Dual graphs of projective schemes

Matteo Varbaro (University of Genova)

August 26th, Haeundae, Busan, KOREA

Motivations

Let $X \subseteq \mathbb{P}^{n}$ be a projective scheme over $K=\bar{K}$.

Let $X \subseteq \mathbb{P}^{n}$ be a projective scheme over $K=\bar{K}$.
The main motivation for this talk comes from the desire of understanding how global properties of $X \subseteq \mathbb{P}^{n}$ influence the combinatorial configuration of its irreducible components.

Let $X \subseteq \mathbb{P}^{n}$ be a projective scheme over $K=\bar{K}$.
The main motivation for this talk comes from the desire of understanding how global properties of $X \subseteq \mathbb{P}^{n}$ influence the combinatorial configuration of its irreducible components.

One way to make precise the concept of "combinatorial configuration of its irreducible components" is by meaning of the dual graph of X....

Given $X \subseteq \mathbb{P}^{n}$, if X_{1}, \ldots, X_{s} are its irreducible components, we form the dual graph $G(X)$ as follows:

Given $X \subseteq \mathbb{P}^{n}$, if X_{1}, \ldots, X_{s} are its irreducible components, we form the dual graph $G(X)$ as follows:

- The vertex set of $G(X)$ is $\{1, \ldots, s\}$.

Given $X \subseteq \mathbb{P}^{n}$, if X_{1}, \ldots, X_{s} are its irreducible components, we form the dual graph $G(X)$ as follows:

- The vertex set of $G(X)$ is $\{1, \ldots, s\}$.
- Two vertices $i \neq j$ are connected by an edge if and only if:

$$
\operatorname{dim}\left(X_{i} \cap X_{j}\right)=\operatorname{dim}(X)-1
$$

Given $X \subseteq \mathbb{P}^{n}$, if X_{1}, \ldots, X_{s} are its irreducible components, we form the dual graph $G(X)$ as follows:

- The vertex set of $G(X)$ is $\{1, \ldots, s\}$.
- Two vertices $i \neq j$ are connected by an edge if and only if:

$$
\operatorname{dim}\left(X_{i} \cap X_{j}\right)=\operatorname{dim}(X)-1
$$

From now on we will consider only equidimensional schemes.

Definition of dual graph

Given $X \subseteq \mathbb{P}^{n}$, if X_{1}, \ldots, X_{s} are its irreducible components, we form the dual graph $G(X)$ as follows:

- The vertex set of $G(X)$ is $\{1, \ldots, s\}$.
- Two vertices $i \neq j$ are connected by an edge if and only if:

$$
\operatorname{dim}\left(X_{i} \cap X_{j}\right)=\operatorname{dim}(X)-1
$$

From now on we will consider only equidimensional schemes.
NOTE: If X is a projective curve, then $\{i, j\}$ is an edge if and only if $X_{i} \cap X_{j} \neq \emptyset$ (the empty set has dimension -1).

Definition of dual graph

Given $X \subseteq \mathbb{P}^{n}$, if X_{1}, \ldots, X_{s} are its irreducible components, we form the dual graph $G(X)$ as follows:

- The vertex set of $G(X)$ is $\{1, \ldots, s\}$.
- Two vertices $i \neq j$ are connected by an edge if and only if:

$$
\operatorname{dim}\left(X_{i} \cap X_{j}\right)=\operatorname{dim}(X)-1
$$

From now on we will consider only equidimensional schemes.
NOTE: If X is a projective curve, then $\{i, j\}$ is an edge if and only if $X_{i} \cap X_{j} \neq \emptyset$ (the empty set has dimension -1). If $\operatorname{dim}(X)>1$, by intersecting $X \subseteq \mathbb{P}^{n}$ with a generic hyperplane, we get a projective scheme in \mathbb{P}^{n-1} of dimension one less, and same dual graph!

Definition of dual graph

Given $X \subseteq \mathbb{P}^{n}$, if X_{1}, \ldots, X_{s} are its irreducible components, we form the dual graph $G(X)$ as follows:

- The vertex set of $G(X)$ is $\{1, \ldots, s\}$.
- Two vertices $i \neq j$ are connected by an edge if and only if:

$$
\operatorname{dim}\left(X_{i} \cap X_{j}\right)=\operatorname{dim}(X)-1
$$

From now on we will consider only equidimensional schemes.
NOTE: If X is a projective curve, then $\{i, j\}$ is an edge if and only if $X_{i} \cap X_{j} \neq \emptyset$ (the empty set has dimension -1). If $\operatorname{dim}(X)>1$, by intersecting $X \subseteq \mathbb{P}^{n}$ with a generic hyperplane, we get a projective scheme in \mathbb{P}^{n-1} of dimension one less, and same dual graph! Iterating this trick we can often reduce questions to curves.

Given $X \subseteq \mathbb{P}^{n}$ and the unique saturated homogeneous ideal $I_{X} \subseteq S=K\left[x_{0}, \ldots, x_{n}\right]$ s.t. $X=\operatorname{Proj}\left(S / I_{X}\right)$, let us recall that $X \subseteq \mathbb{P}^{n}$ is arithmetically Cohen-Macaulay (resp. arithmetically Gorenstein) if S / I_{X} is Cohen-Macaulay (resp. Gorenstein).

