.
$I^{k} \subseteq I^{(k)}$, and equality holds if $I^{k}$ has no embedded primes.
If $l$ is a square-free monomial ideal, then there is a collection $\mathcal{F}$ of subsets of $[n]$ such that $I=\bigcap_{A \in \mathcal{F}} \wp_{A}$. Then it is easy to show:

$$
I^{(k)}=\bigcap_{A \in \mathcal{F}} \wp_{A}^{k}
$$

The problem
Cohen-Macaulay combinatorial counterpart

## The problem

```
Cohen-M acaulay
combinatorial
counterpart
```

Reisner, in 1976, gave a characterization in terms of the topological realization of $\Delta$ of the Cohen-Macaulay property of $\mathbb{k}[\Delta]$.

## The problem

```
Cohen-Macaulay combinatorial counterpart
```

Reisner, in 1976, gave a characterization in terms of the topological realization of $\Delta$ of the Cohen-Macaulay property of $\mathbb{k}[\Delta]$. However a characterization in a combinatorial fashion still misses.

## The problem

```
Cohen-Macaulay combinatorial counterpart
```

Reisner, in 1976, gave a characterization in terms of the topological realization of $\Delta$ of the Cohen-Macaulay property of $\mathbb{k}[\Delta]$. However a characterization in a combinatorial fashion still misses.

A related question is when all the rings $S / I_{\Delta}^{k}$ are Cohen-Macaulay.

## The problem

```
Cohen-Macaulay combinatorial counterpart
```

Reisner, in 1976, gave a characterization in terms of the topological realization of $\Delta$ of the Cohen-Macaulay property of $\mathbb{k}[\Delta]$. However a characterization in a combinatorial fashion still misses.

A related question is when all the rings $S / I_{\Delta}^{k}$ are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

## The problem

```
Cohen-Macaulay combinatorial counterpart
```

Reisner, in 1976, gave a characterization in terms of the topological realization of $\Delta$ of the Cohen-Macaulay property of $\mathbb{k}[\Delta]$. However a characterization in a combinatorial fashion still misses.

A related question is when all the rings $S / I_{\Delta}^{k}$ are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):
$S / I_{\Delta}^{k}$ is $\mathrm{CM} \forall k \Leftrightarrow \Delta$ is complete $(n-\operatorname{dim} \Delta-1)$-partite

## The problem

```
Cohen-Macaulay combinatorial counterpart
```

Reisner, in 1976, gave a characterization in terms of the topological realization of $\Delta$ of the Cohen-Macaulay property of $\mathbb{k}[\Delta]$. However a characterization in a combinatorial fashion still misses.

A related question is when all the rings $S / I_{\Delta}^{k}$ are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

$$
S / I_{\Delta}^{k} \text { is } \mathrm{CM} \forall k \Leftrightarrow \Delta \text { is complete }(n-\operatorname{dim} \Delta-1) \text {-partite }
$$

Notice that $S / I_{\Delta}^{k} \mathrm{CM} \Rightarrow I_{\Delta}^{k}$ has no embedded primes $\Rightarrow I_{\Delta}^{k}=I_{\Delta}^{(k)}$.

## The problem

```
Cohen-Macaulay combinatorial counterpart
```

Reisner, in 1976, gave a characterization in terms of the topological realization of $\Delta$ of the Cohen-Macaulay property of $\mathbb{k}[\Delta]$. However a characterization in a combinatorial fashion still misses.

A related question is when all the rings $S / I_{\Delta}^{k}$ are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

$$
S / I_{\Delta}^{k} \text { is } \mathrm{CM} \forall k \Leftrightarrow \Delta \text { is complete }(n-\operatorname{dim} \Delta-1) \text {-partite }
$$

Notice that $S / I_{\Delta}^{k} \mathrm{CM} \Rightarrow I_{\Delta}^{k}$ has no embedded primes $\Rightarrow I_{\Delta}^{k}=I_{\Delta}^{(k)}$.
Therefore it is natural to ask:

## The problem

```
Cohen-Macaulay combinatorial counterpart
```

Reisner, in 1976, gave a characterization in terms of the topological realization of $\Delta$ of the Cohen-Macaulay property of $\mathbb{k}[\Delta]$. However a characterization in a combinatorial fashion still misses.

A related question is when all the rings $S / I_{\Delta}^{k}$ are Cohen-Macaulay. An answer is provided by a general result of Cowsik and Nori (1977):

$$
S / I_{\Delta}^{k} \text { is } \mathrm{CM} \forall k \Leftrightarrow \Delta \text { is complete }(n-\operatorname{dim} \Delta-1) \text {-partite }
$$

Notice that $S / I_{\Delta}^{k} \mathrm{CM} \Rightarrow I_{\Delta}^{k}$ has no embedded primes $\Rightarrow I_{\Delta}^{k}=I_{\Delta}^{(k)}$.
Therefore it is natural to ask:

When is $S / I_{\Delta}^{(k)}$ Cohen-Macaulay for all positive integers k???

The result

## The result

In this talk, we are going to answer the above question:

## The result

In this talk, we are going to answer the above question:

$$
S / I_{\Delta}^{(k)} \text { is Cohen-Macaulay } \forall k \Leftrightarrow \Delta \text { is a matroid }
$$

## The result

In this talk, we are going to answer the above question:

$$
S / I_{\Delta}^{(k)} \text { is Cohen-Macaulay } \forall k \Leftrightarrow \Delta \text { is a matroid }
$$

It is fair to say that Minh and Trung proved at the same time the same result.

## The result

In this talk, we are going to answer the above question:

$$
S / I_{\Delta}^{(k)} \text { is Cohen-Macaulay } \forall k \Leftrightarrow \Delta \text { is a matroid }
$$

It is fair to say that Minh and Trung proved at the same time the same result. However the two proofs are completely different.

