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Maximal minors and linear powers
By Winfried Bruns at Osnabrück, Aldo Conca at Genova and Matteo Varbaro at Genova

Abstract. An ideal I in a polynomial ring S has linear powers if all the powers I k of I
have a linear free resolution. We show that the ideal of maximal minors of a sufficiently general
matrix with linear entries has linear powers. The required genericity is expressed in terms of
the heights of the ideals of lower order minors. In particular we prove that every rational normal
scroll has linear powers.

1. Introduction

When I is a homogeneous ideal in a polynomial ring S , it is known from work of
Cutkosky, Herzog, Trung [11] and Kodiyalam [20] that the Castelnuovo–Mumford regularity
of I k is asymptotically a linear function in k. Many authors have studied the function reg.I k/
from various perspectives, see for instance the recent papers of Eisenbud and Harris [13] and
Chardin [6]. This function behaves in the simplest possible way when I is generated by forms
of a given degree, say d , and all its powers have a linear resolution, i.e. reg.I k/ D dk for all k.
We term ideals with this property ideals with linear powers. Similarly we say that a projective
variety has linear powers when its defining ideal has linear powers.

The rational normal scrolls are important projective varieties. They have both a toric and
a determinantal presentation and play a prominent role in the Bertini–Del Pezzo classification
theorem of irreducible varieties of minimal degree, see the “centennial account” of Eisenbud
and Harris [12] for details. A rational normal scroll of dimension n is uniquely determined by
a sequence of positive integers a1; : : : ; an, see [15]. It is balanced if jaj � ai j � 1 for all i; j .
In [10] Conca, Herzog and Valla showed that the Rees algebra of a balanced rational normal
scroll is defined by a Gröbner basis of quadrics and hence it is a Koszul algebra. It follows then
from a result of Blum, see [4] or Proposition 2.2, that balanced rational normal scrolls have
linear powers. Herzog, Hibi and Ohsugi ask in [18] whether the same is true for every rational
normal scroll.

One can ask the same question for irreducible varieties of minimal degree. However,
apart from the rational normal scrolls, they are either quadric hypersurfaces (for which the
question is trivial) or the Veronese embedding P2 ! P5. The latter can be treated by ad hoc
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methods (see [18] or Proposition 3.12). So the question is really open only for the rational
normal scrolls. For them one could try to prove that the associated Rees algebra is Koszul (for
example by exhibiting a Gröbner basis of quadrics for their defining ideals) but, despite of
many efforts, there was no progress in this direction.

The rational normal scrolls are determinantal; they are defined by the 2-minors of a 2 � n
matrix with linear entries and expected height. The main result of the paper asserts that the
ideal maximal minors of an m � n matrix X of linear forms has linear powers provided the
ideals of minors satisfy the following inequalities:

(1) height Im.X/ � n �mC 1,

(2) height Ij .X/ � min¹.mC 1 � j /.n �m/C 1;N º for every j D 2; : : : ; m � 1,

where N D height I1.X/, see Theorem 3.7. We prove also that, under the above height con-
ditions, the Rees algebra of Im.X/ is of fiber type and the Betti numbers of Im.X/k depend
only on the size of the matrix, the exponent k andN . As a corollary, we answer the question of
Herzog, Hibi and Ohsugi positively. In Section 2 we introduce the main notions and technical
terms. We give a characterization of ideals with linear powers in terms of the .1; 0/-regularity
of their Rees algebra, see Theorem 2.5.

The computations that led to the discovery of the theorems and examples presented in
this paper have been performed with CoCoA [7].

2. Ideals with linear powers and their Rees algebras

Let S be the polynomial ringKŒx1; : : : ; xn� over an infinite fieldK with maximal homo-
geneous ideal mS D .x1; : : : ; xn/ , and let I � S be a homogeneous ideal. The Castelnuovo–
Mumford regularity of a graded S -module M is denoted by reg.M/.

Definition 2.1. We say that I has linear powers if all the powers of I have a linear res-
olution. In other words, all the generators of I have the same degree, say d , and reg.I k/ D kd
for every k 2 N.