Given $X \subseteq \mathbb{P}^{n}$ and the unique saturated homogeneous ideal $I_{X} \subseteq S=K\left[x_{0}, \ldots, x_{n}\right]$ s.t. $X=\operatorname{Proj}\left(S / I_{X}\right)$, let us recall that $X \subseteq \mathbb{P}^{n}$ is arithmetically Cohen-Macaulay (resp. arithmetically Gorenstein) if S / I_{X} is Cohen-Macaulay (resp. Gorenstein).

A classical result by Hartshorne is that aCM schemes are connected in codimension one:

Hartshorne's connectedness theorem

If $X \subseteq \mathbb{P}^{n}$ is aCM, then $G(X)$ is a connected graph.

Given $X \subseteq \mathbb{P}^{n}$ and the unique saturated homogeneous ideal $I_{X} \subseteq S=K\left[x_{0}, \ldots, x_{n}\right]$ s.t. $X=\operatorname{Proj}\left(S / I_{X}\right)$, let us recall that $X \subseteq \mathbb{P}^{n}$ is arithmetically Cohen-Macaulay (resp. arithmetically Gorenstein) if S / I_{X} is Cohen-Macaulay (resp. Gorenstein).

A classical result by Hartshorne is that aCM schemes are connected in codimension one:

Hartshorne's connectedness theorem

If $X \subseteq \mathbb{P}^{n}$ is aCM, then $G(X)$ is a connected graph.

On the other hand

From graphs to curves

From graphs to curves

Theorem A, Benedetti-Bolognese-V. 2015

For any connected graph G, there exists a reduced aCM curve $C \subseteq \mathbb{P}^{n}$ such that $G(C)=G$.

Theorem A, Benedetti-Bolognese-V. 2015

For any connected graph G, there exists a reduced aCM curve $C \subseteq \mathbb{P}^{n}$ such that $G(C)=G$. Furthermore, reg $(C)=\operatorname{reg}\left(I_{C}\right)=3$ and the irreducible components of C are rational normal curves no 3 of which meet at one point.

Theorem A, Benedetti-Bolognese-V. 2015

For any connected graph G, there exists a reduced aCM curve $C \subseteq \mathbb{P}^{n}$ such that $G(C)=G$. Furthermore, $\operatorname{reg}(C)=\operatorname{reg}\left(I_{C}\right)=3$ and the irreducible components of C are rational normal curves no 3 of which meet at one point.

Moreover:
Benedetti-Bolognese-V. 2015
For a connected graph G, the following are equivalent:

Theorem A, Benedetti-Bolognese-V. 2015

For any connected graph G, there exists a reduced aCM curve $C \subseteq \mathbb{P}^{n}$ such that $G(C)=G$. Furthermore, reg $(C)=\operatorname{reg}\left(I_{C}\right)=3$ and the irreducible components of C are rational normal curves no 3 of which meet at one point.

Moreover:

Benedetti-Bolognese-V. 2015

For a connected graph G, the following are equivalent:

- There is a curve $C \subseteq \mathbb{P}^{n}$ such that no 3 of its irreducible components meet at one point, $\operatorname{reg}(C)=2$, and $G(C)=G$.

Theorem A, Benedetti-Bolognese-V. 2015

For any connected graph G, there exists a reduced aCM curve $C \subseteq \mathbb{P}^{n}$ such that $G(C)=G$. Furthermore, reg $(C)=\operatorname{reg}\left(I_{C}\right)=3$ and the irreducible components of C are rational normal curves no 3 of which meet at one point.

Moreover:

Benedetti-Bolognese-V. 2015

For a connected graph G, the following are equivalent:

- There is a curve $C \subseteq \mathbb{P}^{n}$ such that no 3 of its irreducible components meet at one point, $\operatorname{reg}(C)=2$, and $G(C)=G$.
- G is a tree.

From graphs to curves

Notice that not any graph can be obtained as the dual graph of a line arrangement C, that is a union of lines $C=\bigcup_{i=1}^{s} L_{i}$.

Notice that not any graph can be obtained as the dual graph of a line arrangement C, that is a union of lines $C=\bigcup_{i=1}^{s} L_{i}$. For example, one can see that the graph G having:

- $\{1, \ldots, 6\}$ as vertices;
- $\{\{i, j\}: 1 \leq i<j \leq 6\} \backslash\{\{1,2\},\{3,4\}\}$ as edges

Notice that not any graph can be obtained as the dual graph of a line arrangement C, that is a union of lines $C=\bigcup_{i=1}^{s} L_{i}$. For example, one can see that the graph G having:

- $\{1, \ldots, 6\}$ as vertices;
- $\{\{i, j\}: 1 \leq i<j \leq 6\} \backslash\{\{1,2\},\{3,4\}\}$ as edges
is not the dual graph of any line arrangement.