## SKETCH OF THE PROOF

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

Properties of matroids

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

Properties of matroids

(i) If $\Delta$ is a matroid, then $\Delta$ is pure.

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

Properties of matroids

(i) If $\Delta$ is a matroid, then $\Delta$ is pure.
(ii) Exchange property.

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

Properties of matroids

(i) If $\Delta$ is a matroid, then $\Delta$ is pure.
(ii) Exchange property. If $\Delta$ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G: \quad(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

 Properties of matroids(i) If $\Delta$ is a matroid, then $\Delta$ is pure.
(ii) Exchange property. If $\Delta$ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$ and $(G \backslash\{j\}) \cup\{i\} \in \mathcal{F}(\Delta)!$

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

Properties of matroids

(i) If $\Delta$ is a matroid, then $\Delta$ is pure.
(ii) Exchange property. If $\Delta$ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$ and $(G \backslash\{j\}) \cup\{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of $\Delta$ is the complex $\Delta^{c}$ on $[n]$ s. t.:

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

 Properties of matroids(i) If $\Delta$ is a matroid, then $\Delta$ is pure.
(ii) Exchange property. If $\Delta$ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$ and $(G \backslash\{j\}) \cup\{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of $\Delta$ is the complex $\Delta^{c}$ on $[n]$ s. t.:

$$
\mathcal{F}\left(\Delta^{c}\right):=\{[n] \backslash F: F \in \mathcal{F}(\Delta)\} .
$$

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

 Properties of matroids(i) If $\Delta$ is a matroid, then $\Delta$ is pure.
(ii) Exchange property. If $\Delta$ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$ and $(G \backslash\{j\}) \cup\{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of $\Delta$ is the complex $\Delta^{c}$ on $[n]$ s. t.:

$$
\mathcal{F}\left(\Delta^{c}\right):=\{[n] \backslash F: F \in \mathcal{F}(\Delta)\} .
$$

(iii) Duality.

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

Properties of matroids
(i) If $\Delta$ is a matroid, then $\Delta$ is pure.
(ii) Exchange property. If $\Delta$ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$ and $(G \backslash\{j\}) \cup\{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of $\Delta$ is the complex $\Delta^{c}$ on $[n]$ s. t.:

$$
\mathcal{F}\left(\Delta^{c}\right):=\{[n] \backslash F: F \in \mathcal{F}(\Delta)\} .
$$

(iii) Duality. For any simplicial complex $\Delta$ on [ $n$ ], we have

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

Properties of matroids
(i) If $\Delta$ is a matroid, then $\Delta$ is pure.
(ii) Exchange property. If $\Delta$ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$,
$\exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$ and $(G \backslash\{j\}) \cup\{i\} \in \mathcal{F}(\Delta)!$

The dual simplicial complex of $\Delta$ is the complex $\Delta^{c}$ on $[n]$ s. t.:

$$
\mathcal{F}\left(\Delta^{c}\right):=\{[n] \backslash F: F \in \mathcal{F}(\Delta)\} .
$$

(iii) Duality. For any simplicial complex $\Delta$ on [ $n$ ], we have $\Delta$ is a matroid $\Leftrightarrow \Delta^{c}$ is a matroid.

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

For a simplicial complex $\Delta$, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

For a simplicial complex $\Delta$, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp F,
$$

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

For a simplicial complex $\Delta$, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp F,
$$

$A \subseteq[n]$ is a vertex cover of $\Delta$ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

For a simplicial complex $\Delta$, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},
$$

$A \subseteq[n]$ is a vertex cover of $\Delta$ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.

EXAMPLES:


## Stanley-Reisner ideals $\longrightarrow$ cover ideals

For a simplicial complex $\Delta$, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},
$$

$A \subseteq[n]$ is a vertex cover of $\Delta$ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.

EXAMPLES:

$\{1,2,3,4,5,6\}$ is a vertex cover

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

For a simplicial complex $\Delta$, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},
$$

$A \subseteq[n]$ is a vertex cover of $\Delta$ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.

EXAMPLES:

$\{1,2,4,5\}$ is a vertex cover

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

For a simplicial complex $\Delta$, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},
$$

$A \subseteq[n]$ is a vertex cover of $\Delta$ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.

EXAMPLES:

$\{1,2,4\}$ is not a vertex cover

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

For a simplicial complex $\Delta$, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},
$$

$A \subseteq[n]$ is a vertex cover of $\Delta$ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.


## Stanley-Reisner ideals $\longrightarrow$ cover ideals

For a simplicial complex $\Delta$, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp F,
$$

$A \subseteq[n]$ is a vertex cover of $\Delta$ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.
One can easily check that:

$$
J(\Delta)=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \text { is a vertex cover of } \Delta\right)
$$

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

For a simplicial complex $\Delta$, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp F
$$

$A \subseteq[n]$ is a vertex cover of $\Delta$ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.
One can easily check that:

$$
J(\Delta)=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \text { is a vertex cover of } \Delta\right)
$$

By the duality for matroids, because $I_{\Delta}=J\left(\Delta^{c}\right)$, we can pass

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

For a simplicial complex $\Delta$, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp F
$$

$A \subseteq[n]$ is a vertex cover of $\Delta$ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.
One can easily check that:

$$
J(\Delta)=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \text { is a vertex cover of } \Delta\right)
$$

By the duality for matroids, because $I_{\Delta}=J\left(\Delta^{c}\right)$, we can pass from

$$
S / I_{\Delta}^{(k)} \text { is } C M \text { for any } k \Leftrightarrow \Delta \text { is a matroid }
$$

## Stanley-Reisner ideals $\longrightarrow$ cover ideals

For a simplicial complex $\Delta$, its cover ideal is $J(\Delta):=I_{\Delta^{c}}$, so:

$$
J(\Delta)=\bigcap_{F \in \mathcal{F}(\Delta)} \wp F
$$

$A \subseteq[n]$ is a vertex cover of $\Delta$ if $A \cap F \neq \emptyset \forall F \in \mathcal{F}(\Delta)$.
One can easily check that:

$$
J(\Delta)=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \text { is a vertex cover of } \Delta\right)
$$

By the duality for matroids, because $I_{\Delta}=J\left(\Delta^{c}\right)$, we can pass to

$$
S / J(\Delta)^{(k)} \text { is CM for any } k \Leftrightarrow \Delta \text { is a matroid }
$$

## Symbolic powers and $k$-covers

## Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.

## Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$.

## Symbolic powers and $k$-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a $k$-cover of a simplicial complex $\Delta$ on $[n]$ if:

## Symbolic powers and $k$-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a $k$-cover of a simplicial complex $\Delta$ on [n] if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$.

## Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a $k$-cover of a simplicial complex $\Delta$ on [n] if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A $k$-cover $\alpha$ is basic if there is not a $k$-cover $\beta$ with $\beta<\alpha$.

## Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a $k$-cover of a simplicial complex $\Delta$ on [n] if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A $k$-cover $\alpha$ is basic if there is not a $k$-cover $\beta$ with $\beta<\alpha$.


## Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a $k$-cover of a simplicial complex $\Delta$ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A $k$-cover $\alpha$ is basic if there is not a $k$-cover $\beta$ with $\beta<\alpha$.


## Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a $k$-cover of a simplicial complex $\Delta$ on [n] if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A $k$-cover $\alpha$ is basic if there is not a $k$-cover $\beta$ with $\beta<\alpha$.

EXAMPLES:


## Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a $k$-cover of a simplicial complex $\Delta$ on [n] if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A $k$-cover $\alpha$ is basic if there is not a $k$-cover $\beta$ with $\beta<\alpha$.

EXAMPLES:


## Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a $k$-cover of a simplicial complex $\Delta$ on [n] if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A $k$-cover $\alpha$ is basic if there is not a $k$-cover $\beta$ with $\beta<\alpha$.

EXAMPLES:


## Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a $k$-cover of a simplicial complex $\Delta$ on [n] if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A $k$-cover $\alpha$ is basic if there is not a $k$-cover $\beta$ with $\beta<\alpha$.

EXAMPLES:


## Symbolic powers and k-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a $k$-cover of a simplicial complex $\Delta$ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A $k$-cover $\alpha$ is basic if there is not a $k$-cover $\beta$ with $\beta<\alpha$.

EXAMPLES:


## Symbolic powers and $k$-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a $k$-cover of a simplicial complex $\Delta$ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$.
A $k$-cover $\alpha$ is basic if there is not a $k$-cover $\beta$ with $\beta<\alpha$.

It is not difficult to show:

$$
J(\Delta)^{(k)}=\left(\mathrm{x}^{\alpha}:=x_{1}^{\alpha(1)} \cdots x_{n}^{\alpha(n)}: \alpha \text { is a } k \text {-cover }\right)
$$

## Symbolic powers and $k$-covers

We have $J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N}$.
We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a $k$-cover of a simplicial complex $\Delta$ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$.
A $k$-cover $\alpha$ is basic if there is not a $k$-cover $\beta$ with $\beta<\alpha$.

It is not difficult to show:

$$
J(\Delta)^{(k)}=\left(\mathrm{x}^{\alpha}: \alpha \text { is a basic } k \text {-cover }\right)
$$

The algebra of basic covers
Definition

## The algebra of basic covers

Definition
The algebra of basic covers of a simplicial complex $\Delta$ is:

## The algebra of basic covers

Definition
The algebra of basic covers of a simplicial complex $\Delta$ is:

$$
\bar{A}(\Delta):=\bigoplus_{k \in \mathbb{N}} \bar{A}(\Delta)_{k}
$$

## The algebra of basic covers

Definition
The algebra of basic covers of a simplicial complex $\Delta$ is:

$$
\bar{A}(\Delta):=\bigoplus_{k \in \mathbb{N}} \bar{A}(\Delta)_{k}
$$

$-\bar{A}(\Delta)_{0}:=\mathbb{k}$.

## The algebra of basic covers

Definition
The algebra of basic covers of a simplicial complex $\Delta$ is:

$$
\bar{A}(\Delta):=\bigoplus_{k \in \mathbb{N}} \bar{A}(\Delta)_{k}
$$

- $\bar{A}(\Delta)_{0}:=\mathbb{k}$.
- $\bar{A}(\Delta)_{k}:=\left\langle\mathbf{x}^{\alpha}: \alpha\right.$ is a basic $k$-cover $\rangle$ for all $k>0$.


## The algebra of basic covers

Definition
The algebra of basic covers of a simplicial complex $\Delta$ is:

$$
\bar{A}(\Delta):=\bigoplus_{k \in \mathbb{N}} \bar{A}(\Delta)_{k}
$$

- $\bar{A}(\Delta)_{0}:=\mathbb{k}$.
- $\bar{A}(\Delta)_{k}:=\left\langle\mathbf{x}^{\alpha}: \alpha\right.$ is a basic $k$-cover $\rangle$ for all $k>0$.
- If $\alpha$ is a basic $k$-cover and $\beta$ is a basic $h$-cover, then

$$
\mathbf{x}^{\alpha} \mathbf{x}^{\beta}:=\{
$$

## The algebra of basic covers

Definition
The algebra of basic covers of a simplicial complex $\Delta$ is:

$$
\bar{A}(\Delta):=\bigoplus_{k \in \mathbb{N}} \bar{A}(\Delta)_{k}
$$

$-\bar{A}(\Delta)_{0}:=\mathbb{k}$.