Examples of ideals with linear powers are

(i) strongly stable monomial ideals generated in one degree,

(ii) products of ideals of linear forms,

(iii) polymatroidal ideals,

(iv) ideals with a linear resolution and dimension � 1,

see Conca and Herzog [9]. Also, in [17] Herzog, Hibi and Zheng proved that monomial ideals
generated in degree 2 have linear powers as soon as they have a linear resolution. In general
however, ideals with a linear resolution need not have linear powers; see Conca [8] for a list of
examples.

Properties of the powers of an ideal can often be expressed in terms of the Rees algebra
of the ideal itself. The goal of this section is the discussion of properties of the Rees algebra of
I that are related to I having linear powers.
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Suppose that I is generated by elements of degree d . The Rees algebra

Rees.I / D
M
j2Z

I j

has a Z2-graded structure with

Rees.I /.i;j / D .I
j /jdCi :

It is standard graded in the sense that the K-algebra generators of Rees.I / live in degree .1; 0/
(the elements of S1) and in degree .0; 1/ (the elements of Id ). Let m be the minimal number
of generators of I and consider the polynomial ring

A D SŒy1; : : : ; ym� D KŒx1; : : : ; xn; y1; : : : ; ym�;

bigraded by setting deg xi D .1; 0/ and degyj D .0; 1/ for i D 1; : : : ; n and j D 1; : : : ; m.
We have a Z2-graded presentation

A=P.I / Š Rees.I /:

Let Q.I/ be the subideal of P.I / generated by elements of degree .�; 1/. By construc-
tion, Q.I/ defines the symmetric algebra S.I / of I . The ideal I is said to be of linear type if
P.I / D Q.I/, i.e. if Rees.I / D S.I /. The fiber cone F.I / of I is, by definition,

F.I / D Rees.I /=mS Rees.I / Š KŒId � � S

and can be presented as
F.I / Š KŒy1; : : : ; ym�=T .I /

where
T .I / D P.I / \KŒy1; : : : ; ym�:

The ideal I is said to be of fiber type if P.I / D Q.I/C T .I /. Here we are identifying T .I /
with its extension to A. In other words, I is of fiber type if the ideal P.I / has no minimal
generators of degree .a; b/ with a > 0 and b > 1.

For a bigradedA-moduleM let ˇA
i;.a;b/

.M/ denote the Betti number ofM corresponding
to homological position i and degree .a; b/. The .1; 0/-regularity (also called x-regularity in
[3, 18, 22]) of M is, by definition,

reg.1;0/.M/ D sup¹a � i W ˇAi;.a;b/.M/ ¤ 0 for some bº:

Furthermore PA.M/ denotes the multigraded Poincaré series of M , that is,

PA.M/ D
X

ˇAi;.a;b/.M/xizasb:

We have the following result of Blum [4, Corollary 3.6]:

Proposition 2.2. If Rees.I / is Koszul, then I has linear powers.

The converse of Proposition 2.2 does not hold in general, see Examples 2.6, 2.7 and 2.8
below. We will make use of the following well-known fact, see for instance [9, Proposition 1.2].
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Lemma 2.3. Let M be a finitely generated graded S -module and let x 2 S1 such that
0 WM x has finite length. Set a0 D sup¹j W H 0

m.M/j ¤ 0º. Then

reg.M/ D max¹reg.M=xM/; a0º:

Let z 2 S and set J D .I C .z//=.z/ � R D S=.z/. We have a short exact sequence:

0! W ! Rees.I /=z Rees.I /! Rees.J /! 0

where
W D

M
k2N

.I k \ .z//=zI k D
M
k2N

z.I k W z/=zI k :

We have:

Lemma 2.4. Assume that I has linear powers. Let z be a linear form in S such that
.I k W z/=I k has finite length for all k (a general linear form has this property). Set

J D .I C .z//=.z/ � R D S=.z/:

Then:

(1) J has linear powers and the Betti numbers (over R) of the powers of J are determined
by those (over S ) of the powers of I .

(2) If I is of fiber type, then J is of fiber type.

(3) The .1; 0/-regularity of Rees.I / is 0.

