ON THE DUAL GRAPH OF COHEN-MACAULAY ALGEBRAS

Joint with Bruno Benedetti

Matteo Varbaro

Università degli Studi di Genova

• For simplicity K will be an algebraically closed field

- ► For simplicity K will be an algebraically closed field
- $S = K[x_0, \ldots, x_n]$

- ► For simplicity K will be an algebraically closed field
- $S = K[x_0, \ldots, x_n]$
- $I \subseteq S$ homogeneous ideal

► For simplicity K will be an algebraically closed field

•
$$S = K[x_0, \ldots, x_n]$$

• $I \subseteq S$ homogeneous ideal

►
$$X = Z_+(I) = \{P \in \mathbb{P}^n : f(P) = 0 \forall f \in I\} \subseteq \mathbb{P}^n$$

► For simplicity K will be an algebraically closed field

$$\blacktriangleright S = K[x_0, \ldots, x_n]$$

• $I \subseteq S$ homogeneous ideal

►
$$X = Z_+(I) = \{P \in \mathbb{P}^n : f(P) = 0 \forall f \in I\} \subseteq \mathbb{P}^n$$

Let us write X as the union of its irreducible components:

$$X = X_1 \cup X_2 \cup \ldots \cup X_s.$$

► For simplicity K will be an algebraically closed field

$$\blacktriangleright S = K[x_0, \ldots, x_n]$$

• $I \subseteq S$ homogeneous ideal

►
$$X = Z_+(I) = \{P \in \mathbb{P}^n : f(P) = 0 \forall f \in I\} \subseteq \mathbb{P}^n$$

Let us write X as the union of its irreducible components:

$$X = X_1 \cup X_2 \cup \ldots \cup X_s.$$

Throughout, we assume that X is equidimensional, i.e. $\dim(X_i) = \dim(X)$ for all i = 1, ..., s.

We introduce the dual graph of X, denoted by G(X), as follows:

We introduce the dual graph of X, denoted by G(X), as follows:

•
$$V(G(X)) = \{1, ..., s\}$$

We introduce the dual graph of X, denoted by G(X), as follows:

•
$$V(G(X)) = \{1, ..., s\}$$

• $E(G(X)) = \{\{i, j\} : \dim(X_i \cap X_j) = \dim(X) - 1\}$

We introduce the dual graph of X, denoted by G(X), as follows:

For example, if $I = (x_0, x_1) \cap (x_2, x_3) \subseteq S = K[x_0, \dots, x_3]$, then $X = X_1 \cup X_2 = \{[0, 0, s, t] : [s, t] \in \mathbb{P}^1\} \cup \{[s, t, 0, 0] : [s, t] \in \mathbb{P}^1\} \subseteq \mathbb{P}^3.$

We introduce the dual graph of X, denoted by G(X), as follows:

For example, if $I = (x_0, x_1) \cap (x_2, x_3) \subseteq S = K[x_0, \dots, x_3]$, then

$$X = X_1 \cup X_2 = \{[0,0,s,t] : [s,t] \in \mathbb{P}^1\} \cup \{[s,t,0,0] : [s,t] \in \mathbb{P}^1\} \subseteq \mathbb{P}^3.$$

In this case dim(X) = 1 and dim $(X_1 \cap X_2) = -1$ (since $X_1 \cap X_2$ is empty),

We introduce the dual graph of X, denoted by G(X), as follows:

For example, if $I = (x_0, x_1) \cap (x_2, x_3) \subseteq S = K[x_0, \dots, x_3]$, then

$$X = X_1 \cup X_2 = \{[0,0,s,t] : [s,t] \in \mathbb{P}^1\} \cup \{[s,t,0,0] : [s,t] \in \mathbb{P}^1\} \subseteq \mathbb{P}^3.$$

In this case dim(X) = 1 and dim $(X_1 \cap X_2) = -1$ (since $X_1 \cap X_2$ is empty), so that G(X) consists in 2 isolated points.

(Hartshorne, 1962): G(X) is connected whenever S/I is Cohen-Macaulay.

```
(Hartshorne, 1962): G(X) is connected whenever S/I is Cohen-Macaulay.
```

In other words, if S/I is Cohen-Macaulay, between any two vertices of G(X) there is a path.

```
(Hartshorne, 1962): G(X) is connected whenever S/I is Cohen-Macaulay.
```

In other words, if S/I is Cohen-Macaulay, between any two vertices of G(X) there is a path.