- $\bar{A}(\Delta)_{k}:=\left\langle\mathbf{x}^{\alpha}: \alpha\right.$ is a basic $k$-cover $\rangle$ for all $k>0$.
- If $\alpha$ is a basic $k$-cover and $\beta$ is a basic $h$-cover, then

$$
\mathbf{x}^{\alpha} \mathbf{x}^{\beta}:= \begin{cases}\mathbf{x}^{\alpha+\beta} & \text { if } \alpha+\beta \text { is a basic }(h+k) \text {-cover, },\end{cases}
$$

## The algebra of basic covers

Definition
The algebra of basic covers of a simplicial complex $\Delta$ is:

$$
\bar{A}(\Delta):=\bigoplus_{k \in \mathbb{N}} \bar{A}(\Delta)_{k}
$$

$-\bar{A}(\Delta)_{0}:=\mathbb{k}$.

- $\bar{A}(\Delta)_{k}:=\left\langle\mathbf{x}^{\alpha}: \alpha\right.$ is a basic $k$-cover $\rangle$ for all $k>0$.
- If $\alpha$ is a basic $k$-cover and $\beta$ is a basic $h$-cover, then

$$
\mathbf{x}^{\alpha} \mathbf{x}^{\beta}:= \begin{cases}\mathbf{x}^{\alpha+\beta} & \text { if } \alpha+\beta \text { is a basic }(h+k) \text {-cover }, \\ 0 & \text { otherwise }\end{cases}
$$

## The algebra of basic covers

Definition
The algebra of basic covers of a simplicial complex $\Delta$ is:

$$
\bar{A}(\Delta):=\bigoplus_{k \in \mathbb{N}} \bar{A}(\Delta)_{k}
$$

- $\bar{A}(\Delta)_{0}:=\mathbb{k}$.
- $\bar{A}(\Delta)_{k}:=\left\langle\mathbf{x}^{\alpha}: \alpha\right.$ is a basic $k$-cover $\rangle$ for all $k>0$.
- If $\alpha$ is a basic $k$-cover and $\beta$ is a basic $h$-cover, then

$$
\mathbf{x}^{\alpha} \mathbf{x}^{\beta}:= \begin{cases}\mathbf{x}^{\alpha+\beta} & \text { if } \alpha+\beta \text { is a basic }(h+k) \text {-cover }, \\ 0 & \text { otherwise }\end{cases}
$$

EXAMPLE:

## The algebra of basic covers

Definition
The algebra of basic covers of a simplicial complex $\Delta$ is:

$$
\bar{A}(\Delta):=\bigoplus_{k \in \mathbb{N}} \bar{A}(\Delta)_{k}
$$

- $\bar{A}(\Delta)_{0}:=\mathbb{k}$.
- $\bar{A}(\Delta)_{k}:=\left\langle\mathbf{x}^{\alpha}: \alpha\right.$ is a basic $k$-cover $\rangle$ for all $k>0$.
- If $\alpha$ is a basic $k$-cover and $\beta$ is a basic $h$-cover, then

$$
\mathbf{x}^{\alpha} \mathbf{x}^{\beta}:= \begin{cases}\mathbf{x}^{\alpha+\beta} & \text { if } \alpha+\beta \text { is a basic }(h+k) \text {-cover }, \\ 0 & \text { otherwise }\end{cases}
$$

EXAMPLE:


## The algebra of basic covers

Definition
The algebra of basic covers of a simplicial complex $\Delta$ is:

$$
\bar{A}(\Delta):=\bigoplus_{k \in \mathbb{N}} \bar{A}(\Delta)_{k}
$$

- $\bar{A}(\Delta)_{0}:=\mathbb{k}$.
- $\bar{A}(\Delta)_{k}:=\left\langle\mathbf{x}^{\alpha}: \alpha\right.$ is a basic $k$-cover $\rangle$ for all $k>0$.
- If $\alpha$ is a basic $k$-cover and $\beta$ is a basic $h$-cover, then

$$
\mathbf{x}^{\alpha} \mathbf{x}^{\beta}:= \begin{cases}\mathbf{x}^{\alpha+\beta} & \text { if } \alpha+\beta \text { is a basic }(h+k) \text {-cover }, \\ 0 & \text { otherwise }\end{cases}
$$

EXAMPLE:


## The algebra of basic covers

Definition
The algebra of basic covers of a simplicial complex $\Delta$ is:

$$
\bar{A}(\Delta):=\bigoplus_{k \in \mathbb{N}} \bar{A}(\Delta)_{k}
$$

- $\bar{A}(\Delta)_{0}:=\mathbb{k}$.
- $\bar{A}(\Delta)_{k}:=\left\langle\mathbf{x}^{\alpha}: \alpha\right.$ is a basic $k$-cover $\rangle$ for all $k>0$.
- If $\alpha$ is a basic $k$-cover and $\beta$ is a basic $h$-cover, then

$$
\mathbf{x}^{\alpha} \mathbf{x}^{\beta}:= \begin{cases}\mathbf{x}^{\alpha+\beta} & \text { if } \alpha+\beta \text { is a basic }(h+k) \text {-cover }, \\ 0 & \text { otherwise }\end{cases}
$$

EXAMPLE:


