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Motivations

Let X ⊆ Pn be a projective scheme over K = K .

The main motivation for this talk comes from the desire of
understanding how global properties of X ⊆ Pn influence the
combinatorial configuration of its irreducible components.

One way to make precise the concept of “combinatorial
configuration of its irreducible components” is by meaning of the
dual graph of X ....
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Definition of dual graph

Given X ⊆ Pn, if X1, . . . ,Xs are its irreducible components, we
form the dual graph G (X ) as follows:

The vertex set of G (X ) is {1, . . . , s}.
Two vertices i 6= j are connected by an edge if and only if:

dim(Xi ∩ Xj) = dim(X )− 1.

From now on we will consider only equidimensional schemes.

NOTE: If X is a projective curve, then {i , j} is an edge if and only
if Xi ∩ Xj 6= ∅ (the empty set has dimension −1). If dim(X ) > 1,
by intersecting X ⊆ Pn with a generic hyperplane, we get a
projective scheme in Pn−1 of dimension one less, and same dual
graph! Iterating this trick we can often reduce questions to curves.
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Hartshorne’s connectedness theorem

Given X ⊆ Pn and the unique saturated homogeneous ideal
IX ⊆ S = K [x0, . . . , xn] s.t. X = Proj(S/IX ), let us recall that
X ⊆ Pn is arithmetically Cohen-Macaulay (resp. arithmetically
Gorenstein) if S/IX is Cohen–Macaulay (resp. Gorenstein).

A classical result by Hartshorne is that aCM schemes are
connected in codimension one:

Hartshorne’s connectedness theorem

If X ⊆ Pn is aCM, then G (X ) is a connected graph.

On the other hand ......
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From graphs to curves

Theorem A, Benedetti-Bolognese-V. 2015

For any connected graph G , there exists a reduced aCM curve
C ⊆ Pn such that G (C ) = G . Furthermore, reg(C ) = reg(IC ) = 3
and the irreducible components of C are rational normal curves no
3 of which meet at one point.

Moreover:

Benedetti-Bolognese-V. 2015

For a connected graph G , the following are equivalent:

There is a curve C ⊆ Pn such that no 3 of its irreducible
components meet at one point, reg(C ) = 2, and G (C ) = G .

G is a tree.
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From graphs to curves

Notice that not any graph can be obtained as the dual graph of a
line arrangement C , that is a union of lines C =

⋃s
i=1 Li . For

example, one can see that the graph G having:

{1, . . . , 6} as vertices;

{{i , j} : 1 ≤ i < j ≤ 6} \ {{1, 2}, {3, 4}} as edges

is not the dual graph of any line arrangement.

However, by taking 6 generic lines Li ⊆ P2 and blowing up P2

along the points P1,2 = L1 ∩ L2 and P3,4 = L3 ∩ L4, the strict
transform of

⋃6
i=1 Li will have G as dual graph!
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Connectivity of graphs

The connectedness theorem of Hartshorne says that G (X ) is
connected whenever X ⊆ Pn is aCM.

We would like to infer
something more than connectedness by assuming that X ⊆ Pn is
arithmetically Gorenstein (e.g. a complete intersection). To this
purpose we need to quantify the connectedness of a graph.

A graph is d-connected if it has > d vertices, and the deletion of
< d vertices, however chosen, leaves it connected.

Menger theorem (Max-flow-min-cut).

A graph is d-connected iff between any 2 vertices one can find d
vertex-disjoint paths.
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From schemes to graphs

Theorem B, Benedetti–Bolognese–V. 2015

Let X ⊆ Pn be an arithmetically Gorenstein projective scheme such
that reg(X ) = reg(IX ) = r + 1. If reg(q) ≤ δ for all primary
components q of IX , then G (X ) is b(r + δ − 1)/δc-connected.

When δ can be chosen to be 1, i.e. when X is a (reduced) union of
linear spaces (a subspace arrangement), we recover the following:

Benedetti-V. 2014

Let X ⊆ Pn be an arithmetically Gorenstein subspace arrangement
such that reg(X ) = reg(IX ) = r + 1. Then G (X ) is r -connected.
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Example: 27 lines

As we know, on a smooth cubic X ⊆ P3 there are exactly 27 lines,
which can be read from the fact that X is the blow-up of P2 along
6 generic points.

Let C ⊆ P3 be the union of such 27 lines, and let
us try to understand how G (C ) looks like.

The important things to know are that:

1 G (C ) is 10-connected.

2 The diameter of G (C ) is 2.

3 There is a partition V1, . . . ,V9 of the nodes of G (C ) such
that the induced subgraph of G (C ) on each Vi is a triangle.
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Example: 27 lines

Thanks to the third point of the previous slide, the 3 lines
corresponding to the 3 nodes of each Vi are coplanar, let us call Hi

the plane defined by the equation `i they determine.

So

C ⊆

(
9⋃

i=1

Hi

)⋂
X and (f , g) ⊆ IC ,

where f is the cubic polynomial defining X and g =
∏9

i=1 `i .

But the degree of K [x0, x1, x2, x3]/(f , g) is 3 · 9 = 27, like the
degree of C . So IC = (f , g) is a complete intersection.