Proof. (1) After a change of coordinates we may assume that z D xn, and

R D KŒx1; : : : ; xn�1�:

Denote the maximal homogeneous ideal of R by mR. By Lemma 2.3 we have

dk � 1 D reg.S=I k/ D max¹reg.R=J k/; a0.S=I k/º:

It follows that J has linear powers. Also a0.S=I k/ D kd � 1 or H 0
mS
.S=I k/ D 0. We also

have I k W z D .Vk/C I k where

Vk D .I
k
W z/kd�1 D .I

k
W mS /kd�1 D H

0
mS
.S=I k/kd�1

and mS Vk � I
k . The Betti numbers of an ideal with linear resolution are determined by its

Hilbert function. Comparing Hilbert functions and taking into account that dimVk is ˇSn�1.I
k/

it follows that

ˇRi .J
k/ D ˇSi .I

k/ �

 
n � 1

i

!
ˇSn�1.I

k/

and hence the Betti numbers of the powers of J are determined by those of the powers of I .
(2) We have a presentation

Rees.I /=xn Rees.I / D RŒy1; : : : ; ym�=P1

where P1 D .P.I /C .xn//=.xn/ and we may represent the ideal W as .U C P1/=P1 with U
generated in degrees .0;�/ and .x1; : : : ; xn�1/U � P1. By construction,

Rees.J / Š RŒy1; : : : ; ym�=.U C P1/:
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Note that this might not be the minimal presentation of Rees.J / because the number of gener-
ators of J can be smaller than that of I . Indeed, �.I / � �.J / D dimU0;1. We may choose the
yi such that y1; : : : ; yt map to the minimal generators of J and the remaining ytC1; : : : ; ym
map to 0 (i.e. map to elements of xnV1 in the presentation of Rees.I /). With these choices,
P1 C U D P.J /C .ytC1; : : : ; ym/. By assumption, P.I / has minimal generators only in de-
gree .1; 1/ and .0;�/. Then the same is true for P1. Hence P.J /C .ytC1; : : : ; ym/ has mini-
mal generators of degree .1; 1/ and .0;�/. This is the desired result.

Finally we prove statement (3) by induction on the dimension. Let A D SŒy1; : : : ; ym�
be the polynomial ring presenting Rees.I /, and letB D RŒy1; : : : ; ym� the corresponding poly-
nomial ring for Rees.J /.

Since mR annihilates W , we can see W as a KŒy1; : : : ; ym�-module. As KŒy1; : : : ; ym�
is an algebra retract of B , we have

PB.W / D PKŒy�.W /PB.KŒy�/I

see Herzog [16, Theorem 1] or Levin [21, Theorem 1.1]. Therefore the .1; 0/-regularity of
W is 0. By induction on the dimension we may assume that the .1; 0/-regularity of Rees.J /
is 0, and we conclude that Rees.I /=xn Rees.I / has .1; 0/-regularity 0. This implies that the
.1; 0/-regularity of Rees.I / is 0.

So we have:

Theorem 2.5. The ideal I has linear powers if and only if reg.1;0/ Rees.I / D 0.

The implication “)” has been proved in Lemma 2.4. The converse has been proved by
Römer [22, Corollary 5.5]. An alternative proof is given in [17, Theorem 1.1].

As the following example shows, ideals with linear powers need not to be of fiber type
nor have a Koszul Rees algebra.

Example 2.6. The Rees algebra Rees.I / of the ideal

I D .a2b; a2c; abd; b2d/ � KŒa; b; c; d �

is defined by the ideal

P.I / D .�y2b C y1c;�y3aC y1d;�y4aC y3b;�y
2
3c C y2y4d/

whose generators form a Gröbner basis. Hence the .1; 0/-regularity of Rees.I / is 0. It follows
that I has linear powers, it is not of fiber type and Rees.I / is not Koszul.

The following two examples are ideals with linear powers and of fiber type, but with
a non-quadratic (hence non-Koszul) Rees algebra.

Example 2.7. A strongly stable ideal is a monomial ideal I satisfying I W xi � I W xj
for every i < j . It is known that the regularity of a strongly stable ideal is equal to the largest
degree of a minimal generator.

Let I be a strongly stable ideal generated in degree d . The powers of I are strongly stable
as well, and hence I has linear powers. Moreover, strongly stable ideals are of fiber type; see
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Herzog, Hibi and Vladoiu [19]. On the other hand, Rees.I / need not be quadratic. For example,
the smallest strongly stable ideal ofKŒx1; x2; x3� containing the monomials x62 ; x

2
1x
2
2x
2
3 ; x

3
1x
3
3

has a non-quadratic Rees algebra.