What is the length of such a path?

```
(Hartshorne, 1962): G(X) is connected whenever S/I is Cohen-Macaulay.
```

In other words, if S/I is Cohen-Macaulay, between any two vertices of G(X) there is a path.

- What is the length of such a path?
- How many paths are there between two vertices?

The diameter of a graph G is defined as:

$$\mathsf{diam}(G) = \sup\{d(v, w) : v, w \in V(G)\},\$$

where d(v, w) is the infimum among the lengths of some path from v to w.

The diameter of a graph G is defined as:

$$\mathsf{diam}(G) = \sup\{d(v, w) : v, w \in V(G)\},\$$

where d(v, w) is the infimum among the lengths of some path from v to w.

Conjecture: If S/I is Cohen-Macaulay and I is generated by quadrics, then:

 $\operatorname{diam}(G(X)) \leq \operatorname{codim}_{\mathbb{P}^n} X.$

The diameter of a graph G is defined as:

$$\mathsf{diam}(G) = \sup\{d(v, w) : v, w \in V(G)\},\$$

where d(v, w) is the infimum among the lengths of some path from v to w.

Conjecture: If S/I is Cohen-Macaulay and I is generated by quadrics, then:

 $\operatorname{diam}(G(X)) \leq \operatorname{codim}_{\mathbb{P}^n} X.$

(Adiprasito and Benedetti, 2013): True if I is a monomial ideal.

The dual graph is also defined for a pure simplicial complex Δ .

The dual graph is also defined for a pure simplicial complex Δ . Its vertices correspond to the facets of Δ , and two facets are linked by an edge if and only if they share a codimension 1 face.

The dual graph is also defined for a pure simplicial complex Δ . Its vertices correspond to the facets of Δ , and two facets are linked by an edge if and only if they share a codimension 1 face.

By calling $G(\Delta)$ this graph, it is straightforward to check that $G(\Delta) = G(X)$ whenever our ideal I is the Stanley-Reisner ideal I_{Δ} of Δ .

The dual graph is also defined for a pure simplicial complex Δ . Its vertices correspond to the facets of Δ , and two facets are linked by an edge if and only if they share a codimension 1 face.

By calling $G(\Delta)$ this graph, it is straightforward to check that $G(\Delta) = G(X)$ whenever our ideal I is the Stanley-Reisner ideal I_{Δ} of Δ .

Hirsch conjecture, 1957: If Δ is the boundary of a *d*-polytope on *n* vertices, then

 $\operatorname{diam}(G(\Delta)) \leq n - d.$

(The result of Adiprasito and Benedetti implies that the Hirsch conjecture is true if Δ is flag.)

(The result of Adiprasito and Benedetti implies that the Hirsch conjecture is true if Δ is flag.)

In view of this history, we say that $X \subseteq \mathbb{P}^n$ is Hirsch if

 $\operatorname{diam}(G(X)) \leq \operatorname{codim}_{\mathbb{P}^n} X.$

(The result of Adiprasito and Benedetti implies that the Hirsch conjecture is true if Δ is flag.)

In view of this history, we say that $X \subseteq \mathbb{P}^n$ is Hirsch if

 $\operatorname{diam}(G(X)) \leq \operatorname{codim}_{\mathbb{P}^n} X.$

Theorem: If X is a union of lines, no three of which meet at the same point, and the embedding $X \subseteq \mathbb{P}^n$ is provided by the canonical series of X, then X is Hirsch.

Subspace arrangements

Subspace arrangements

 $X = X_1 \cup \ldots \cup X_s$ is a subspace arrangement if each irreducible component X_i is a linear space.

Subspace arrangements

 $X = X_1 \cup \ldots \cup X_s$ is a subspace arrangement if each irreducible component X_i is a linear space. In other words, the ideal of definition \sqrt{I} of $X = \mathcal{Z}_+(I)$ must decompose as:

$$\sqrt{I} = \mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_s$$

where each p_i is generated by linear forms.

Subspace arrangements

 $X = X_1 \cup \ldots \cup X_s$ is a subspace arrangement if each irreducible component X_i is a linear space. In other words, the ideal of definition \sqrt{I} of $X = \mathcal{Z}_+(I)$ must decompose as:

$$\sqrt{I} = \mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_s$$

where each p_i is generated by linear forms.

