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Notation

I For simplicity K will be an algebraically closed field

I S = K [x0, . . . , xn]

I I ⊆ S homogeneous ideal

I X = Z+(I ) = {P ∈ Pn : f (P) = 0 ∀ f ∈ I} ⊆ Pn

Let us write X as the union of its irreducible components:

X = X1 ∪ X2 ∪ . . . ∪ Xs .

Throughout, we assume that X is equidimensional, i.e.
dim(Xi ) = dim(X ) for all i = 1, . . . , s.



Notation

I For simplicity K will be an algebraically closed field

I S = K [x0, . . . , xn]

I I ⊆ S homogeneous ideal

I X = Z+(I ) = {P ∈ Pn : f (P) = 0 ∀ f ∈ I} ⊆ Pn

Let us write X as the union of its irreducible components:

X = X1 ∪ X2 ∪ . . . ∪ Xs .

Throughout, we assume that X is equidimensional, i.e.
dim(Xi ) = dim(X ) for all i = 1, . . . , s.



Notation

I For simplicity K will be an algebraically closed field

I S = K [x0, . . . , xn]

I I ⊆ S homogeneous ideal

I X = Z+(I ) = {P ∈ Pn : f (P) = 0 ∀ f ∈ I} ⊆ Pn

Let us write X as the union of its irreducible components:

X = X1 ∪ X2 ∪ . . . ∪ Xs .

Throughout, we assume that X is equidimensional, i.e.
dim(Xi ) = dim(X ) for all i = 1, . . . , s.



Notation

I For simplicity K will be an algebraically closed field

I S = K [x0, . . . , xn]

I I ⊆ S homogeneous ideal

I X = Z+(I ) = {P ∈ Pn : f (P) = 0 ∀ f ∈ I} ⊆ Pn

Let us write X as the union of its irreducible components:

X = X1 ∪ X2 ∪ . . . ∪ Xs .

Throughout, we assume that X is equidimensional, i.e.
dim(Xi ) = dim(X ) for all i = 1, . . . , s.



Notation

I For simplicity K will be an algebraically closed field

I S = K [x0, . . . , xn]

I I ⊆ S homogeneous ideal

I X = Z+(I ) = {P ∈ Pn : f (P) = 0 ∀ f ∈ I} ⊆ Pn

Let us write X as the union of its irreducible components:

X = X1 ∪ X2 ∪ . . . ∪ Xs .

Throughout, we assume that X is equidimensional, i.e.
dim(Xi ) = dim(X ) for all i = 1, . . . , s.



Notation

I For simplicity K will be an algebraically closed field

I S = K [x0, . . . , xn]

I I ⊆ S homogeneous ideal

I X = Z+(I ) = {P ∈ Pn : f (P) = 0 ∀ f ∈ I} ⊆ Pn

Let us write X as the union of its irreducible components:

X = X1 ∪ X2 ∪ . . . ∪ Xs .

Throughout, we assume that X is equidimensional, i.e.
dim(Xi ) = dim(X ) for all i = 1, . . . , s.



Notation

I For simplicity K will be an algebraically closed field

I S = K [x0, . . . , xn]

I I ⊆ S homogeneous ideal

I X = Z+(I ) = {P ∈ Pn : f (P) = 0 ∀ f ∈ I} ⊆ Pn

Let us write X as the union of its irreducible components:

X = X1 ∪ X2 ∪ . . . ∪ Xs .

Throughout, we assume that X is equidimensional, i.e.
dim(Xi ) = dim(X ) for all i = 1, . . . , s.



The dual graph of X

We introduce the dual graph of X , denoted by G (X ), as follows:

I V (G (X )) = {1, . . . , s}
I E (G (X )) = {{i , j} : dim(Xi ∩ Xj) = dim(X )− 1}

For example, if I = (x0, x1) ∩ (x2, x3) ⊆ S = K [x0, . . . , x3], then

X = X1 ∪ X2 = {[0, 0, s, t] : [s, t] ∈ P1} ∪ {[s, t, 0, 0] : [s, t] ∈ P1} ⊆ P3.

In this case dim(X ) = 1 and dim(X1 ∩ X2) = −1 (since X1 ∩ X2 is
empty), so that G (X ) consists in 2 isolated points.
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Motivations

(Hartshorne, 1962): G (X ) is connected whenever S/I is
Cohen-Macaulay.

In other words, if S/I is Cohen-Macaulay, between any two vertices
of G (X ) there is a path.

I What is the length of such a path?

I How many paths are there between two vertices?
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Diameter

The diameter of a graph G is defined as:

diam(G ) = sup{d(v ,w) : v ,w ∈ V (G )},

where d(v ,w) is the infimum among the lengths of some path
from v to w .

Conjecture: If S/I is Cohen-Macaulay and I is generated by
quadrics, then:

diam(G (X )) ≤ codimPn X .

(Adiprasito and Benedetti, 2013): True if I is a monomial ideal.
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Hirsch conjecture

The dual graph is also defined for a pure simplicial complex ∆. Its
vertices correspond to the facets of ∆, and two facets are linked by
an edge if and only if they share a codimension 1 face.

By calling G (∆) this graph, it is straightforward to check that
G (∆) = G (X ) whenever our ideal I is the Stanley-Reisner ideal I∆
of ∆.

Hirsch conjecture, 1957: If ∆ is the boundary of a d-polytope on n
vertices, then

diam(G (∆)) ≤ n − d .
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(Santos, 2012): The Hirsch conjecture is false.

(The result of Adiprasito and Benedetti implies that the Hirsch
conjecture is true if ∆ is flag.)

In view of this history, we say that X ⊆ Pn is Hirsch if

diam(G (X )) ≤ codimPn X .

Theorem: If X is a union of lines, no three of which meet at the
same point, and the embedding X ⊆ Pn is provided by the
canonical series of X , then X is Hirsch.
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Subspace arrangements

X = X1 ∪ . . . ∪ Xs is a subspace arrangement if each irreducible
component Xi is a linear space. In other words, the ideal of
definition

√
I of X = Z+(I ) must decompose as:

√
I = p1 ∩ . . . ∩ ps

where each pi is generated by linear forms.

Note that |V (G (X ))| ≤ e(S/I ). If dim(S/p) = dim(S/I ) ∀ p ∈ Ass(I )

(e.g. when S/I is Cohen-Macaulay), then |V (G (X ))| = e(S/I ) iff I is

radical and X is a subspace arrangement.

In a sense, this justifies to take care, for our aims, especially of
subspace arrangements.
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r -connectivity

A graph is r -connected if, for any pair of vertices, there are at least
r vertex-disjoint paths connecting them.

Theorem: If S/I is Gorenstein, I is radical and X = Z+(I ) is a
subspace arrangement, then G (X ) is reg(S/I )-connected.

The above theorem fails completely if I is not radical: we found
complete intersections I such that X = Z+(I ) is a subspace
arrangement, reg(S/I ) is arbitrarily high, but G (X ) is a path.

Corollary (Balinski): If ∆ is the triangulation of a d-sphere, then
G (∆) is (d + 1)-connected.
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Main ingredients for the proof of the above theorem

I Reduction to dimension 1, where the connectedness of G (X )
is equivalent to, if I is radical, the vanishing of H1

S+
(S/I )0.

I A theorem due to Hartshorne-Schenzel in Liaison Theory.

I The following result of Derksen and Sidman: If

I = p1 ∩ . . . ∩ ps

where the pi ’s are generated by linear forms, then

reg(S/I ) ≤ s.
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