Example 2.8. Let I be an ideal generated by monomials of degree 2 and with a linear
resolution. Then, by [17, Theorem 2], I has linear powers. Furthermore Villarreal proved in
[23, Theorem 8.2.1] that I is of fiber type if it is square-free. On the other hand, Rees.I / need
not be quadratic. The ideal

.x3x6; x1x3; x5x6; x4x6; x2x3; x1x5; x3x4; x1x6; x1x2; x4x5/

has a linear resolution and its Rees algebra is not quadratic.

3. Maximal minors with linear powers

Let X be an m � n matrix with entries in a Noetherian ring R and let Ij .X/ denote
the ideal of R generated by the size j minors of X . We will always assume that m � n.
The ideal Im.X/ of maximal minors is resolved by the Eagon–Northcott complex provided
grade.Im.X// � n �mC 1. In [2, Theorem 5.4] Akin, Buchsbaum and Weyman for every
k 2 N describe a complex of free R-modules resolving the k-th power of the ideal of maxi-
mal minors of X under certain genericity conditions. In their notation the complex is denoted
by Y.k; �/where � is theR-linear mapRn ˝Rm ! R associated withX . However we prefer
to use the notation Y.k;X/ to stress the dependence on the input matrix X . They proved:

Theorem 3.1. Suppose grade Ij .X/ � .mC1�j /.n�m/C1 for every j . Then Im.X/k

is resolved by the free complex Y.k;X/. Moreover, the length of Y.k;X/ is min¹k;mº.n�m/.

Remark 3.2. The fact that the length of Y.k;X/ is min¹k;mº.n �m/ is not explicitly
stated in [2]. Indeed, in the proof of [2, Theorem 5.4], it is shown that the length of Y.k;X/
is � min¹k;mº.n �m/. To show that equality holds one can assume right away that X is a
matrix of variables xij and that R D KŒxij � withK a field of characteristic 0. Then, according
to [2, Section 5], TorRi .Im.X/

k; K/ is isomorphic to the kernel of a GL.V / � GL.W /-equi-
variant homomorphism from

A D

î

.V ˝W /˝ .L.mk/V ˝ L.mk/W /

to

B D

i�1̂

.V ˝W /˝ .L.mk ;1/V ˝ L.mk ;1/W /

where V and W are K-vector spaces of dimension m and n and L� denotes the Schur functor
associated with the partition �. The decompositions in irreducible GL.V / � GL.W /-modules
can be computed for all the involved representations, using the (skew) Cauchy formula and
the Littlewood–Richardson rule. In particular, when i D min¹k;mº.n �m/, one can check the
following:

(1) If k � m, then L.mnCk�m/V ˝ L.nm;mk�m/W is a direct summand of A and not of B .

(2) If k < m, then L.mk ;kn�m/V ˝ L.nk/W is a direct summand of A and not of B .

Brought to you by | Università degli Studi di Genova
Authenticated

Download Date | 5/14/15 3:33 PM



Bruns, Conca and Varbaro, Maximal minors and linear powers 47

So, in both cases, Schur’s lemma implies that the kernel of the above map is not zero. It fol-
lows that TorRi .Im.X/

k; K/ ¤ 0 for i D min¹k;mº.n �m/. Hence the projective dimension
of Im.X/k is � min¹k;mº.n �m/.

For later applications we record the following lemma and its corollary:

Lemma 3.3. Suppose that

grade Im.X/ � n �mC 1 and grade Ij .X/ � .mC 1 � j /.n �m/C 2

for every j D 1; : : : ; m � 1. Then

Ass.R=Im.X/k/ D Ass.R=Im.X//

for every k > 0.

Proof. We use induction on m. Let m D 1 and P be an associated prime of Im.X/k .
After localization with respect to P we may assume that R is local with maximal ideal P .
The hypothesis implies that I D I1.X/ is now generated by a regular sequence. Then the
powers of I are perfect ideals of grade n, resolved by the Eagon–Northcott complex. Thus
depthRP D n, and so P is an associated prime of I as well.