Notice that not any graph can be obtained as the dual graph of a line arrangement C, that is a union of lines $C=\bigcup_{i=1}^{s} L_{i}$. For example, one can see that the graph G having:

- $\{1, \ldots, 6\}$ as vertices;
- $\{\{i, j\}: 1 \leq i<j \leq 6\} \backslash\{\{1,2\},\{3,4\}\}$ as edges
is not the dual graph of any line arrangement.
However, by taking 6 generic lines $L_{i} \subseteq \mathbb{P}^{2}$ and blowing up \mathbb{P}^{2} along the points $P_{1,2}=L_{1} \cap L_{2}$ and $P_{3,4}=L_{3} \cap L_{4}$,

Notice that not any graph can be obtained as the dual graph of a line arrangement C, that is a union of lines $C=\bigcup_{i=1}^{s} L_{i}$. For example, one can see that the graph G having:

- $\{1, \ldots, 6\}$ as vertices;
- $\{\{i, j\}: 1 \leq i<j \leq 6\} \backslash\{\{1,2\},\{3,4\}\}$ as edges
is not the dual graph of any line arrangement.
However, by taking 6 generic lines $L_{i} \subseteq \mathbb{P}^{2}$ and blowing up \mathbb{P}^{2} along the points $P_{1,2}=L_{1} \cap L_{2}$ and $P_{3,4}=L_{3} \cap L_{4}$, the strict transform of $\bigcup_{i=1}^{6} L_{i}$ will have G as dual graph!

Connectivity of graphs

The connectedness theorem of Hartshorne says that $G(X)$ is connected whenever $X \subseteq \mathbb{P}^{n}$ is aCM.

Connectivity of graphs

The connectedness theorem of Hartshorne says that $G(X)$ is connected whenever $X \subseteq \mathbb{P}^{n}$ is aCM. We would like to infer something more than connectedness by assuming that $X \subseteq \mathbb{P}^{n}$ is arithmetically Gorenstein (e.g. a complete intersection).

Connectivity of graphs

The connectedness theorem of Hartshorne says that $G(X)$ is connected whenever $X \subseteq \mathbb{P}^{n}$ is aCM. We would like to infer something more than connectedness by assuming that $X \subseteq \mathbb{P}^{n}$ is arithmetically Gorenstein (e.g. a complete intersection). To this purpose we need to quantify the connectedness of a graph.

Connectivity of graphs

The connectedness theorem of Hartshorne says that $G(X)$ is connected whenever $X \subseteq \mathbb{P}^{n}$ is aCM. We would like to infer something more than connectedness by assuming that $X \subseteq \mathbb{P}^{n}$ is arithmetically Gorenstein (e.g. a complete intersection). To this purpose we need to quantify the connectedness of a graph.

A graph is d-connected if it has $>d$ vertices, and the deletion of $<d$ vertices, however chosen, leaves it connected.

Connectivity of graphs

The connectedness theorem of Hartshorne says that $G(X)$ is connected whenever $X \subseteq \mathbb{P}^{n}$ is aCM. We would like to infer something more than connectedness by assuming that $X \subseteq \mathbb{P}^{n}$ is arithmetically Gorenstein (e.g. a complete intersection). To this purpose we need to quantify the connectedness of a graph.

A graph is d-connected if it has $>d$ vertices, and the deletion of $<d$ vertices, however chosen, leaves it connected.

Menger theorem (Max-flow-min-cut).

A graph is d-connected iff between any 2 vertices one can find d vertex-disjoint paths.

From schemes to graphs

Theorem B, Benedetti-Bolognese-V. 2015

Let $X \subseteq \mathbb{P}^{n}$ be an arithmetically Gorenstein projective scheme such that $\operatorname{reg}(X)=\operatorname{reg}\left(I_{X}\right)=r+1$. If $\operatorname{reg}(\mathfrak{q}) \leq \delta$ for all primary components \mathfrak{q} of I_{X}, then $G(X)$ is $\lfloor(r+\delta-1) / \delta\rfloor$-connected.

Theorem B, Benedetti-Bolognese-V. 2015

Let $X \subseteq \mathbb{P}^{n}$ be an arithmetically Gorenstein projective scheme such that $\operatorname{reg}(X)=\operatorname{reg}\left(I_{X}\right)=r+1$. If $\operatorname{reg}(\mathfrak{q}) \leq \delta$ for all primary components \mathfrak{q} of I_{X}, then $G(X)$ is $\lfloor(r+\delta-1) / \delta\rfloor$-connected.

When δ can be chosen to be 1 , i.e. when X is a (reduced) union of linear spaces (a subspace arrangement), we recover the following:

From schemes to graphs

Theorem B, Benedetti-Bolognese-V. 2015

Let $X \subseteq \mathbb{P}^{n}$ be an arithmetically Gorenstein projective scheme such that $\operatorname{reg}(X)=\operatorname{reg}\left(I_{X}\right)=r+1$. If $\operatorname{reg}(\mathfrak{q}) \leq \delta$ for all primary components \mathfrak{q} of I_{X}, then $G(X)$ is $\lfloor(r+\delta-1) / \delta\rfloor$-connected.

When δ can be chosen to be 1 , i.e. when X is a (reduced) union of linear spaces (a subspace arrangement), we recover the following:

Benedetti-V. 2014

Let $X \subseteq \mathbb{P}^{n}$ be an arithmetically Gorenstein subspace arrangement such that $\operatorname{reg}(X)=\operatorname{reg}\left(I_{X}\right)=r+1$. Then $G(X)$ is r-connected.