## The algebra of basic covers

Definition
The algebra of basic covers of a simplicial complex $\Delta$ is:

$$
\bar{A}(\Delta):=\bigoplus_{k \in \mathbb{N}} \bar{A}(\Delta)_{k}
$$

- $\bar{A}(\Delta)_{0}:=\mathbb{k}$.
- $\bar{A}(\Delta)_{k}:=\left\langle\mathbf{x}^{\alpha}: \alpha\right.$ is a basic $k$-cover $\rangle$ for all $k>0$.
- If $\alpha$ is a basic $k$-cover and $\beta$ is a basic $h$-cover, then

$$
\mathbf{x}^{\alpha} \mathbf{x}^{\beta}:= \begin{cases}\mathbf{x}^{\alpha+\beta} & \text { if } \alpha+\beta \text { is a basic }(h+k) \text {-cover }, \\ 0 & \text { otherwise }\end{cases}
$$

EXAMPLE:


The algebra of basic covers
How $\bar{A}(\Delta)$ comes into play

## The algebra of basic covers

How $\bar{A}(\Delta)$ comes into play

Using tools and result from blow-up algebras, we have:

## The algebra of basic covers

How $\bar{A}(\Delta)$ comes into play

Using tools and result from blow-up algebras, we have:

$$
\operatorname{dim} \Delta+1=\operatorname{ht}(J(\Delta)) \leq \operatorname{dim} \bar{A}(\Delta)=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}
$$

## The algebra of basic covers

How $\bar{A}(\Delta)$ comes into play

Using tools and result from blow-up algebras, we have:

$$
\operatorname{dim} \Delta+1=\operatorname{ht}(J(\Delta)) \leq \operatorname{dim} \bar{A}(\Delta)=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}
$$

Notice that $\operatorname{dim} S / J(\Delta)^{(k)}=\operatorname{dim} S / J(\Delta)$

## The algebra of basic covers

How $\bar{A}(\Delta)$ comes into play

Using tools and result from blow-up algebras, we have:

$$
\operatorname{dim} \Delta+1=\operatorname{ht}(J(\Delta)) \leq \operatorname{dim} \bar{A}(\Delta)=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}
$$

Notice that $\operatorname{dim} S / J(\Delta)^{(k)}=\operatorname{dim} S / J(\Delta)=n-\operatorname{dim} \Delta-1$.

## The algebra of basic covers

How $\bar{A}(\Delta)$ comes into play

Using tools and result from blow-up algebras, we have:

$$
\operatorname{dim} \Delta+1=\operatorname{ht}(J(\Delta)) \leq \operatorname{dim} \bar{A}(\Delta)=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}
$$

Notice that $\operatorname{dim} S / J(\Delta)^{(k)}=\operatorname{dim} S / J(\Delta)=n-\operatorname{dim} \Delta-1$. So to show that all the rings $S / J(\Delta)^{(k)}$ are Cohen-Macaulay,

## The algebra of basic covers

How $\bar{A}(\Delta)$ comes into play

Using tools and result from blow-up algebras, we have:

$$
\operatorname{dim} \Delta+1=\operatorname{ht}(J(\Delta)) \leq \operatorname{dim} \bar{A}(\Delta)=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}
$$

Notice that $\operatorname{dim} S / J(\Delta)^{(k)}=\operatorname{dim} S / J(\Delta)=n-\operatorname{dim} \Delta-1$. So to show that all the rings $S / J(\Delta)^{(k)}$ are Cohen-Macaulay, that is equivalent to show that $\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}=n-\operatorname{dim} \Delta-1$,

## The algebra of basic covers

How $\bar{A}(\Delta)$ comes into play

Using tools and result from blow-up algebras, we have:

$$
\operatorname{dim} \Delta+1=\operatorname{ht}(J(\Delta)) \leq \operatorname{dim} \bar{A}(\Delta)=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}
$$

Notice that $\operatorname{dim} S / J(\Delta)^{(k)}=\operatorname{dim} S / J(\Delta)=n-\operatorname{dim} \Delta-1$. So to show that all the rings $S / J(\Delta)^{(k)}$ are Cohen-Macaulay, that is equivalent to show that $\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}=n-\operatorname{dim} \Delta-1$, we have to show that

## The algebra of basic covers

How $\bar{A}(\Delta)$ comes into play

Using tools and result from blow-up algebras, we have:

$$
\operatorname{dim} \Delta+1=\operatorname{ht}(J(\Delta)) \leq \operatorname{dim} \bar{A}(\Delta)=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}
$$

Notice that $\operatorname{dim} S / J(\Delta)^{(k)}=\operatorname{dim} S / J(\Delta)=n-\operatorname{dim} \Delta-1$. So to show that all the rings $S / J(\Delta)^{(k)}$ are Cohen-Macaulay, that is equivalent to show that $\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}=n-\operatorname{dim} \Delta-1$, we have to show that $\operatorname{dim} \bar{A}(\Delta) \leq \operatorname{dim} \Delta+1$.

## The algebra of basic covers

How $\bar{A}(\Delta)$ comes into play

Using tools and result from blow-up algebras, we have:

$$
\operatorname{dim} \Delta+1=\operatorname{ht}(J(\Delta)) \leq \operatorname{dim} \bar{A}(\Delta)=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}
$$

Notice that $\operatorname{dim} S / J(\Delta)^{(k)}=\operatorname{dim} S / J(\Delta)=n-\operatorname{dim} \Delta-1$. So to show that all the rings $S / J(\Delta)^{(k)}$ are Cohen-Macaulay, that is equivalent to show that $\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}=n-\operatorname{dim} \Delta-1$, we have to show that $\operatorname{dim} \bar{A}(\Delta) \leq \operatorname{dim} \Delta+1$.