Now let m � 2, and let P be a prime ideal. Suppose first that P contains I1.X/. We can
apply Theorem 3.1. It shows that the projective dimension of the quotientR=Im.X/k is at most
m.n�m/C1. The inequality for grade I1.X/ implies that depthRP > projdim.R=Im.X/k/P .
Thus P is not associated to Im.X/k , and it is not an associated prime of Im.X/ for the same
reason.

Now suppose that P does not contain I1.X/. Then we can apply the standard inversion
argument to an entry of X , say x11. This argument reduces bothm and n as well as the sizes of
minors by 1, and since our bound on grade depends only on differences of these numbers, they
are preserved. Since the inversion of an element outside P does not affect the property of P
being an associated prime, we can apply the induction hypothesis.

Remark 3.4. Lemma 3.3 can also be derived from [5, (9.27) (a)] that gives a lower
bound and the asymptotic value for the depth of R=Im.X/k .

Corollary 3.5. Let X be an m � n matrix with entries in a Noetherian ring R. Suppose
that for some number p with 1 � p � m, we have:

(i) grade Im.X/ � n �mC 1,

(ii) grade Ij .X/ � .mC 1 � j /.n �m/C 2 for all j D p C 1; : : : ; m � 1.

Then
Ass.R=Im.X/k/ � Ass.R=Im.X// [ ¹P W P � Ip.X/º

for every k > 0.

Proof. Again we use induction onm. If a prime idealP contains Ip.X/, there is nothing
to prove for P . Otherwise it does not contain a p-minor. Its inversion reduces all sizes by p.
But then we are in the situation of Lemma 3.3.
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From now one we assume that S is a polynomial ring over a field K and X is an m � n
matrix whose entries are linear forms in S . In this setting we have:

Proposition 3.6. Let X be an m � n matrix of linear forms with m � n. Suppose

height Ij .X/ � .mC 1 � j /.n �m/C 1

for every j . Then

(1) Im.X/ has linear powers.

(2) The Rees algebra Rees.Im.X// is Koszul.

Proof. Assertion (1) is a special case of Theorem 3.1 because the complexes Y.k;X/
are linear when the entries of X are linear. The second assertion follows from the result of
Eisenbud and Huneke [14, Theorem 3.5] since, under the assumption of Proposition 3.6, the
Rees algebra of Im.X/ is a quotient of the generic one by a regular sequence of linear forms.
(The generic one is the Rees algebra of the ideal of maximal minors of an m � n matrix of
distinct variables over the base field). Hence it is enough to prove the statement for a matrix
of variables. Using the deformation theory developed in [10] one shows easily that the Rees
algebra of the ideal of maximal minors of a matrix of variables is defined by a Gröbner basis
of quadrics. Therefore it is Koszul.

Our main result is the following:

Theorem 3.7. Let X be an m � n matrix with m � n whose entries are linear forms in
a polynomial ring S over a field K. Suppose that

height Im.X/ � n �mC 1 and height Ij .X/ � min¹.mC 1 � j /.n �m/C 1;N º

for every j D 2; : : : ; m � 1 where N D height I1.X/. Then:

(1) Im.X/ has linear powers and it is of fiber type.

(2) The Betti numbers of Im.X/k depends only on m; n; k and N .

To prove Theorem 3.7 we need a sort of deformation argument.

Lemma 3.8. Let X be an m � n matrix whose entries are linear forms in a polynomial
ring S over an infinite field K. Let y be a new variable. Then:

(1) For every A 2Mmn.K/ and for every j one has

height Ij .X/ � height Ij .X C yA/ � 1C height Ij .X/:

(2) There exists an A 2Mmn.K/ such that

height Ij .X C yA/ D min¹.mC 1 � j /.nC 1 � j /; height Ij .X/C 1º

for every j .

Proof. (1) The inequality on the right follows from the inclusion

Ij .X C yA/ � .y/C Ij .X/:
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For the other we consider the weight vector w that gives weight 1 to the variables of S and
weight 0 to y. One has inw.Ij .X C yA// � Ij .X/. Since the height does not change by
taking ideals of the initial forms, we conclude that height Ij .X/ � height Ij .X C yA/.