Example: 27 lines

As we know, on a smooth cubic $X \subseteq \mathbb{P}^{3}$ there are exactly 27 lines, which can be read from the fact that X is the blow-up of \mathbb{P}^{2} along 6 generic points.

Example: 27 lines

As we know, on a smooth cubic $X \subseteq \mathbb{P}^{3}$ there are exactly 27 lines, which can be read from the fact that X is the blow-up of \mathbb{P}^{2} along 6 generic points. Let $C \subseteq \mathbb{P}^{3}$ be the union of such 27 lines, and let us try to understand how $G(C)$ looks like.

Example: 27 lines

As we know, on a smooth cubic $X \subseteq \mathbb{P}^{3}$ there are exactly 27 lines, which can be read from the fact that X is the blow-up of \mathbb{P}^{2} along 6 generic points. Let $C \subseteq \mathbb{P}^{3}$ be the union of such 27 lines, and let us try to understand how $G(C)$ looks like.

The important things to know are that:

Example: 27 lines

As we know, on a smooth cubic $X \subseteq \mathbb{P}^{3}$ there are exactly 27 lines, which can be read from the fact that X is the blow-up of \mathbb{P}^{2} along 6 generic points. Let $C \subseteq \mathbb{P}^{3}$ be the union of such 27 lines, and let us try to understand how $G(C)$ looks like.

The important things to know are that:
(1) $G(C)$ is 10 -connected.

Example: 27 lines

As we know, on a smooth cubic $X \subseteq \mathbb{P}^{3}$ there are exactly 27 lines, which can be read from the fact that X is the blow-up of \mathbb{P}^{2} along 6 generic points. Let $C \subseteq \mathbb{P}^{3}$ be the union of such 27 lines, and let us try to understand how $G(C)$ looks like.

The important things to know are that:
(1) $G(C)$ is 10 -connected.
(2) The diameter of $G(C)$ is 2 .

As we know, on a smooth cubic $X \subseteq \mathbb{P}^{3}$ there are exactly 27 lines, which can be read from the fact that X is the blow-up of \mathbb{P}^{2} along 6 generic points. Let $C \subseteq \mathbb{P}^{3}$ be the union of such 27 lines, and let us try to understand how $G(C)$ looks like.

The important things to know are that:
(1) $G(C)$ is 10 -connected.
(2) The diameter of $G(C)$ is 2 .
(3) There is a partition V_{1}, \ldots, V_{9} of the nodes of $G(C)$ such that the induced subgraph of $G(C)$ on each V_{i} is a triangle.

Example: 27 lines

Thanks to the third point of the previous slide, the 3 lines corresponding to the 3 nodes of each V_{i} are coplanar, let us call H_{i} the plane defined by the equation ℓ_{i} they determine.

Example: 27 lines

Thanks to the third point of the previous slide, the 3 lines corresponding to the 3 nodes of each V_{i} are coplanar, let us call H_{i} the plane defined by the equation ℓ_{i} they determine. So

$$
C \subseteq\left(\bigcup_{i=1}^{9} H_{i}\right) \bigcap X \quad \text { and } \quad(f, g) \subseteq I_{C},
$$

where f is the cubic polynomial defining X and $g=\prod_{i=1}^{9} \ell_{i}$.

Thanks to the third point of the previous slide, the 3 lines corresponding to the 3 nodes of each V_{i} are coplanar, let us call H_{i} the plane defined by the equation ℓ_{i} they determine. So

$$
C \subseteq\left(\bigcup_{i=1}^{9} H_{i}\right) \bigcap X \quad \text { and } \quad(f, g) \subseteq I_{C},
$$

where f is the cubic polynomial defining X and $g=\prod_{i=1}^{9} \ell_{i}$.
But the degree of $K\left[x_{0}, x_{1}, x_{2}, x_{3}\right] /(f, g)$ is $3 \cdot 9=27$, like the degree of C.

Thanks to the third point of the previous slide, the 3 lines corresponding to the 3 nodes of each V_{i} are coplanar, let us call H_{i} the plane defined by the equation ℓ_{i} they determine. So

$$
C \subseteq\left(\bigcup_{i=1}^{9} H_{i}\right) \bigcap X \quad \text { and } \quad(f, g) \subseteq I_{C}
$$

where f is the cubic polynomial defining X and $g=\prod_{i=1}^{9} \ell_{i}$.
But the degree of $K\left[x_{0}, x_{1}, x_{2}, x_{3}\right] /(f, g)$ is $3 \cdot 9=27$, like the degree of C. So $I_{C}=(f, g)$ is a complete intersection.

