ON THE DUAL GRAPH OF COHEN-MACAULAY ALGEBRAS Joint with Bruno Benedetti

Matteo Varbaro

Università degli Studi di Genova

Notation

Notation

- For simplicity K will be an algebraically closed field

Notation

- For simplicity K will be an algebraically closed field
- $S=K\left[x_{0}, \ldots, x_{n}\right]$

Notation

- For simplicity K will be an algebraically closed field
- $S=K\left[x_{0}, \ldots, x_{n}\right]$
- $I \subseteq S$ homogeneous ideal

Notation

- For simplicity K will be an algebraically closed field
- $S=K\left[x_{0}, \ldots, x_{n}\right]$
- $I \subseteq S$ homogeneous ideal
- $X=\mathcal{Z}_{+}(I)=\left\{P \in \mathbb{P}^{n}: f(P)=0 \forall f \in I\right\} \subseteq \mathbb{P}^{n}$

Notation

- For simplicity K will be an algebraically closed field
- $S=K\left[x_{0}, \ldots, x_{n}\right]$
- $I \subseteq S$ homogeneous ideal
- $X=\mathcal{Z}_{+}(I)=\left\{P \in \mathbb{P}^{n}: f(P)=0 \forall f \in I\right\} \subseteq \mathbb{P}^{n}$

Let us write X as the union of its irreducible components:

$$
X=X_{1} \cup X_{2} \cup \ldots \cup X_{s}
$$

Notation

- For simplicity K will be an algebraically closed field
- $S=K\left[x_{0}, \ldots, x_{n}\right]$
- $I \subseteq S$ homogeneous ideal
- $X=\mathcal{Z}_{+}(I)=\left\{P \in \mathbb{P}^{n}: f(P)=0 \forall f \in I\right\} \subseteq \mathbb{P}^{n}$

Let us write X as the union of its irreducible components:

$$
X=X_{1} \cup X_{2} \cup \ldots \cup X_{s}
$$

Throughout, we assume that X is equidimensional, i.e. $\operatorname{dim}\left(X_{i}\right)=\operatorname{dim}(X)$ for all $i=1, \ldots, s$.

The dual graph of X

The dual graph of X

We introduce the dual graph of X, denoted by $G(X)$, as follows:

The dual graph of X

We introduce the dual graph of X, denoted by $G(X)$, as follows:

- $V(G(X))=\{1, \ldots, s\}$

The dual graph of X

We introduce the dual graph of X, denoted by $G(X)$, as follows:

- $V(G(X))=\{1, \ldots, s\}$
- $E(G(X))=\left\{\{i, j\}: \operatorname{dim}\left(X_{i} \cap X_{j}\right)=\operatorname{dim}(X)-1\right\}$

The dual graph of X

We introduce the dual graph of X, denoted by $G(X)$, as follows:

- $V(G(X))=\{1, \ldots, s\}$
- $E(G(X))=\left\{\{i, j\}: \operatorname{dim}\left(X_{i} \cap X_{j}\right)=\operatorname{dim}(X)-1\right\}$

For example, if $I=\left(x_{0}, x_{1}\right) \cap\left(x_{2}, x_{3}\right) \subseteq S=K\left[x_{0}, \ldots, x_{3}\right]$, then $X=X_{1} \cup X_{2}=\left\{[0,0, s, t]:[s, t] \in \mathbb{P}^{1}\right\} \cup\left\{[s, t, 0,0]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}$.

The dual graph of X

We introduce the dual graph of X, denoted by $G(X)$, as follows:

- $V(G(X))=\{1, \ldots, s\}$
- $E(G(X))=\left\{\{i, j\}: \operatorname{dim}\left(X_{i} \cap X_{j}\right)=\operatorname{dim}(X)-1\right\}$

For example, if $I=\left(x_{0}, x_{1}\right) \cap\left(x_{2}, x_{3}\right) \subseteq S=K\left[x_{0}, \ldots, x_{3}\right]$, then $X=X_{1} \cup X_{2}=\left\{[0,0, s, t]:[s, t] \in \mathbb{P}^{1}\right\} \cup\left\{[s, t, 0,0]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}$.