(2) The inequality “�” follows from statement (1). Set c D dimS , hj D height Ij .X/,
gj D .mC 1 � j /.nC 1 � j / and T D ¹j W hj < gj º. By virtue of (1) and since

height Ij .Y / � gj

holds for everym � nmatrix Y , it is enough to show that there exists anA 2Mmn.K/ such that
height Ij .X C yA/ D hj C 1 for every j 2 T . We choose a system of coordinates x1; : : : ; xc
for S such that for every j the set Ej D ¹xk W k > hj º is a system of parameters for the ring
S=Ij .X/. This can be done because the base fieldK is infinite. It follows that Ij .X/ has height
hj also modulo .Ej /. We may write

X D

cX
iD1

xiAi

with Ai 2Mmn.K/. Since X D
Phj

iD1 xiAi mod .Ej /, we deduce that

height Ij

 hjX
iD1

xiAi

!
D hj ;

that is, the radical of Ij .
Phj

iD1 xiAi / is .x1; : : : ; xhj
/, for every j .

Again by virtue of (1), it is enough to show that there exists an A 2Mmn.K/ such that

height Ij

 hjX
iD1

xiAi C yA

!
D hj C 1

for every j 2 T . We consider the subvariety Vj of the projective space P .Mmn.K// of the
matrices of rank < j . Furthermore we consider the linear space

Lj D hAi W i D 1; : : : ; hj i � P .Mmn.K//:

By construction, we have Lj \ Vj D ;. Consider then the join Lj � Vj of Lj and Vj , that is,
Lj � Vj D

S
BC where BC is the line joining B and C and .B; C / varies in Lj � Vj . It is

well know that Lj � Vj is a projective variety and that

dimLj � Vj D dimLj C dimVj C 1 D mn � 1 � .gj � hj /;

see for instance [15, Proposition 11.37]. Therefore the join Lj � Vj is a proper subvariety of
P .Mmn.K// if j 2 T , and so is

S
j2T .Lj � Vj /. It follows that we can take A 2Mmn.K/

and A 62 Lj � Vj for every j 2 T . We claim that with this choice of A one has

height Ij

 hjX
iD1

xiAi C yA

!
D hj C 1

for every j 2 T as desired. Suppose, by contradiction, that for a j 2 T one has

height Ij

 hjX
iD1

xiAi C yA

!
< hj C 1:
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Then there is a point .a1; : : : ; ahj
; b/ on the projective subvariety of Phj defined by the ideal

Ij .
Phj

iD1 xiAi C yA/ (where the last coordinate corresponds to the variable y). In other words

rank

 hjX
iD1

aiAi C bA

!
< j :

If b ¤ 0, we obtain A 2 Lj � Vj , a contradiction. If b D 0, we have .a1; : : : ; ahj
/ 2 Lj \ Vj ,

which is also a contradiction.

Proof of Theorem 3.7. (1) It is harmless to assume that the base field is infinite. Set
N D height I1.X/. We may assume thatN D dimS . We haveN � mn and we do decreasing
induction on N . If N D mn, then we are in the generic case and the assertion is true because
of Proposition 3.6. Consider a new variable y, and set R D SŒy�. In view of Lemma 3.8 we
may take A 2Mmn.K/ such that the ideals of minors of the matrix Y D X C yA satisfy

(3.1) height Ij .Y / D min¹.mC 1 � j /.nC 1 � j /; height Ij .X/C 1º

for every j . Hence height I1.Y / D N C 1 and since, by assumption, we have

height Ij .X/ � min¹.mC 1 � j /.n �m/C 1;N º;

we may deduce that

(3.2) height Ij .Y / � min¹.mC 1� j /.nC 1� j /; .mC 1� j /.n�m/C 2;N C 1º:

In particular,

(3.3) height Ij .Y / � min¹.mC 1 � j /.n �m/C 1;N C 1º

holds for every j . Hence, by induction, we may assume that Im.Y / has linear powers and is of
fiber type. Since R=Im.Y /˝ S D S=Im.X/, we conclude from Lemma 2.3 that Im.X/ has
linear powers and is of fiber type provided we show that