Thanks to the third point of the previous slide, the 3 lines corresponding to the 3 nodes of each V_{i} are coplanar, let us call H_{i} the plane defined by the equation ℓ_{i} they determine. So

$$
C \subseteq\left(\bigcup_{i=1}^{9} H_{i}\right) \bigcap X \quad \text { and } \quad(f, g) \subseteq I_{C}
$$

where f is the cubic polynomial defining X and $g=\prod_{i=1}^{9} \ell_{i}$.
But the degree of $K\left[x_{0}, x_{1}, x_{2}, x_{3}\right] /(f, g)$ is $3 \cdot 9=27$, like the degree of C. So $I_{C}=(f, g)$ is a complete intersection.
In particular $C \subseteq \mathbb{P}^{3}$ is an an arithmetically Gorenstein subspace arrangement of regularity $\operatorname{deg}(f)+\operatorname{deg}(g)-1=3+9-1=\mathbf{1 1}$.

Thanks to the third point of the previous slide, the 3 lines corresponding to the 3 nodes of each V_{i} are coplanar, let us call H_{i} the plane defined by the equation ℓ_{i} they determine. So

$$
C \subseteq\left(\bigcup_{i=1}^{9} H_{i}\right) \bigcap X \quad \text { and } \quad(f, g) \subseteq I_{C}
$$

where f is the cubic polynomial defining X and $g=\prod_{i=1}^{9} \ell_{i}$.
But the degree of $K\left[x_{0}, x_{1}, x_{2}, x_{3}\right] /(f, g)$ is $3 \cdot 9=27$, like the degree of C. So $I_{C}=(f, g)$ is a complete intersection.

In particular $C \subseteq \mathbb{P}^{3}$ is an an arithmetically Gorenstein subspace arrangement of regularity $\operatorname{deg}(f)+\operatorname{deg}(g)-1=3+9-1=\mathbf{1 1}$. Thus our result confirms that $G(C)$ is $\mathbf{1 0}$-connected.

Line arrangements in \mathbb{P}^{3}

As I pointed out, the diameter of the previous graph $G(C)$ is 2 .

Line arrangements in \mathbb{P}^{3}

As I pointed out, the diameter of the previous graph $G(C)$ is 2 . In fact, I do not know any example of aCM line arrangements $C \subseteq \mathbb{P}^{3}$ such that $\operatorname{diam}(G(C))>2$.

Line arrangements in \mathbb{P}^{3}

As I pointed out, the diameter of the previous graph $G(C)$ is 2 . In fact, I do not know any example of aCM line arrangements $C \subseteq \mathbb{P}^{3}$ such that $\operatorname{diam}(G(C))>2$.

If $I \subseteq S=K\left[x_{0}, \ldots, x_{n}\right]$ is a height 2 monomial ideal, it is easy to show that, if S / I is Cohen-Macaulay, then $\operatorname{diam}(G(X)) \leq 2$.

Line arrangements in \mathbb{P}^{3}

As I pointed out, the diameter of the previous graph $G(C)$ is 2 . In fact, I do not know any example of aCM line arrangements $C \subseteq \mathbb{P}^{3}$ such that $\operatorname{diam}(G(C))>2$.

If $I \subseteq S=K\left[x_{0}, \ldots, x_{n}\right]$ is a height 2 monomial ideal, it is easy to show that, if S / I is Cohen-Macaulay, then $\operatorname{diam}(G(X)) \leq 2$. So if $C \subseteq \mathbb{P}^{3}$ is obtained by taking $n-3$ hyperplane sections of such an X we have $\operatorname{diam}(G(C)) \leq 2$.

Line arrangements in \mathbb{P}^{3}

As I pointed out, the diameter of the previous graph $G(C)$ is 2 . In fact, I do not know any example of aCM line arrangements $C \subseteq \mathbb{P}^{3}$ such that $\operatorname{diam}(G(C))>2$.

If $I \subseteq S=K\left[x_{0}, \ldots, x_{n}\right]$ is a height 2 monomial ideal, it is easy to show that, if S / I is Cohen-Macaulay, then $\operatorname{diam}(G(X)) \leq 2$. So if $C \subseteq \mathbb{P}^{3}$ is obtained by taking $n-3$ hyperplane sections of such an X we have $\operatorname{diam}(G(C)) \leq 2$.
We know many aCM line arrangements in \mathbb{P}^{3} not arising like this (e.g. the previous 27 lines), but still their dual graph has diameter ≤ 2 (many experiments by Michela Di Marca).

Line arrangements in \mathbb{P}^{3}

As I pointed out, the diameter of the previous graph $G(C)$ is 2 . In fact, I do not know any example of aCM line arrangements $C \subseteq \mathbb{P}^{3}$ such that $\operatorname{diam}(G(C))>2$.

If $I \subseteq S=K\left[x_{0}, \ldots, x_{n}\right]$ is a height 2 monomial ideal, it is easy to show that, if S / I is Cohen-Macaulay, then $\operatorname{diam}(G(X)) \leq 2$. So if $C \subseteq \mathbb{P}^{3}$ is obtained by taking $n-3$ hyperplane sections of such an X we have $\operatorname{diam}(G(C)) \leq 2$.
We know many aCM line arrangements in \mathbb{P}^{3} not arising like this (e.g. the previous 27 lines), but still their dual graph has diameter ≤ 2 (many experiments by Michela Di Marca).

Question

Is $\operatorname{diam}(G(C)) \leq 2$ for any aCM line arrangement $C \subseteq \mathbb{P}^{3}$?

