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Abstract. We characterize the irreducible representations of the general linear group
GL(V ) that have multiplicity 1 in the direct sum of all Schur modules of a given exterior
power of V . These have come up in connection with the relations of the lower order
minors of a generic matrix. We show that the minimal relations conjectured by Bruns,
Conca and Varbaro are exactly those coming from partitions of single exterior type.

1. Introduction

The main motivation for this note was the desire to provide further evidence
for a conjecture of Conca and the authors [BCV, Conj. 2.12] on the polynomial
relations between the t-minors of a generic matrix. With the notation in [BCV], let
X = (xij) denote an m×n matrix of indeterminates over a field K of characteristic
0, R = K[X ] the polynomial ring over the variables xij and At ⊆ R the K-
subalgebra of R generated by the t-minors of X . With respect to a choice of bases
in K-vector spaces V and W of dimension m and n, respectively, one has a natural
action of the group G = GL(V )×GL(W ) on R, induced by

(A,B) ·X = AXB−1 ∀ A ∈ GL(V ), B ∈ GL(W ).

This action restricts to At, making At a G-algebra. Since the G-decomposition
of At can be deduced from the work of De Concini, Eisenbud and Procesi [DEP],
it is natural to exploit such an action. A presentation of At as a quotient of a
polynomial ring is provided by the natural projection

π : St → At,

where St = Sym(
∧t

V ⊗ ∧t
W ∗). Also St is a G-algebra, and the map π is G-

equivariant. Therefore the ideal of relations Jt = Ker(π) is a G-module as well.
The conjecture [BCV, Conj. 2.12] predicts a minimal list of irreducible G-

modules generating Jt, or, by Nakayama’s lemma, the decomposition of

Jt ⊗St K
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where we identify K and the residue class field of R with respect to the irrele-
vant maximal ideal generated by the indeterminates. In particular, the conjecture
predicts that Jt is generated in degrees 2 and 3.

In the assignment of partitions to Young diagrams and to irreducible repre-
sentations of GL(V ) we follow Weyman [We]: a partition of nonnegative integers
λ = (λ1, . . . , λk), λ1 ≥ · · · ≥ λk, is pictorially represented by k rows of boxes
of lengths λ1, . . . , λk with coordinates in the fourth quadrant, and a single row
of length m represents

∧m
V . The highest weight of the representation is then

given by the transpose partition tλ in which rows and columns are exchanged:
(tλ)i = |{j : λj ≥ i}|. With this convention, we denote the Schur module associ-
ated with the partition λ and the vector space V by LλV .

Because St is a quotient of

Tt =
⊕
d≥0

( d⊗(∧t
V ⊗

∧t
W ∗

))
=

⊕
d≥0

( d⊗∧t
V ⊗

d⊗∧t
W ∗

)
,

Pieri’s rule implies that the irreducible summands of Jt⊗St K must be of the form

LγV ⊗ LλW
∗

where γ and λ are partitions satisfying the following conditions:

(i) γ, λ � dt,
(ii) both γ and λ have at most d rows.

We call such partitions (or bipartitions (γ|λ)) (t, d)-admissible (just t-admissible
if we do not need to emphasize the degree). In [BCV] a set A of (t, 2)-admissible
bipartitions (γ|λ) and a set B of (t, 3)-admissible bipartitions (γ|λ) were found
such that

⊕
(γ|λ)∈A

LγV ⊗ LλW
∗ ⊕

⊕
(γ|λ)∈B

LγV ⊗ LλW
∗ ⊆ Jt ⊗St K. (1.1)

Conjecture 2.12 in [BCV] states that the inclusion in Equation (1.1) is an equality.
For the convenience of the reader and since it is crucial for the following we recall
how A and B are defined.

(i) For u ∈ {0, . . . , t} let:

τu = (t+ u, t− u).

(ii) For u ∈ {1, . . . , 
t/2�} let

γu = (t+ u, t+ u, t− 2u) and λu = (t+ 2u, t− u, t− u).