(3.4) .Im.Y /
k
W y/=Im.Y /

k

has finite length. Now (3.2) implies that

(3.5) height Ij .Y / � min¹.mC 1 � j /.n �m/C 2;N C 1º

for every j � m� 1. Let p be the largest number such that .mC 1�p/.n�m/C 2 > N C 1.
Hence

height Ij .Y / � .mC 1 � j /.n �m/C 2

for j D pC1; : : : ; m�1. From Corollary 3.5 we deduce that the associated primes of Im.Y /k

are either the minimal primes of Im.Y / or ideals containing Ip.Y /. But, by construction,

height Ip.Y / D N C 1

and hence the radical of Ip.Y / is the maximal homogeneous ideal mR of R. Summing up,

Ass.R=Im.Y /k/ � Min.Im.Y // [ ¹mRº:
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Since
height Im.Y / D height Im.X/;

the 1-form y does not belong to the minimal primes of Im.Y /. We may hence conclude that
Im.Y /

k W y is contained in the saturation Im.Y /k W m1R of Im.Y /k and that the module (3.4)
has finite length.

Finally (2) follows from the construction above and Lemma 2.4 (2).

As a special case of Theorem 3.7 we have:

Corollary 3.9. Let X be a 2 � n matrix with linear entries in a polynomial ring S .
Assume I2.X/ has height n � 1. Then I2.X/ has linear powers. In particular, any rational
normal scroll has linear powers.

The following examples show that ideals of maximal minors with the expected codimen-
sion need not to have linear powers.

Example 3.10. The ideal of 3-minors of the following 3 � 5 matrix has height 3 and its
square does not have a linear resolution:

X D

0B@x1 0 0 x2 x4

0 0 x3 x2 x5

0 x2 x1 x3 x3

1CA :
The ideal of 2-minors has only height 3.

Example 3.11. The ideal of 4-minors of the following 4 � 5 matrix has height 2, and
its square does not have a linear resolution:

X D

0BBBB@
x1 0 0 0 x3

0 x2 0 0 x4

0 0 x2 x3 0

0 0 x1 x4 x3

1CCCCA :
The ideal of 3-minors has only height 2.

On the other hand, the ideal of Example 2.6 is the ideal of 3-minors of a 3 � 4 matrix,
it has linear powers and it is not of fiber type. So it is an ideal of maximal minors with ex-
pected codimension that is not of the type described in Theorem 3.7, but nevertheless has
linear powers.

The irreducible varieties of minimal degree are the rational normal scrolls, the quadrics
hypersurfaces, and the Veronese surface in P5, see [12]. We have proved above that the ra-
tional normal scrolls have linear powers and for the quadric hypersurfaces that is obvious.
A computer assisted proof that the Veronese surface in P5 has linear powers is given in [18].
Below we give an alternative proof.

Proposition 3.12. The Veronese surface in P5 has linear powers.
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Proof. The Veronese surface in P5 is defined by the ideal I � S D KŒx0; : : : ; x5� of the
2-minors of the generic symmetric 3 � 3 matrix. Its general hyperplane section is the rational
normal curve of P4. Hence if y is a general linear form,

S=I k ˝ S=.y/ D R=J k

where J in R D KŒx0; : : : ; x4� defines the rational normal curve of P4. So we know that
reg.R=J k/ D 2k � 1. It it remains to controlH 0

m.S=I
k/. But we know the primary decompo-

sition of I k ,
I k D I .k/ \m2k :

This is proved by Abeasis in [1, Theorem 5.1, Corollary 5.2] in characteristic 0. Using the ideas
developed in [5, Chapter 10] and, in particular, [5, Lemma 10.10] one shows that the same
result holds in arbitrary characteristics. This implies thatH 0

m.S=I
k/ vanishes in degrees� 2h.

From Lemma 2.3 it then follow that reg.I k/ D 2k.

The ideal In�1.Yn/ of .n � 1/-minors of a symmetric n � n matrix of variables Yn
has a linear resolution. We have seen in Proposition 3.12 that I2.Y3/ has linear powers. As
observed in [8, Example 2.8], I3.Y4/ does not have linear powers because the resolution
of I3.Y4/2 is not linear. One can also check that I3.Y4/3 has a linear resolution and so per-
haps I3.Y4/ has linear powers with the exception of the second one, but this is another story.
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