Hirsch embeddings

We say that a projective scheme $X \subseteq \mathbb{P}^{n}$ is Hirsch if

$$
\operatorname{diam}(G(X)) \leq \operatorname{codim}_{\mathbb{P}^{n}} X
$$

Hirsch embeddings

We say that a projective scheme $X \subseteq \mathbb{P}^{n}$ is Hirsch if

$$
\operatorname{diam}(G(X)) \leq \operatorname{codim}_{\mathbb{P}^{n}} X
$$

The previous question, thus, can be rephrased as:

Question

Is any aCM line arrangement $C \subseteq \mathbb{P}^{3}$ Hirsch?

Hirsch embeddings

We say that a projective scheme $X \subseteq \mathbb{P}^{n}$ is Hirsch if

$$
\operatorname{diam}(G(X)) \leq \operatorname{codim}_{\mathbb{P}^{n}} X
$$

The previous question, thus, can be rephrased as:

Question

Is any aCM line arrangement $C \subseteq \mathbb{P}^{3}$ Hirsch?
Be careful:

- There exist nonreduced complete intersections $C \subseteq \mathbb{P}^{3}$ such that $C_{\text {red }} \subseteq \mathbb{P}^{3}$ is a line arrangement and $\operatorname{diam}(G(C))$ is arbitrarily large.
- For large n, there are arithmetically Gorenstein line arrangements that are not Hirsch (Santos).

Hirsch embeddings

Many projective embeddings, however, are Hirsch:

Adiprasito-Benedetti 2014

If $X \subseteq \mathbb{P}^{n}$ is aCM and I_{X} is a monomial ideal generated by quadrics, then $X \subseteq \mathbb{P}^{n}$ is Hirsch.

Hirsch embeddings

Many projective embeddings, however, are Hirsch:

Adiprasito-Benedetti 2014

If $X \subseteq \mathbb{P}^{n}$ is aCM and I_{X} is a monomial ideal generated by quadrics, then $X \subseteq \mathbb{P}^{n}$ is Hirsch.

Benedetti-V. 2014

If X is an arrangement of lines, no 3 of which meet in the same point, canonically embedded in \mathbb{P}^{n}, then $X \subseteq \mathbb{P}^{n}$ is Hirsch.

Hirsch embeddings

Many projective embeddings, however, are Hirsch:

Adiprasito-Benedetti 2014

If $X \subseteq \mathbb{P}^{n}$ is aCM and I_{X} is a monomial ideal generated by quadrics, then $X \subseteq \mathbb{P}^{n}$ is Hirsch.

Benedetti-V. 2014

If X is an arrangement of lines, no 3 of which meet in the same point, canonically embedded in \mathbb{P}^{n}, then $X \subseteq \mathbb{P}^{n}$ is Hirsch.

Conjecture: Benedetti-V. 2014
If $X \subseteq \mathbb{P}^{n}$ is a (reduced) aCM scheme and I_{X} is generated by quadrics, then $X \subseteq \mathbb{P}^{n}$ is Hirsch.

Sketch of the proof of Theorem B

By taking generic hyperplane sections, we can reduce ourselves to consider $\operatorname{dim} X=1$.

By taking generic hyperplane sections, we can reduce ourselves to consider $\operatorname{dim} X=1$.

Caviglia 2007

If $I=\cap_{i=1}^{S} \mathfrak{q}_{i}$ is a primary decomposition of a homogeneous ideal $I \subseteq S=K\left[x_{0}, \ldots, x_{n}\right]$ and $\operatorname{Proj}(S / I)$ has dimension 1, then:

$$
\operatorname{reg}(I) \leq \sum_{i=1}^{s} \operatorname{reg}\left(\mathfrak{q}_{i}\right)
$$

By taking generic hyperplane sections, we can reduce ourselves to consider $\operatorname{dim} X=1$.

Caviglia 2007

If $I=\cap_{i=1}^{S} \mathfrak{q}_{i}$ is a primary decomposition of a homogeneous ideal
$I \subseteq S=K\left[x_{0}, \ldots, x_{n}\right]$ and $\operatorname{Proj}(S / I)$ has dimension 1, then:

$$
\operatorname{reg}(I) \leq \sum_{i=1}^{s} \operatorname{reg}\left(\mathfrak{q}_{i}\right)
$$

Let $I_{X}=\cap_{i=1}^{s} \mathfrak{q}_{i}$ be the primary decomposition of I_{X}, choose $A \subseteq\{1, \ldots, s\}$ of cardinality less than $\lfloor(r+\delta-1) / \delta\rfloor$ and let $B=\{1, \ldots, s\} \backslash A$.

Sketch of the proof of Theorem B

By taking generic hyperplane sections, we can reduce ourselves to consider $\operatorname{dim} X=1$.