In this case $\operatorname{dim}(X)=1$ and $\operatorname{dim}\left(X_{1} \cap X_{2}\right)=-1\left(\right.$ since $X_{1} \cap X_{2}$ is empty),

The dual graph of X

We introduce the dual graph of X, denoted by $G(X)$, as follows:

- $V(G(X))=\{1, \ldots, s\}$
- $E(G(X))=\left\{\{i, j\}: \operatorname{dim}\left(X_{i} \cap X_{j}\right)=\operatorname{dim}(X)-1\right\}$

For example, if $I=\left(x_{0}, x_{1}\right) \cap\left(x_{2}, x_{3}\right) \subseteq S=K\left[x_{0}, \ldots, x_{3}\right]$, then $X=X_{1} \cup X_{2}=\left\{[0,0, s, t]:[s, t] \in \mathbb{P}^{1}\right\} \cup\left\{[s, t, 0,0]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}$.

In this case $\operatorname{dim}(X)=1$ and $\operatorname{dim}\left(X_{1} \cap X_{2}\right)=-1$ (since $X_{1} \cap X_{2}$ is empty), so that $G(X)$ consists in 2 isolated points.

Motivations

Motivations

(Hartshorne, 1962): $G(X)$ is connected whenever S / I is Cohen-Macaulay.

Motivations

(Hartshorne, 1962): $G(X)$ is connected whenever S / I is Cohen-Macaulay.

In other words, if S / I is Cohen-Macaulay, between any two vertices of $G(X)$ there is a path.

Motivations

(Hartshorne, 1962): $G(X)$ is connected whenever S / I is Cohen-Macaulay.

In other words, if S / I is Cohen-Macaulay, between any two vertices of $G(X)$ there is a path.

- What is the length of such a path?

Motivations

(Hartshorne, 1962): $G(X)$ is connected whenever S / I is Cohen-Macaulay.

In other words, if S / I is Cohen-Macaulay, between any two vertices of $G(X)$ there is a path.

- What is the length of such a path?
- How many paths are there between two vertices?

Diameter

Diameter

The diameter of a graph G is defined as:

$$
\operatorname{diam}(G)=\sup \{d(v, w): v, w \in V(G)\}
$$

where $d(v, w)$ is the infimum among the lengths of some path from v to w.

Diameter

The diameter of a graph G is defined as:

$$
\operatorname{diam}(G)=\sup \{d(v, w): v, w \in V(G)\}
$$

where $d(v, w)$ is the infimum among the lengths of some path from v to w.

Conjecture: If S / I is Cohen-Macaulay and I is generated by quadrics, then:

$$
\operatorname{diam}(G(X)) \leq \operatorname{codim}_{\mathbb{P}^{n}} X
$$

Diameter

The diameter of a graph G is defined as:

$$
\operatorname{diam}(G)=\sup \{d(v, w): v, w \in V(G)\}
$$

where $d(v, w)$ is the infimum among the lengths of some path from v to w.

Conjecture: If S / I is Cohen-Macaulay and I is generated by quadrics, then:

$$
\operatorname{diam}(G(X)) \leq \operatorname{codim}_{\mathbb{P}^{n}} X
$$

(Adiprasito and Benedetti, 2013): True if I is a monomial ideal.

Hirsch conjecture

Hirsch conjecture

The dual graph is also defined for a pure simplicial complex Δ.

Hirsch conjecture

The dual graph is also defined for a pure simplicial complex Δ. Its vertices correspond to the facets of Δ, and two facets are linked by an edge if and only if they share a codimension 1 face.

Hirsch conjecture

The dual graph is also defined for a pure simplicial complex Δ. Its vertices correspond to the facets of Δ, and two facets are linked by an edge if and only if they share a codimension 1 face.