(iii) For each u ∈ {2, . . . , �t/2
} let

ρu = (t+u, t+u−1, t−2u+1) and σu = (t+2u−1, t−u+1, t−u).
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With this notation,

A =
{
(τu|τv) : 0 ≤ u, v ≤ t, u+ v even, u �= v

}
,

B =
{
(γu|λu), (λu|γu) : 1 ≤ u ≤ 
t/2�}

∪ {
((ρv|σv), (σv|ρv) : 2 ≤ v ≤ �t/2
}.

Note that not all the partitions above are supported by the underlying vector
spaces if their dimensions are too small: a partition λ can only appear in a repre-
sentation of GL(V ) if λ1 ≤ dimV . For simplicity we have passed this point over
since it is essentially irrelevant. The reader is advised to remove all partitions from
the statements that are too large for the vector spaces under consideration.

The decomposition of St as a module over the “big” group

H = GL(E)×GL(F ), E =
∧t

V, F =
∧t

W,

is well known by Cauchy’s rule:

St =
⊕
μ

LμE ⊗ LμF
∗ (1.2)

where μ is extended over all partitions. The GL(V )-decomposition of LμE is an
essentially unsolved plethysm. However, the partitions in the definition of A and
B play a very special role in it, as was already observed in [BCV]:

Definition 1.1. Let λ � dt be t-admissible. Then λ is said to be of single
∧t-type

μ if μ � d is the only partition such that LλV is a direct summand of Lμ(
∧t

V )
and, moreover, has multiplicity 1 in it. Without specifying μ, notice that λ is of
single

∧t-type if and only if λ has multiplicity 1 in
⊕

α�d Lα(
∧tV ).

In this note we will classify all partitions of single
∧t

-type (or simply single
exterior type) and show that the bi-partitions in the sets A and B are exactly
those of single

∧t-type that occur in a minimal generating set of Jt. While this
observation does certainly not prove the conjecture in [BCV], it provides further
evidence for it.

2. Auxiliary results on partitions

In this section we discuss two transformations of partitions that preserve sin-
gle exterior type. It was already observed in [BCV] that trivial extensions in the
following sense are irrelevant: if a partition λ̃ arises from a t-admissible partition
λ � dt by prefixing λ with columns of length d, then λ̃ is called a trivial extension
of λ. We quote [BCV, 1.16] (eλ denotes the multiplicity of λ):

Proposition 2.1. Let μ be a partition of d and consider partitions λ=(λ1, . . . , λk)
� td with k ≤ d and λ̃ = (λ1+1, . . . , λk+1, 1, . . . , 1) � dt+d. If dimK V ≥ λ1+1,
then

eλ

(
Lμ

(∧t
V
))

= eλ̃

(
Lμ

(∧t+1
V
))

.
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In particular, λ is of single
∧t

-type μ if and only if λ̃ is of single
∧t+1

-type μ.

Next we want to show that a similar result holds for dualization, in the sense
that

∧n−t
V , n = dimV , is dual to

∧t
V (up to tensoring with the determinant).

Let λ = (λ1, . . . , λk) � td be t-admissible; then we set

λ∗,n = (n− λd, . . . , n− λ1) � (n− t)d.

Evidently λ∗,n is (n− t)-admissible. Note that λ and λ∗,n rotated by 180◦ degrees
complement each other to a d×n rectangle (representing the d-th tensor power of
the determinant det V =

∧n
V when n = dimV ).

Notice that λ∗,n is a trivial extension of λ∗,λ1 . In view of this we will denote
λ∗,λ1 just with λ∗, calling it simply the dual of λ. Also, note that if k = d, so that
λ is a trivial extension of some γ, then λ∗,n = γ∗,n. Therefore, when speaking of
dual partitions, we will usually assume that n = λ1 and k < d.