Caviglia 2007

If $I=\cap_{i=1}^{S} \mathfrak{q}_{i}$ is a primary decomposition of a homogeneous ideal
$I \subseteq S=K\left[x_{0}, \ldots, x_{n}\right]$ and $\operatorname{Proj}(S / I)$ has dimension 1, then:

$$
\operatorname{reg}(I) \leq \sum_{i=1}^{s} \operatorname{reg}\left(\mathfrak{q}_{i}\right)
$$

Let $I_{X}=\cap_{i=1}^{s} \mathfrak{q}_{i}$ be the primary decomposition of I_{X}, choose $A \subseteq\{1, \ldots, s\}$ of cardinality less than $\lfloor(r+\delta-1) / \delta\rfloor$ and let $B=\{1, \ldots, s\} \backslash A$. Let $I_{A}=\cap_{i \in A} \mathfrak{q}_{i}, I_{B}=\cap_{i \in B} \mathfrak{q}_{i}$ and

$$
X_{A}=\operatorname{Proj}\left(S / I_{A}\right) \quad X_{B}=\operatorname{Proj}\left(S / I_{B}\right)
$$

(1) X_{A} and X_{B} are geometrically linked by X which is aGorenstein; so by a result of Hartshorne and Schenzel, we have a graded isomorphism

$$
H_{\mathfrak{m}}^{1}\left(S / I_{B}\right) \cong H_{\mathfrak{m}}^{1}\left(S / I_{A}\right)^{\vee}(2-r)
$$

(1) X_{A} and X_{B} are geometrically linked by X which is aGorenstein; so by a result of Hartshorne and Schenzel, we have a graded isomorphism

$$
H_{\mathfrak{m}}^{1}\left(S / I_{B}\right) \cong H_{\mathfrak{m}}^{1}\left(S / I_{A}\right)^{\vee}(2-r)
$$

(2) By Caviglia's result, $\operatorname{reg}\left(I_{A}\right) \leq|A| \delta \leq r-1$.
(1) X_{A} and X_{B} are geometrically linked by X which is aGorenstein; so by a result of Hartshorne and Schenzel, we have a graded isomorphism

$$
H_{\mathfrak{m}}^{1}\left(S / I_{B}\right) \cong H_{\mathfrak{m}}^{1}\left(S / I_{A}\right)^{\vee}(2-r)
$$

(2) By Caviglia's result, $\operatorname{reg}\left(I_{A}\right) \leq|A| \delta \leq r-1$.
(3) So $\operatorname{reg}\left(S / I_{A}\right) \leq r-2$, which implies that $H_{\mathfrak{m}}^{1}\left(S / I_{A}\right)_{r-2}=0$.
(1) X_{A} and X_{B} are geometrically linked by X which is aGorenstein; so by a result of Hartshorne and Schenzel, we have a graded isomorphism

$$
H_{\mathfrak{m}}^{1}\left(S / I_{B}\right) \cong H_{\mathfrak{m}}^{1}\left(S / I_{A}\right)^{\vee}(2-r)
$$

(2) By Caviglia's result, $\operatorname{reg}\left(I_{A}\right) \leq|A| \delta \leq r-1$.
(3) So $\operatorname{reg}\left(S / I_{A}\right) \leq r-2$, which implies that $H_{\mathfrak{m}}^{1}\left(S / I_{A}\right)_{r-2}=0$.
(9) So $H_{\mathfrak{m}}^{1}\left(S / I_{B}\right)_{0}=H_{\mathfrak{m}}^{1}\left(S / I_{A}\right)_{r-2}=0$, that is $H^{0}\left(X_{B}, \mathcal{O}_{X_{B}}\right) \cong \mathbb{K}$, which implies that X_{B} is a connected curve.
(1) X_{A} and X_{B} are geometrically linked by X which is aGorenstein; so by a result of Hartshorne and Schenzel, we have a graded isomorphism

$$
H_{\mathfrak{m}}^{1}\left(S / I_{B}\right) \cong H_{\mathfrak{m}}^{1}\left(S / I_{A}\right)^{\vee}(2-r)
$$

(2) By Caviglia's result, $\operatorname{reg}\left(I_{A}\right) \leq|A| \delta \leq r-1$.
(3) So $\operatorname{reg}\left(S / I_{A}\right) \leq r-2$, which implies that $H_{\mathfrak{m}}^{1}\left(S / I_{A}\right)_{r-2}=0$.
(9) So $H_{\mathfrak{m}}^{1}\left(S / I_{B}\right)_{0}=H_{\mathfrak{m}}^{1}\left(S / I_{A}\right)_{r-2}=0$, that is $H^{0}\left(X_{B}, \mathcal{O}_{X_{B}}\right) \cong \mathbb{K}$, which implies that X_{B} is a connected curve.
(5) But then the dual graph of X_{B}, which is the same as the dual graph of X with the vertices of A removed, is connected.

An 'Eisenbud-Goto style' question

Eisenbud-Goto conjecture (1984)
Let $X \subseteq \mathbb{P}^{n}$ be a nondegenerate reduced projective scheme with connected dual graph. Then

$$
\operatorname{reg}(X) \leq \operatorname{deg}(X)-\operatorname{codim}_{\mathbb{P}^{n}} X+1
$$

An 'Eisenbud-Goto style' question

Eisenbud-Goto conjecture (1984)

Let $X \subseteq \mathbb{P}^{n}$ be a nondegenerate reduced projective scheme with connected dual graph. Then

$$
\operatorname{reg}(X) \leq \operatorname{deg}(X)-\operatorname{codim}_{\mathbb{P}^{n}} X+1
$$

The conjecture is known to be true in its full generality in dimension 1 by Gruson-Lazarsfeld-Peskine and Giaimo; in dimension 2, it is true for smooth surfaces by Lazarsfeld; for smooth threefolds and fourfolds, it is 'almost' true by Kwak.