By calling $G(\Delta)$ this graph, it is straightforward to check that $G(\Delta)=G(X)$ whenever our ideal I is the Stanley-Reisner ideal I_{Δ} of Δ.

Hirsch conjecture

The dual graph is also defined for a pure simplicial complex Δ. Its vertices correspond to the facets of Δ, and two facets are linked by an edge if and only if they share a codimension 1 face.

By calling $G(\Delta)$ this graph, it is straightforward to check that $G(\Delta)=G(X)$ whenever our ideal I is the Stanley-Reisner ideal I_{Δ} of Δ.

Hirsch conjecture, 1957: If Δ is the boundary of a d-polytope on n vertices, then

$$
\operatorname{diam}(G(\Delta)) \leq n-d
$$

(Santos, 2012): The Hirsch conjecture is false.
(Santos, 2012): The Hirsch conjecture is false.
(The result of Adiprasito and Benedetti implies that the Hirsch conjecture is true if Δ is flag.)
(Santos, 2012): The Hirsch conjecture is false.
(The result of Adiprasito and Benedetti implies that the Hirsch conjecture is true if Δ is flag.)

In view of this history, we say that $X \subseteq \mathbb{P}^{n}$ is Hirsch if

$$
\operatorname{diam}(G(X)) \leq \operatorname{codim}_{\mathbb{P}^{n}} X
$$

(Santos, 2012): The Hirsch conjecture is false.
(The result of Adiprasito and Benedetti implies that the Hirsch conjecture is true if Δ is flag.)

In view of this history, we say that $X \subseteq \mathbb{P}^{n}$ is Hirsch if

$$
\operatorname{diam}(G(X)) \leq \operatorname{codim}_{\mathbb{P}^{n}} X
$$

Theorem: If X is a union of lines, no three of which meet at the same point, and the embedding $X \subseteq \mathbb{P}^{n}$ is provided by the canonical series of X, then X is Hirsch.

Subspace arrangements

Subspace arrangements

$X=X_{1} \cup \ldots \cup X_{s}$ is a subspace arrangement if each irreducible component X_{i} is a linear space.

Subspace arrangements

$X=X_{1} \cup \ldots \cup X_{s}$ is a subspace arrangement if each irreducible component X_{i} is a linear space. In other words, the ideal of definition \sqrt{I} of $X=\mathcal{Z}_{+}(I)$ must decompose as:

$$
\sqrt{I}=\mathfrak{p}_{1} \cap \ldots \cap \mathfrak{p}_{s}
$$

where each \mathfrak{p}_{i} is generated by linear forms.

Subspace arrangements

$X=X_{1} \cup \ldots \cup X_{s}$ is a subspace arrangement if each irreducible component X_{i} is a linear space. In other words, the ideal of definition \sqrt{I} of $X=\mathcal{Z}_{+}(I)$ must decompose as:

$$
\sqrt{I}=\mathfrak{p}_{1} \cap \ldots \cap \mathfrak{p}_{s}
$$

where each \mathfrak{p}_{i} is generated by linear forms.
Note that $|V(G(X))| \leq e(S / I)$.

Subspace arrangements

$X=X_{1} \cup \ldots \cup X_{s}$ is a subspace arrangement if each irreducible component X_{i} is a linear space. In other words, the ideal of definition \sqrt{I} of $X=\mathcal{Z}_{+}(I)$ must decompose as:

$$
\sqrt{I}=\mathfrak{p}_{1} \cap \ldots \cap \mathfrak{p}_{s}
$$

where each \mathfrak{p}_{i} is generated by linear forms.
Note that $|V(G(X))| \leq e(S / I)$. If $\operatorname{dim}(S / \mathfrak{p})=\operatorname{dim}(S / I) \forall \mathfrak{p} \in \operatorname{Ass}(I)$ (e.g. when S / I is Cohen-Macaulay), then $|V(G(X))|=e(S / I)$ iff I is radical and X is a subspace arrangement.