Proposition 2.2. Let μ be a partition of d and consider a t-admissible partition
λ = (λ1, . . . , λk) � td. Suppose dimV = λ1. Then

eλ

(
Lμ

∧t
V
)
= eλ∗

(
Lμ(

∧λ1−t
V
)
.

In particular, λ is of single
∧t

-type if and only if λ∗ is of single
∧λ1−t

-type.

Proof. Set n = dimV = λ1. Consider the GL(V )-equivariant multiplication

∧t
V ⊗

∧n−t
V → detV.

It induces an equivariant isomorphism

∧t
V ∼= HomK

(∧n−t
V, detV

)
=

(∧n−t
V
)∗

⊗ detV =
(∧n−t

V ∗
)
⊗ detV.

Next we can pass to the d-th tensor power on the right and the left, and apply
the Young symmetrizer Yμ (see Fulton and Harris [FH, p. 46] inverting rows and
columns) to obtain a GL(V )-equivariant isomorphism

Yμ

d⊗∧t
V ∼= Yμ

d⊗(∧n−t
V ∗ ⊗ detV

)
.

Next we can go from Yμ

⊗d(
∧n−tV ∗ ⊗ detV ) to Yμ

⊗d∧n−tV ∗, except that we
have to subtract the weight of

⊗d det V from each weight in Yμ

⊗d(
∧n−tV ∗ ⊗

detV ). Finally, if we replace GL(V ) by GL(V ∗) as the acting group, we see that

every partition λ in Yμ

⊗d ∧tV goes with equal multiplicity to the partition λ∗ in

Yμ

⊗d∧n−tV ∗. But the multiplicities depend only on the dimension of the basic

vector space, and therefore we can replace
∧n−t

V ∗ by
∧n−t

V . �
Below we will use the obvious generalization of Proposition 2.2 to λ∗,n that

results from Proposition 2.1.
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3. Partitions of single exterior type

The characterization of partitions of single exterior type is based on a recursive
criterion established in [BCV]. For it and also for the characterization of the
minimal relations of single exterior type we need the same terminology.

Let λ be a (t, d)-admissible diagram. Given 1 ≤ e ≤ d, we say that α is a
(t, e)-predecessor of λ if and only if α is a (t, d− e)-admissible diagram such that
tαi ≤ tλi ≤ tαi + e for all i = 1, . . . , λ1 (we set tαi = 0 if i > α1). In such a case
we also say that λ is a (t, e)-successor of α. If we just say that α is a t-predecessor
of λ, we mean that α is a (t, e)-predecessor of λ for some e, and analogously for
λ being a t-successor of α. (This terminology deviates slightly from [BCV] where
a predecessor is necessarily a (t, 1)-predecessor.) The Littlewood–Richardson rule
implies at once that, for a (t, d)-admissible diagram λ and a (t, d − e)-admissible
diagram α the following are equivalent:

(i) α is a (t, e)-predecessor of λ.
(ii) LλV occurs in (

⊗e∧tV )⊗LαV , where V is a K-vector space of dimension
≥ λ1.

Below we will use that dualization commutes with taking successors. More
precisely, if λ is a successor of γ, then λ∗,n is a successor of γ∗,n.

We quote the following criterion for single
∧t

-type from [BCV, Prop. 1.22].
(Condition (iv) has been added here. It strengthens (iii), but follows from (iii) by
induction.)

Proposition 3.1. Let λ � dt and μ � d be partitions such that LλV occurs in
Lμ(

∧tV ). Then the following are equivalent:

(i) λ is of single
∧t

-type;

(ii) the multiplicities of λ and of μ in
⊗d

(
∧t

V ) coincide;
(iii) every (t, 1)-predecessor λ′ of λ is of single

∧t-type μ′ where μ′ is a (1, 1)-
predecessor of μ, and no two distinct (t, 1)-predecessors of λ share the same
(1, 1)-predecessor μ′ of μ;

(iv) every t-predecessor λ′ of λ is of single
∧t

-type μ′ where μ′ is a 1-predecessor
of μ, and no two distinct t-predecessors of λ share the same 1-predecessor
μ′ of μ.