In particular C ⊆ P3 is an an arithmetically Gorenstein subspace
arrangement of regularity deg(f ) + deg(g)− 1 = 3 + 9− 1 = 11.
Thus our result confirms that G (C ) is 10-connected.
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C ⊆

(
9⋃

i=1

Hi

)⋂
X and (f , g) ⊆ IC ,

where f is the cubic polynomial defining X and g =
∏9

i=1 `i .

But the degree of K [x0, x1, x2, x3]/(f , g) is 3 · 9 = 27, like the
degree of C . So IC = (f , g) is a complete intersection.
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Line arrangements in P3

As I pointed out, the diameter of the previous graph G (C ) is 2.

In
fact, I do not know any example of aCM line arrangements C ⊆ P3

such that diam(G (C )) > 2.

If I ⊆ S = K [x0, . . . , xn] is a height 2 monomial ideal, it is easy to
show that, if S/I is Cohen-Macaulay, then diam(G (X )) ≤ 2. So if
C ⊆ P3 is obtained by taking n − 3 hyperplane sections of such an
X we have diam(G (C )) ≤ 2.

We know many aCM line arrangements in P3 not arising like this
(e.g. the previous 27 lines), but still their dual graph has diameter
≤ 2 (many experiments by Michela Di Marca).

Question

Is diam(G (C )) ≤ 2 for any aCM line arrangement C ⊆ P3?
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Hirsch embeddings

We say that a projective scheme X ⊆ Pn is Hirsch if

diam(G (X )) ≤ codimPn X .

The previous question, thus, can be rephrased as:

Question

Is any aCM line arrangement C ⊆ P3 Hirsch?

Be careful:

There exist nonreduced complete intersections C ⊆ P3 such
that Cred ⊆ P3 is a line arrangement and diam(G (C )) is
arbitrarily large.

For large n, there are arithmetically Gorenstein line
arrangements that are not Hirsch (Santos).
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Hirsch embeddings

Many projective embeddings, however, are Hirsch:

Adiprasito–Benedetti 2014

If X ⊆ Pn is aCM and IX is a monomial ideal generated by
quadrics, then X ⊆ Pn is Hirsch.

Benedetti–V. 2014

If X is an arrangement of lines, no 3 of which meet in the same
point, canonically embedded in Pn, then X ⊆ Pn is Hirsch.

Conjecture: Benedetti–V. 2014

If X ⊆ Pn is a (reduced) aCM scheme and IX is generated by
quadrics, then X ⊆ Pn is Hirsch.
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Sketch of the proof of Theorem B

By taking generic hyperplane sections, we can reduce ourselves to
consider dimX = 1.

Caviglia 2007

If I = ∩si=1qi is a primary decomposition of a homogeneous ideal
I ⊆ S = K [x0, . . . , xn] and Proj(S/I ) has dimension 1, then:

reg(I ) ≤
s∑

i=1

reg(qi ).

Let IX = ∩si=1qi be the primary decomposition of IX , choose
A ⊆ {1, . . . , s} of cardinality less than b(r + δ − 1)/δc and let
B = {1, . . . , s} \ A. Let IA = ∩i∈Aqi , IB = ∩i∈Bqi and

XA = Proj(S/IA) XB = Proj(S/IB).
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1 XA and XB are geometrically linked by X which is
aGorenstein; so by a result of Hartshorne and Schenzel, we
have a graded isomorphism

H1
m(S/IB) ∼= H1

m(S/IA)∨(2− r).

2 By Caviglia’s result, reg(IA) ≤ |A|δ ≤ r − 1.

3 So reg(S/IA) ≤ r − 2, which implies that H1
m(S/IA)r−2 = 0.

4 So H1
m(S/IB)0 = H1

m(S/IA)r−2 = 0, that is H0(XB ,OXB
) ∼= K,

which implies that XB is a connected curve.

5 But then the dual graph of XB , which is the same as the dual
graph of X with the vertices of A removed, is connected.
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An ’Eisenbud-Goto style’ question

Eisenbud-Goto conjecture (1984)

Let X ⊆ Pn be a nondegenerate reduced projective scheme with
connected dual graph. Then

reg(X ) ≤ deg(X )− codimPnX + 1.

The conjecture is known to be true in its full generality in
dimension 1 by Gruson-Lazarsfeld-Peskine and Giaimo; in
dimension 2, it is true for smooth surfaces by Lazarsfeld; for
smooth threefolds and fourfolds, it is ’almost’ true by Kwak. By
the subadditivity result of Caviglia, the EG for curves yields:

Theorem

Let X ⊆ Pn be an equidimensional reduced projective curve. Then

reg(X ) ≤ deg(X )
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An ’Eisenbud-Goto style’ question

Question

Let X ⊆ Pn be an equidimensional reduced projective scheme. Is it
true that:

reg(X ) ≤ deg(X ) ?

If dimX = 2, the subadditivity result of Caviglia is not true.
However, it is still true that, if X1 and X2 are projective schemes
intersecting in dimension 0, then reg X1 ∩ X2 ≤ reg X1 + reg X2.

This implies that the question above would admit a positive answer
in dimension 2 if the EG conjecture was true in dimension 2 in its
full generality (not only for irreducible surfaces).
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