In the next slides we will show that:

## The algebra of basic covers

How $\bar{A}(\Delta)$ comes into play

Using tools and result from blow-up algebras, we have:

$$
\operatorname{dim} \Delta+1=\operatorname{ht}(J(\Delta)) \leq \operatorname{dim} \bar{A}(\Delta)=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}
$$

Notice that $\operatorname{dim} S / J(\Delta)^{(k)}=\operatorname{dim} S / J(\Delta)=n-\operatorname{dim} \Delta-1$. So to show that all the rings $S / J(\Delta)^{(k)}$ are Cohen-Macaulay, that is equivalent to show that $\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}=n-\operatorname{dim} \Delta-1$, we have to show that $\operatorname{dim} \bar{A}(\Delta) \leq \operatorname{dim} \Delta+1$.

In the next slides we will show that:

$$
\operatorname{dim} \bar{A}(\Delta) \leq \operatorname{dim} \Delta+1 \text { whenever } \Delta \text { is a matroid. }
$$

The algebra of basic covers
A combinatorial description of $\operatorname{dim} \bar{A}(\Delta)$

The algebra of basic covers
A combinatorial description of $\operatorname{dim} \bar{A}(\Delta)$

By meaning of the Hilbert polynomial, if $\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{k}\right)=O\left(k^{s-1}\right)$,

The algebra of basic covers
A combinatorial description of $\operatorname{dim} \bar{A}(\Delta)$

By meaning of the Hilbert polynomial, if $\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{k}\right)=O\left(k^{s-1}\right)$, then $\operatorname{dim}(\bar{A}(\Delta)) \leq s$.

The algebra of basic covers
A combinatorial description of $\operatorname{dim} \bar{A}(\Delta)$

By meaning of the Hilbert polynomial, if $\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{k}\right)=O\left(k^{s-1}\right)$, then $\operatorname{dim}(\bar{A}(\Delta)) \leq s$. So to get our goal, because

$$
\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{k}\right)=\mid\{\text { basic } k \text {-covers of } \Delta\} \mid,
$$

The algebra of basic covers
A combinatorial description of $\operatorname{dim} \bar{A}(\Delta)$

By meaning of the Hilbert polynomial, if $\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{k}\right)=O\left(k^{s-1}\right)$, then $\operatorname{dim}(\bar{A}(\Delta)) \leq s$. So to get our goal, because

$$
\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{k}\right)=\mid\{\text { basic } k \text {-covers of } \Delta\} \mid,
$$

we have to say that the basic $k$-covers of matroids are "few":

The algebra of basic covers
A combinatorial description of $\operatorname{dim} \bar{A}(\Delta)$

By meaning of the Hilbert polynomial, if $\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{k}\right)=O\left(k^{s-1}\right)$, then $\operatorname{dim}(\bar{A}(\Delta)) \leq s$. So to get our goal, because

$$
\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{k}\right)=\mid\{\text { basic } k \text {-covers of } \Delta\} \mid
$$

we have to say that the basic $k$-covers of matroids are "few": More precisely, our purpose is to prove that if $\Delta$ is a matroid of dimension $d-1$,

The algebra of basic covers
A combinatorial description of $\operatorname{dim} \bar{A}(\Delta)$

By meaning of the Hilbert polynomial, if $\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{k}\right)=O\left(k^{s-1}\right)$, then $\operatorname{dim}(\bar{A}(\Delta)) \leq s$. So to get our goal, because

$$
\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{k}\right)=\mid\{\text { basic } k \text {-covers of } \Delta\} \mid,
$$

we have to say that the basic $k$-covers of matroids are "few": More precisely, our purpose is to prove that if $\Delta$ is a matroid of dimension $d-1$, then $\mid\{$ basic $k$-covers of $\Delta\} \mid=O\left(k^{d}\right)$.

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The rigidity of the basic covers of a matroid

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The rigidity of the basic covers of a matroid

Let $\alpha$ be a basic $k$-cover of $\Delta$.

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The rigidity of the basic covers of a matroid

Let $\alpha$ be a basic $k$-cover of $\Delta$. Since $\alpha$ is basic, $\exists F \in \mathcal{F}(\Delta)$ :

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The rigidity of the basic covers of a matroid

Let $\alpha$ be a basic $k$-cover of $\Delta$. Since $\alpha$ is basic, $\exists F \in \mathcal{F}(\Delta)$ :

$$
\sum_{i \in F} \alpha(i)=k
$$

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The rigidity of the basic covers of a matroid

Let $\alpha$ be a basic $k$-cover of $\Delta$. Since $\alpha$ is basic, $\exists F \in \mathcal{F}(\Delta)$ :

$$
\sum_{i \in F} \alpha(i)=k
$$

Claim: $F$ fixes $\alpha$. I.e., all the values of $\alpha$ are determined by those on $F$.

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The rigidity of the basic covers of a matroid

Let $\alpha$ be a basic $k$-cover of $\Delta$. Since $\alpha$ is basic, $\exists F \in \mathcal{F}(\Delta)$ :

$$
\sum_{i \in F} \alpha(i)=k
$$

Claim: $F$ fixes $\alpha$. I.e., all the values of $\alpha$ are determined by those on $F$. In fact, let $j_{0}$ be in $[n] \backslash F$.