As we will see in a moment, one class of single
∧t-type partitions is given by

the hooks.

Definition 3.2. A diagram λ = (λ1, . . . , λk) with λ2 ≤ 1 is called a hook.

A hook can be always written like (a, 1b), where 1b means b ones.

Lemma 3.3. Let d > 0 and k ∈ {0, . . . , d − 1}. Then (td − k, 1k) is of single∧t-type μ where:

(i) μ = (d− k, 1k) if t is odd.
(ii) μ = (k + 1, 1d−k−1) if t is even.

Proof. Let us fix t and use induction on d. For d = 2 the statement is very easy to
prove. For d = 3 [BCV, Prop. 1.18] implies that L(3t−1,1)V occurs in L(2,1)(

∧t
V ),

so we are done in this case by Proposition 3.1 (ii). Therefore assume d > 3.
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If t is odd, then L(dt)V occurs in L(d)(
∧t

V ): In fact, L(dt)V has multiplicity 1 in⊗∧tV , so it can occur in Lμ(
∧tV ) only if μ = (d) (the dth exterior power) or μ =

(1d) (the d-th symmetric power). Furthermore (2t) is a t-predecessor of (dt), and∧2tV occurs in
∧2(

∧tV ) (for instance, see [BCV, Lemma 2.1]). Therefore L(dt)V

occurs in
∧2(

∧tV )⊗ (
⊗d−2∧tV ). In particular, it cannot occur in L(1d)(

∧tV ). In

the same way, one sees that L(dt)V occurs in L(1d)(
∧tV ) whenever t is even.

From now on let us assume t odd; the even case is similar. If 0 < k < d − 1,
then (dt− k, 1k) has two (t, 1)-predecessors, namely,

((d− 1)t− k, 1k) and ((d − 1)t− k + 1, 1k−1).

By induction, the respective Schur modules occur in

L(d−k−1,1k)

(∧t
V
)

and L(d−k,1k−1)

(∧t
V
)
.

So, the Schur modules corresponding to the (t, 1)-successors of ((d − 1)t − k, 1k)
can occur in L(d−k,1k)(

∧tV ) or in L(d−k+1,1k−1)(
∧tV ), and the ones corresponding

to the (t, 1)-successors of ((d− 1)t− k + 1, 1k−1) can occur in L(d−k+1,1k−1)(
∧t

V )

or in L(d−k,1k)(
∧t

V ). By counting multiplicities and using d > 3, one can check

that the only possibility is that L(dt−k,1k)V occurs in L(d−k,1k)(
∧t

V ). Notice that

the multiplicity of L(dt−k,1k)V is the same as the one of L(d−k,1k)(
∧t

V ) in
⊗∧t

V ,

i.e.,
(
d−1
k

)
, so Proposition 3.1 (ii) lets us conclude. �

We must pay particular attention to the duals of hooks: The dual of the hook
(dt−k, 1k) � dt is the diagram ((dt−k)d−k−1, (dt−k−1)k) � d(dt−k− t). Notice
that is the unique partition of d(dt− k − 1) with λd = 0 and λd−1 ≥ λ1 − 1.

Before stating the main theorem it is useful to remark the following:

Lemma 3.4. A diagram (a, b, c) � 3t (where c = 0 is not excluded) is of single∧t
-type if and only if

min{a− b, b− c} ≤ 1.

Since all partitions λ � 2t are of single
∧t

-type, one must find exactly those
partitions (a, b, c) � 3t that have no two predecessors in the second symmetric
or second exterior power. Since the latter are easily characterized (for example,
see [BCV, Lemma 2.1]), the proof of Lemma 3.4 is an easy exercise. Because of
Proposition 2.1 one may assume c = 0, and Proposition 2.2 helps to further reduce
the number of cases.

