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Notation

» For simplicity K will be an algebraically closed field
» S=Klxo,...,Xn]

» | C S homogeneous ideal

X=Z ()={PeP":f(P)=0Vfel} CP"

v

Let us write X as the union of its irreducible components:
X=XiUXoU...UXs.

Throughout, we assume that X is equidimensional, i.e.
dim(X;) =dim(X) forall i=1,... s.
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The dual graph of X

We introduce the dual graph of X, denoted by G(X), as follows:
> V(G(X) = {1,...,5)
> E(G(X)) = {{irj} : dim(X; N ;) = dim(X) — 1}

For example, if I = (x0,x1) N (x2,x3) € S = K|[xo, ..., x3], then

X =X1UXo ={[0,0,s,t] : [5,t] € P} U{[s,t,0,0] : [s, t] € P*} C P>

In this case dim(X) =1 and dim(X; N X2) = —1 (since X; N X is
empty), so that G(X) consists in 2 isolated points.
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Motivations

(Hartshorne, 1962): G(X) is connected whenever S/ is
Cohen-Macaulay.

In other words, if S/I is Cohen-Macaulay, between any two vertices
of G(X) there is a path.

» What is the length of such a path?

» How many paths are there between two vertices?
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Diameter

The diameter of a graph G is defined as:
diam(G) = sup{d(v,w) : v,w € V(G)},

where d(v,w) is the infimum among the lengths of some path
from v to w.

Conjecture: If S/I is Cohen-Macaulay and [ is generated by
quadrics, then:
diam(G(X)) < codimpn X.

(Adiprasito and Benedetti, 2013): True if / is a monomial ideal.
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Hirsch conjecture

The dual graph is also defined for a pure simplicial complex A. Its
vertices correspond to the facets of A, and two facets are linked by
an edge if and only if they share a codimension 1 face.

By calling G(A) this graph, it is straightforward to check that

G(A) = G(X) whenever our ideal / is the Stanley-Reisner ideal Ia
of A.

Hirsch conjecture, 1957: If A is the boundary of a d-polytope on n
vertices, then

diam(G(A)) < n—d.
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(Santos, 2012): The Hirsch conjecture is false.

(The result of Adiprasito and Benedetti implies that the Hirsch
conjecture is true if A is flag.)

In view of this history, we say that X C IP” is Hirsch if
diam(G(X)) < codimpn X.
Theorem: If X is a union of lines, no three of which meet at the

same point, and the embedding X C IP" is provided by the
canonical series of X, then X is Hirsch.
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Subspace arrangements

X = X1 U...UX;s is a subspace arrangement if each irreducible
component X; is a linear space. In other words, the ideal of
definition v/I of X = Z,(I) must decompose as:

Vi= p1MN...Nps
where each p; is generated by linear forms.

Note that |V(G(X))| < e(S/1). If dim(S/p) =dim(S/1) ¥V p € Ass(/)
(e.g. when S/I is Cohen-Macaulay), then |V(G(X))| = e(S/1) iff I is
radical and X is a subspace arrangement.

In a sense, this justifies to take care, for our aims, especially of
subspace arrangements.
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r-connectivity

A graph is r-connected if, for any pair of vertices, there are at least
r vertex-disjoint paths connecting them.

Theorem: If S/I is Gorenstein, [ is radical and X = Z(/) is a
subspace arrangement, then G(X) is reg(S//)-connected.

The above theorem fails completely if / is not radical: we found
complete intersections / such that X = Z, (/) is a subspace
arrangement, reg(S//) is arbitrarily high, but G(X) is a path.

Corollary (Balinski): If A is the triangulation of a d-sphere, then
G(A) is (d + 1)-connected.
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Main ingredients for the proof of the above theorem

» Reduction to dimension 1, where the connectedness of G(X)
is equivalent to, if / is radical, the vanishing of Hg (S//)o.

> A theorem due to Hartshorne-Schenzel in Liaison Theory.
» The following result of Derksen and Sidman: If
I=p1N...Nps

where the p;’s are generated by linear forms, then

reg(S/1) <s.