Note that $|V(G(X))| \leq e(S/I)$.

Subspace arrangements

 $X = X_1 \cup \ldots \cup X_s$ is a subspace arrangement if each irreducible component X_i is a linear space. In other words, the ideal of definition \sqrt{I} of $X = \mathcal{Z}_+(I)$ must decompose as:

$$\sqrt{I} = \mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_s$$

where each p_i is generated by linear forms.

Note that $|V(G(X))| \le e(S/I)$. If $\dim(S/\mathfrak{p}) = \dim(S/I) \forall \mathfrak{p} \in Ass(I)$ (e.g. when S/I is Cohen-Macaulay), then |V(G(X))| = e(S/I) iff I is radical and X is a subspace arrangement.

Subspace arrangements

 $X = X_1 \cup \ldots \cup X_s$ is a subspace arrangement if each irreducible component X_i is a linear space. In other words, the ideal of definition \sqrt{I} of $X = \mathcal{Z}_+(I)$ must decompose as:

$$\sqrt{I} = \mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_s$$

where each p_i is generated by linear forms.

Note that $|V(G(X))| \le e(S/I)$. If $\dim(S/\mathfrak{p}) = \dim(S/I) \forall \mathfrak{p} \in Ass(I)$ (e.g. when S/I is Cohen-Macaulay), then |V(G(X))| = e(S/I) iff I is radical and X is a subspace arrangement.

In a sense, this justifies to take care, for our aims, especially of subspace arrangements.

A graph is *r*-connected if, for any pair of vertices, there are at least *r* vertex-disjoint paths connecting them.

A graph is *r*-connected if, for any pair of vertices, there are at least *r* vertex-disjoint paths connecting them.

Theorem: If S/I is Gorenstein, I is radical and $X = \mathcal{Z}_+(I)$ is a subspace arrangement, then G(X) is reg(S/I)-connected.

A graph is *r*-connected if, for any pair of vertices, there are at least *r* vertex-disjoint paths connecting them.

Theorem: If S/I is Gorenstein, I is radical and $X = \mathcal{Z}_+(I)$ is a subspace arrangement, then G(X) is reg(S/I)-connected.

The above theorem fails completely if *I* is not radical:

A graph is *r*-connected if, for any pair of vertices, there are at least *r* vertex-disjoint paths connecting them.

Theorem: If S/I is Gorenstein, I is radical and $X = \mathcal{Z}_+(I)$ is a subspace arrangement, then G(X) is reg(S/I)-connected.

The above theorem fails completely if I is not radical: we found complete intersections I such that $X = \mathcal{Z}_+(I)$ is a subspace arrangement, $\operatorname{reg}(S/I)$ is arbitrarily high, but G(X) is a path.

A graph is *r*-connected if, for any pair of vertices, there are at least *r* vertex-disjoint paths connecting them.

Theorem: If S/I is Gorenstein, I is radical and $X = \mathcal{Z}_+(I)$ is a subspace arrangement, then G(X) is reg(S/I)-connected.

The above theorem fails completely if I is not radical: we found complete intersections I such that $X = \mathcal{Z}_+(I)$ is a subspace arrangement, reg(S/I) is arbitrarily high, but G(X) is a path.

Corollary (Balinski): If Δ is the triangulation of a *d*-sphere, then $G(\Delta)$ is (d + 1)-connected.

▶ Reduction to dimension 1, where the connectedness of G(X) is equivalent to, if I is radical, the vanishing of H¹_{S+}(S/I)₀.

- ► Reduction to dimension 1, where the connectedness of G(X) is equivalent to, if I is radical, the vanishing of H¹_{S+}(S/I)₀.
- ► A theorem due to Hartshorne-Schenzel in Liaison Theory.

- ▶ Reduction to dimension 1, where the connectedness of G(X) is equivalent to, if I is radical, the vanishing of H¹_{S+}(S/I)₀.
- A theorem due to Hartshorne-Schenzel in Liaison Theory.
- The following result of Derksen and Sidman: If

 $I = \mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_s$

where the p_i 's are generated by linear forms, then

 $\operatorname{reg}(S/I) \leq s.$