For the proof of the next theorem we will abbreviate “single
∧t

-type” by “ST”
and “not of single

∧t
-type” by “NST”.

Theorem 3.5. A t-admissible diagram λ = (λ1, . . . , λk) � dt is of single
∧t

-type
μ � d if and only if it satisfies one (or more) of the following:

(i) λd ≥ t− 1, in which case μ = (λ1 − t+ 1, . . . , λd − t+ 1).

(ii) λ1 ≤ t+ 1, in which case μ = λ∗,t+1.
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(iii) λd ≥ λ2 − 1. If λ = (td), then μ = (1d). Otherwise put k = max{i :
λi > λd}: according with t − λd being odd or even, μ = (d − k, 1k) or
μ = (k + 1, 1d−k−1).

(iv) λd−1 ≥ λ1 − 1. If λ = (td), then μ = (1d). Otherwise put k = min{i :
λi < λ1}: according with λ1 − t being odd or even, μ = (k, 1d−k) or
μ = (d− k + 1, 1k−1).

If λ is in one of the four classes above, then we know that it is of single
∧t-type

from what was done until now: (i) If λd ≥ t − 1, then it is a trivial extension of

μ = (λ1 − t+ 1, λ2 − t+ 1, . . . , λd − t+ 1) � d, that is obviously of single
∧1

-type;

(ii) if λ1 ≤ t + 1, then μ = λ∗,t+1 � d is of single
∧1-type, so Proposition 2.2 lets

us conclude; (iii) If λd ≥ λ2 − 1, then λ is a trivial extension of a hook. The shape
of μ follows from Proposition 2.1 and Lemma 3.3; (iv) if λd−1 ≥ λ1 − 1, then λ∗ is
a hook. From this, combining Lemma 3.3 and Proposition 2.2, we get the shape
of μ.

As we have just seen, the four classes can be described as follows: (i) consists
of the trivial extensions of 1-admissible partitions, (ii) is dual to (i) in the sense
of Proposition 2.2, (iii) contains the hooks and their trivial extensions, and (iv) is
dual to (iii).

The classification in the theorem completely covers the cases d = 1 and d = 2,
in which all shapes are of single

∧t
-type, and also the case d = 3 done in Lemma

3.4. Therefore we may assume that d ≥ 4. Then the theorem follows from the
next lemma and Proposition 3.1. In its proof we will use the theorem inductively.

Lemma 3.6. If d ≥ 4 and λ is not one of the types in the theorem, then it has an
NST (t, 1)-predecessor.

The lemma shows that the critical degree is d = 3 in which the condition that
the predecessors of λ occur in pairwise different predecessors of μ must be used.

Proof. If t = 1 all partitions λ fall into the class (i) and are certainly ST. So we
can assume t ≥ 2.

Suppose first that λ is itself a trivial extension. Then we pass to its trivial
reduction λ′. It is enough to find an NST predecessor for λ′. It yields an NST
predecessor of λ after trivial extension. From now on we can assume that λ has
at most d− 1 rows.

Suppose first that λ = (λ1, . . . , λk) is a successor of a hook. Let k′ = max{2, k−
1}. We choose γ = ((d − 1)t − k′, 2, 1k

′−2) � (d − 1)t. Then γ does not fall into
one of the classes (i)–(iv), provided γ1 ≥ t+ 2. Using k′ ≤ d− 2, one derives this
immediately from d ≥ 4 and t ≥ 2. The inequality γ1 ≥ t+ 1 is sufficient to make
γ a predecessor of λ.

Next suppose λ = (λ1, λ2, 1
k−2) � dt. If λ has a hook predecessor, then we are

done by the previous case. Therefore we can assume that λ2 ≥ t+ 2. If k = 2, we
pass to γ = (λ1, λ2 − t), and if k ≥ 3, we choose γ = (λ1, λ2 − (t− 1), 1k−3). Then
γ is not of types (i)–(iv). (We are dealing with this case separately since the duals
will come up below.)