Subspace arrangements

$X=X_{1} \cup \ldots \cup X_{s}$ is a subspace arrangement if each irreducible component X_{i} is a linear space. In other words, the ideal of definition \sqrt{I} of $X=\mathcal{Z}_{+}(I)$ must decompose as:

$$
\sqrt{I}=\mathfrak{p}_{1} \cap \ldots \cap \mathfrak{p}_{s}
$$

where each \mathfrak{p}_{i} is generated by linear forms.
Note that $|V(G(X))| \leq e(S / I)$. If $\operatorname{dim}(S / \mathfrak{p})=\operatorname{dim}(S / I) \forall \mathfrak{p} \in \operatorname{Ass}(I)$ (e.g. when S / I is Cohen-Macaulay), then $|V(G(X))|=e(S / I)$ iff I is radical and X is a subspace arrangement.

In a sense, this justifies to take care, for our aims, especially of subspace arrangements.

r-connectivity

r-connectivity

A graph is r-connected if, for any pair of vertices, there are at least r vertex-disjoint paths connecting them.

r-connectivity

A graph is r-connected if, for any pair of vertices, there are at least r vertex-disjoint paths connecting them.

Theorem: If S / I is Gorenstein, I is radical and $X=\mathcal{Z}_{+}(I)$ is a subspace arrangement, then $G(X)$ is reg (S / I)-connected.

r-connectivity

A graph is r-connected if, for any pair of vertices, there are at least r vertex-disjoint paths connecting them.

Theorem: If S / I is Gorenstein, I is radical and $X=\mathcal{Z}_{+}(I)$ is a subspace arrangement, then $G(X)$ is reg (S / I)-connected.

The above theorem fails completely if I is not radical:

r-connectivity

A graph is r-connected if, for any pair of vertices, there are at least r vertex-disjoint paths connecting them.

Theorem: If S / I is Gorenstein, I is radical and $X=\mathcal{Z}_{+}(I)$ is a subspace arrangement, then $G(X)$ is reg (S / I)-connected.

The above theorem fails completely if I is not radical: we found complete intersections I such that $X=\mathcal{Z}_{+}(I)$ is a subspace arrangement, $\operatorname{reg}(S / I)$ is arbitrarily high, but $G(X)$ is a path.

r-connectivity

A graph is r-connected if, for any pair of vertices, there are at least r vertex-disjoint paths connecting them.

Theorem: If S / I is Gorenstein, I is radical and $X=\mathcal{Z}_{+}(I)$ is a subspace arrangement, then $G(X)$ is reg (S / I)-connected.

The above theorem fails completely if I is not radical: we found complete intersections I such that $X=\mathcal{Z}_{+}(I)$ is a subspace arrangement, $\operatorname{reg}(S / I)$ is arbitrarily high, but $G(X)$ is a path.

Corollary (Balinski): If Δ is the triangulation of a d-sphere, then $G(\Delta)$ is $(d+1)$-connected.

Main ingredients for the proof of the above theorem

Main ingredients for the proof of the above theorem

- Reduction to dimension 1 , where the connectedness of $G(X)$ is equivalent to, if I is radical, the vanishing of $H_{S_{+}}^{1}(S / I)_{0}$.

Main ingredients for the proof of the above theorem

- Reduction to dimension 1 , where the connectedness of $G(X)$ is equivalent to, if I is radical, the vanishing of $H_{S_{+}}^{1}(S / I)_{0}$.
- A theorem due to Hartshorne-Schenzel in Liaison Theory.

Main ingredients for the proof of the above theorem

- Reduction to dimension 1 , where the connectedness of $G(X)$ is equivalent to, if I is radical, the vanishing of $H_{S_{+}}^{1}(S / I)_{0}$.
- A theorem due to Hartshorne-Schenzel in Liaison Theory.
- The following result of Derksen and Sidman: If

$$
I=\mathfrak{p}_{1} \cap \ldots \cap \mathfrak{p}_{s}
$$

where the \mathfrak{p}_{i} 's are generated by linear forms, then

$$
\operatorname{reg}(S / I) \leq s
$$