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The rigidity of the basic covers of a matroid

Let $\alpha$ be a basic $k$-cover of $\Delta$. Since $\alpha$ is basic, $\exists F \in \mathcal{F}(\Delta)$ :

$$
\sum_{i \in F} \alpha(i)=k
$$

Claim: $F$ fixes $\alpha$. I.e., all the values of $\alpha$ are determined by those on $F$.
In fact, let $j_{0}$ be in $[n] \backslash F$. Again, since $\alpha$ is basic, $\exists G \in \mathcal{F}(\Delta)$ :

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The rigidity of the basic covers of a matroid

Let $\alpha$ be a basic $k$-cover of $\Delta$. Since $\alpha$ is basic, $\exists F \in \mathcal{F}(\Delta)$ :

$$
\sum_{i \in F} \alpha(i)=k
$$

Claim: $F$ fixes $\alpha$. I.e., all the values of $\alpha$ are determined by those on $F$.
In fact, let $j_{0}$ be in $[n] \backslash F$. Again, since $\alpha$ is basic, $\exists G \in \mathcal{F}(\Delta)$ :

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The rigidity of the basic covers of a matroid

Let $\alpha$ be a basic $k$-cover of $\Delta$. Since $\alpha$ is basic, $\exists F \in \mathcal{F}(\Delta)$ :

$$
\sum_{i \in F} \alpha(i)=k
$$

Claim: $F$ fixes $\alpha$. I.e., all the values of $\alpha$ are determined by those on $F$.
In fact, let $j_{0}$ be in $[n] \backslash F$. Again, since $\alpha$ is basic, $\exists G \in \mathcal{F}(\Delta)$ :

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids $\Rightarrow$ there exists $i_{0} \in F$ such that

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The rigidity of the basic covers of a matroid

Let $\alpha$ be a basic $k$-cover of $\Delta$. Since $\alpha$ is basic, $\exists F \in \mathcal{F}(\Delta)$ :

$$
\sum_{i \in F} \alpha(i)=k
$$

Claim: $F$ fixes $\alpha$. I.e., all the values of $\alpha$ are determined by those on $F$. In fact, let $j_{0}$ be in $[n] \backslash F$. Again, since $\alpha$ is basic, $\exists G \in \mathcal{F}(\Delta)$ :

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids $\Rightarrow$ there exists $i_{0} \in F$ such that

$$
\text { (I) } F^{\prime}:=\left(F \backslash\left\{i_{0}\right\}\right) \cup\left\{j_{0}\right\} \in \mathcal{F}(\Delta) \quad \text { and } \quad \text { (II) } G^{\prime}:=\left(G \backslash\left\{j_{0}\right\}\right) \cup\left\{i_{0}\right\} \in \mathcal{F}(\Delta) \text {. }
$$

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The rigidity of the basic covers of a matroid

Let $\alpha$ be a basic $k$-cover of $\Delta$. Since $\alpha$ is basic, $\exists F \in \mathcal{F}(\Delta)$ :

$$
\sum_{i \in F} \alpha(i)=k
$$

Claim: $F$ fixes $\alpha$. I.e., all the values of $\alpha$ are determined by those on $F$. In fact, let $j_{0}$ be in $[n] \backslash F$. Again, since $\alpha$ is basic, $\exists G \in \mathcal{F}(\Delta)$ :

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids $\Rightarrow$ there exists $i_{0} \in F$ such that
(I) $F^{\prime}:=\left(F \backslash\left\{i_{0}\right\}\right) \cup\left\{j_{0}\right\} \in \mathcal{F}(\Delta)$ and
(II) $G^{\prime}:=\left(G \backslash\left\{j_{0}\right\}\right) \cup\left\{i_{0}\right\} \in \mathcal{F}(\Delta)$.
$(\mathrm{I}) \Longrightarrow \sum_{i \in F^{\prime}} \alpha(i) \geq k$

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The rigidity of the basic covers of a matroid

Let $\alpha$ be a basic $k$-cover of $\Delta$. Since $\alpha$ is basic, $\exists F \in \mathcal{F}(\Delta)$ :

$$
\sum_{i \in F} \alpha(i)=k
$$

Claim: $F$ fixes $\alpha$. I.e., all the values of $\alpha$ are determined by those on $F$. In fact, let $j_{0}$ be in $[n] \backslash F$. Again, since $\alpha$ is basic, $\exists G \in \mathcal{F}(\Delta)$ :

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids $\Rightarrow$ there exists $i_{0} \in F$ such that

$$
\begin{aligned}
& \text { (I) } F^{\prime}:=\left(F \backslash\left\{i_{0}\right\}\right) \cup\left\{j_{0}\right\} \in \mathcal{F}(\Delta) \text { and (II) } G^{\prime}:=\left(G \backslash\left\{j_{0}\right\}\right) \cup\left\{i_{0}\right\} \in \mathcal{F}(\Delta) . \\
& \text { (I) } \Longrightarrow \sum_{i \in F^{\prime}} \alpha(i) \geq k \Longrightarrow \alpha\left(j_{0}\right) \geq \alpha\left(i_{0}\right) .
\end{aligned}
$$

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The rigidity of the basic covers of a matroid

Let $\alpha$ be a basic $k$-cover of $\Delta$. Since $\alpha$ is basic, $\exists F \in \mathcal{F}(\Delta)$ :

$$
\sum_{i \in F} \alpha(i)=k
$$

Claim: $F$ fixes $\alpha$. I.e., all the values of $\alpha$ are determined by those on $F$. In fact, let $j_{0}$ be in $[n] \backslash F$. Again, since $\alpha$ is basic, $\exists G \in \mathcal{F}(\Delta)$ :

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids $\Rightarrow$ there exists $i_{0} \in F$ such that
(I) $F^{\prime}:=\left(F \backslash\left\{i_{0}\right\}\right) \cup\left\{j_{0}\right\} \in \mathcal{F}(\Delta)$ and
(II) $G^{\prime}:=\left(G \backslash\left\{j_{0}\right\}\right) \cup\left\{i_{0}\right\} \in \mathcal{F}(\Delta)$.
(II) $\Longrightarrow \sum_{j \in G^{\prime}} \alpha(j) \geq k$

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The rigidity of the basic covers of a matroid

Let $\alpha$ be a basic $k$-cover of $\Delta$. Since $\alpha$ is basic, $\exists F \in \mathcal{F}(\Delta)$ :

$$
\sum_{i \in F} \alpha(i)=k
$$

Claim: $F$ fixes $\alpha$. I.e., all the values of $\alpha$ are determined by those on $F$. In fact, let $j_{0}$ be in $[n] \backslash F$. Again, since $\alpha$ is basic, $\exists G \in \mathcal{F}(\Delta)$ :