In the remaining case we choose the predecessor γ of λ with the lexicographic
smallest set of indices for the columns in which γ and λ differ by 1. If γ is a hook,
then we are done as above. So we can assume that γ is not a hook.
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Suppose that γ1 < λ1. Then λ2 ≤ t − 1, and γ is not a trivial extension since
the bottom row of λ has been removed completely, and γ has at most d− 2 rows.
On the other hand, λ1 + (d− 2)λ2 ≥ dt implies λ1 ≥ 2t+ 2, and so γ1 ≥ t+ 2. It
follows that γd−2 ≤ λd−2 < γ1 − 1, and γ is not of type (i)–(iv).

The case γ1 = λ1 > t + 1 remains. We can assume that γ is ST. This is only
possible if (1) γd−2 ≥ γ1 − 1, or (2) γ is the trivial extension of a hook, or (3)
γd−1 ≥ t− 1.

(1) If γd−2 ≥ γ1−1, then λd−2 ≥ λ1−1, and λ∗ is of the second type discussed.
We find an NST predecessor of λ∗ and dualize back.

(2) If γ is a trivial extension of a hook, then γ2 ≤ γd−1+1 and λd−1 ≥ t+1. In
particular γ2 = λ2, and γd−1 = λd−1− t ≤ λ2− t = γ2− t, which is a contradiction
since t ≥ 2.

(3) In this case we must have λd−1 ≥ 2t−1 since we remove min{λd−1, t} boxes
from row d− 1 of λ. This is evidently impossible (because t ≥ 2 and d ≥ 4). �

4. Minimal relations of single exterior type

In this last section we are going to prove the result which motivated us to
produce this note. We will adopt here the notation given in the introduction.

Let us first recall a result of [BCV]. As already mentioned, a decomposition
of St = Sym(E ⊗ F ∗) in irreducible H-representations is provided by the Cauchy
formula (1.2), namely,

St =
⊕
μ

LμE ⊗ LμF
∗,

where μ ranges among all the partitions. So, because G is a subgroup of H whose
action is the restriction of that ofH , the irreducible G-representation LγV ⊗LλW

∗

occurs in the G-decomposition of St if and only if there exists μ � d such that LγV

occurs in the GL(V )-decomposition of Lμ(
∧t

V ) and LλW
∗ occurs in the GL(W )-

decomposition of Lμ(
∧t

W ∗). Moreover, if such a μ � d exists and γ and λ are

both of single
∧t

-type, then LγV ⊗LλW
∗ is a direct summand of Jt ⊗St K if and

only if γ �= λ and the predecessors of γ and of λ coincide [BCV, Prop. 1.21 and
Thm. 1.23(iv)]. This is the fact on which the proof of the next theorem is based.

Theorem 4.1. Let LγV ⊗LλW
∗ be a direct summand of Jt ⊗St K such that both

γ and λ are diagrams of single
∧t

-type. Then (γ|λ) ∈ A ∪B.

Proof. For t = 1 there is nothing to prove because J1 = (0). So assume t ≥ 2.
From what was said above γ and λ must be t-admissible partitions of the same

number dt. If d = 1 then γ = λ = (t); if d = 2, then (Jt)2 ∼= ⊕
(γ|λ)∈A LγV ⊗LλW

∗

by [BCV, Lemma 2.1]; if d = 3 then [BCV, Prop. 3.16] does the job.
So from now on we will focus on d ≥ 4. Recall that in Theorem 3.5 there have

been identified 4 (not disjoint) sets of diagrams, say Et
1 = {diagrams as in (i)},

Et
2 = {diagrams as in (ii)}, and so on, such that:

{diagrams of single
∧t

-type} = Et
1 ∪ Et

2 ∪ Et
3 ∪ Et

4.