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids $\Rightarrow$ there exists $i_{0} \in F$ such that

$$
\begin{aligned}
& \text { (I) } F^{\prime}:=\left(F \backslash\left\{i_{0}\right\}\right) \cup\left\{j_{0}\right\} \in \mathcal{F}(\Delta) \text { and (II) } G^{\prime}:=\left(G \backslash\left\{j_{0}\right\}\right) \cup\left\{i_{0}\right\} \in \mathcal{F}(\Delta) . \\
& \text { (II) } \Longrightarrow \sum_{j \in G^{\prime}} \alpha(j) \geq k \Longrightarrow \alpha\left(i_{0}\right) \geq \alpha\left(j_{0}\right) .
\end{aligned}
$$

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The rigidity of the basic covers of a matroid

Let $\alpha$ be a basic $k$-cover of $\Delta$. Since $\alpha$ is basic, $\exists F \in \mathcal{F}(\Delta)$ :

$$
\sum_{i \in F} \alpha(i)=k
$$

Claim: $F$ fixes $\alpha$. I.e., all the values of $\alpha$ are determined by those on $F$. In fact, let $j_{0}$ be in $[n] \backslash F$. Again, since $\alpha$ is basic, $\exists G \in \mathcal{F}(\Delta)$ :

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids $\Rightarrow$ there exists $i_{0} \in F$ such that
(I) $F^{\prime}:=\left(F \backslash\left\{i_{0}\right\}\right) \cup\left\{j_{0}\right\} \in \mathcal{F}(\Delta)$ and
(II) $G^{\prime}:=\left(G \backslash\left\{j_{0}\right\}\right) \cup\left\{i_{0}\right\} \in \mathcal{F}(\Delta)$.

Therefore (I) and (II) together yield $\alpha\left(j_{0}\right)=\alpha\left(i_{0}\right)$.

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The conclusion

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The conclusion

Since $\Delta$ is pure, $|F|=d$.

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The conclusion

Since $\Delta$ is pure, $|F|=d$. So the number of ways in which we can give natural values to the vertices of $F$ so that the sum is $k$ is:

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The conclusion

Since $\Delta$ is pure, $|F|=d$. So the number of ways in which we can give natural values to the vertices of $F$ so that the sum is $k$ is:

$$
\left|\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}: a_{1}+\ldots+a_{d}=k\right\}\right|=\binom{k+d-1}{k} .
$$

If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$
The conclusion

Since $\Delta$ is pure, $|F|=d$. So the number of ways in which we can give natural values to the vertices of $F$ so that the sum is $k$ is:

$$
\left|\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}: a_{1}+\ldots+a_{d}=k\right\}\right|=\binom{k+d-1}{k} .
$$

Therefore, because $F$ can vary among the facets of $\Delta$,

## If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$

The conclusion

Since $\Delta$ is pure, $|F|=d$. So the number of ways in which we can give natural values to the vertices of $F$ so that the sum is $k$ is:

$$
\left|\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}: a_{1}+\ldots+a_{d}=k\right\}\right|=\binom{k+d-1}{k} .
$$

Therefore, because $F$ can vary among the facets of $\Delta$,

$$
\left\lvert\,\{\text { basic } k \text {-covers }\}\left|\leq|\mathcal{F}(\Delta)|\binom{k+d-1}{k}\right.\right.
$$

## If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$

The conclusion

Since $\Delta$ is pure, $|F|=d$. So the number of ways in which we can give natural values to the vertices of $F$ so that the sum is $k$ is:

$$
\left|\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}: a_{1}+\ldots+a_{d}=k\right\}\right|=\binom{k+d-1}{k} .
$$

Therefore, because $F$ can vary among the facets of $\Delta$,

$$
\left\lvert\,\{\text { basic } k \text {-covers }\}\left|\leq|\mathcal{F}(\Delta)|\binom{k+d-1}{k}=O\left(k^{d-1}\right)\right.\right.
$$

## If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$

The conclusion

Since $\Delta$ is pure, $|F|=d$. So the number of ways in which we can give natural values to the vertices of $F$ so that the sum is $k$ is:

$$
\left|\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}: a_{1}+\ldots+a_{d}=k\right\}\right|=\binom{k+d-1}{k} .
$$

Therefore, because $F$ can vary among the facets of $\Delta$,

$$
\left\lvert\,\{\text { basic } k \text {-covers }\}\left|\leq|\mathcal{F}(\Delta)|\binom{k+d-1}{k}=O\left(k^{d-1}\right)\right.\right.
$$

Therefore $\operatorname{dim} \bar{A}(\Delta)=d=\operatorname{dim} \Delta+1$.

## If $\Delta$ is a $(d-1)$-dimensional matroid $\ldots$

The conclusion

Since $\Delta$ is pure, $|F|=d$. So the number of ways in which we can give natural values to the vertices of $F$ so that the sum is $k$ is:

$$
\left|\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}: a_{1}+\ldots+a_{d}=k\right\}\right|=\binom{k+d-1}{k} .
$$

Therefore, because $F$ can vary among the facets of $\Delta$,

$$
\left\lvert\,\{\text { basic } k \text {-covers }\}\left|\leq|\mathcal{F}(\Delta)|\binom{k+d-1}{k}=O\left(k^{d-1}\right)\right.\right.
$$

Therefore $\operatorname{dim} \bar{A}(\Delta)=d=\operatorname{dim} \Delta+1$.
Hence $S / J(\Delta)^{(k)}$ is Cohen-Macaulay for any $k$ !!!