We start by showing the following:
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Lemma 4.2. Let LγV ⊗ LλW
∗ be a direct summand of Jt ⊗St K such that both

γ and λ are diagrams of single
∧t

-type belonging to the same Et
i for some i ∈

{1, 2, 3, 4}. Then (γ|λ) ∈ A ∪B.

Proof of Lemma 4.2. We know that γ and λ are different t-admissible partitions
of dt sharing the same μ � d. This excludes i ∈ {1, 2}, because in these cases
Theorem 3.5 says that γ and λ cannot share the same μ if they are different.

Suppose i = 3. We must have γd �= λd if λ and γ belong to the same μ. Assume
λd > γd. The diagram γ has a predecessor γ ′ with γ′

d−1 = γd. This cannot be a
predecessor of λ, and so γ and λ do not have the same predecessors.

So only the case i = 4 remains. Let s = max{γ1, λ1}. If s = t, then γ = λ = (td),
so we can assume s > t. If γ and λ share the same μ, by combining Propositions
2.2 and 2.1, γ∗,s and λ∗,s share μ as well. Of course γ∗,s and λ∗,s belong to Es−t

3 ,
and they are different if γ and λ are different. In this case, we know by the previous
case that γ∗,s and λ∗,s have different predecessors, and by dualizing we infer the
same for γ and λ. �

Let us go ahead with the proof of Theorem 4.1. Set γ = (γ1, . . . , γh) and
λ = (λ1, . . . , λk) with h, k ≤ d. If h = k = d we can use induction on t since both
γ and λ are trivial extensions.

If h and k are both less than d, then neither γ nor λ belong to Et
1. Assume

that γ ∈ Et
3. Then μ is a hook. By the lemma, λ /∈ Et

3. Since μ is a hook,
k < d and λ /∈ Et

3, it follows that λ ∈ Et
4 (recall that Et

2 and Et
4 are not disjoint).

Because γ is a t-admissible hook and h < d, we get γ1 > dt − d + 1 ≥ 4t − 3.
Then λ1 > 3t− 3; otherwise γ and λ would have different predecessors. Therefore
λ � dt > (d − 1)(3t − 3), which is impossible whenever d ≥ 3 (recall that t ≥ 2).
So, by symmetry, we can assume that neither γ nor λ is in Et

3. Therefore γ and λ
belong to Et

2 ∪Et
4. However, γ and λ share the same μ and, in such a situation, μ

is a hook if and only if γ and λ both belong to Et
4, a case already excluded in the

lemma.

So, we can assume by symmetry that h < d and k = d. Notice that h = d− 1,
because all the predecessors of λ will have d − 1 rows. For the same reason we
can even infer that γd−1 > t, otherwise we could entirely remove γd−1, getting a
predecessor of γ with d−2 rows. Since d ≥ 4, we have γ ′

2 > t for all γ′ predecessors
of γ. So λ does not belong to Et

3, since in this case λ2 ≤ t. Since γd−1 > t, Theorem
3.5 tells us that γ ∈ Et

4 (once again, recall that Et
2 and Et

4 are not disjoint): so
μ must be a hook. If λ ∈ Et

1, then γd−1 ≥ 2t − 1 (otherwise γ would have a
predecessor γ′ with γ′

d−1 < t − 1, that cannot be a predecessor of λ). This is
evidently impossible if d ≥ 4. So Theorem 3.5 implies that λ ∈ Et

4, and the lemma
lets us conclude.

Remark 4.3. Luke Oeding noticed that the shapes γu � 3t and λu � 3t in ev-
ery (γu|λu) ∈ B are dual to each other, namely λu = γ∗,2t

u , and that the same
relationship holds within the bishapes (ρv|σv) ∈ B.

We have no a priori argument explaining this fact, but it is at least plausible.
Both γu and λu have the same predecessors α � 2t, and α is automatically self-
dual: α∗,2t = α. Therefore the set of successors of α is closed under dualization,
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and since single
∧t

-type is preserved by it, the encounter of λu and γu is not
surprising. All this holds for (ρv|σv) as well. �
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