An 'Eisenbud-Goto style' question

Eisenbud-Goto conjecture (1984)

Let $X \subseteq \mathbb{P}^{n}$ be a nondegenerate reduced projective scheme with connected dual graph. Then

$$
\operatorname{reg}(X) \leq \operatorname{deg}(X)-\operatorname{codim}_{\mathbb{P}^{n}} X+1
$$

The conjecture is known to be true in its full generality in dimension 1 by Gruson-Lazarsfeld-Peskine and Giaimo; in dimension 2, it is true for smooth surfaces by Lazarsfeld; for smooth threefolds and fourfolds, it is 'almost' true by Kwak. By the subadditivity result of Caviglia, the EG for curves yields:

Theorem

Let $X \subseteq \mathbb{P}^{n}$ be an equidimensional reduced projective curve. Then

$$
\operatorname{reg}(X) \leq \operatorname{deg}(X)
$$

An 'Eisenbud-Goto style' question

Eisenbud-Goto conjecture (1984)

Let $X \subseteq \mathbb{P}^{n}$ be a nondegenerate reduced projective scheme with connected dual graph. Then

$$
\operatorname{reg}(X) \leq \operatorname{deg}(X)-\operatorname{codim}_{\mathbb{P}^{n}} X+1
$$

The conjecture is known to be true in its full generality in dimension 1 by Gruson-Lazarsfeld-Peskine and Giaimo; in dimension 2, it is true for smooth surfaces by Lazarsfeld; for smooth threefolds and fourfolds, it is 'almost' true by Kwak. By the subadditivity result of Caviglia, the EG for curves yields:

Theorem

Let $X \subseteq \mathbb{P}^{n}$ be an equidimensional reduced projective curve. Then

$$
\operatorname{reg}(X) \leq \operatorname{deg}(X)
$$

Question

Let $X \subseteq \mathbb{P}^{n}$ be an equidimensional reduced projective scheme. Is it true that:

$$
\operatorname{reg}(X) \leq \operatorname{deg}(X) \quad ?
$$

An 'Eisenbud-Goto style' question

Question

Let $X \subseteq \mathbb{P}^{n}$ be an equidimensional reduced projective scheme. Is it true that:

$$
\operatorname{reg}(X) \leq \operatorname{deg}(X) \quad ?
$$

If $\operatorname{dim} X=2$, the subadditivity result of Caviglia is not true.

An 'Eisenbud-Goto style' question

Question

Let $X \subseteq \mathbb{P}^{n}$ be an equidimensional reduced projective scheme. Is it true that:

$$
\operatorname{reg}(X) \leq \operatorname{deg}(X) \quad ?
$$

If $\operatorname{dim} X=2$, the subadditivity result of Caviglia is not true. However, it is still true that, if X_{1} and X_{2} are projective schemes intersecting in dimension 0 , then $\operatorname{reg} \mathbf{X}_{\mathbf{1}} \cap \mathbf{X}_{\mathbf{2}} \leq \operatorname{reg} \mathbf{X}_{\mathbf{1}}+\operatorname{reg} \mathbf{X}_{\mathbf{2}}$.

An 'Eisenbud-Goto style' question

Question

Let $X \subseteq \mathbb{P}^{n}$ be an equidimensional reduced projective scheme. Is it true that:

$$
\operatorname{reg}(X) \leq \operatorname{deg}(X) \quad ?
$$

If $\operatorname{dim} X=2$, the subadditivity result of Caviglia is not true. However, it is still true that, if X_{1} and X_{2} are projective schemes intersecting in dimension 0 , then reg $\mathbf{X}_{\mathbf{1}} \cap \mathbf{X}_{\mathbf{2}} \leq \operatorname{reg} \mathbf{X}_{\mathbf{1}}+\operatorname{reg} \mathbf{X}_{\mathbf{2}}$.

This implies that the question above would admit a positive answer in dimension 2 if the EG conjecture was true in dimension 2 in its full generality (not only for irreducible surfaces).

- K. Adiprasito, B. Benedetti, The Hirsch conjecture holds for normal flag complexes. Math. of Oper. Res. 39, 2014.
- B. Benedetti, M. Varbaro, On the dual graph of a Cohen-Macaulay algebra. To appear in IMRN, 2014.
- B. Benedetti, B. Bolognese, M. Varbaro, Regulating Hartshorne's connectedness theorem. Available at arXiv:1506.06277, 2015.
- G. Caviglia, Bounds on the Castelnuovo-Mumford regularity of tensor products, Proc. Amer. Math. Soc. 135, 2007.
- D. Eisenbud, S. Goto, Linear free resolutions and minimal multiplicity. J. Alg. 88, 1984.
- D. Giaimo, On the Castelnuovo-Mumford regularity of connected curves, Trans. Amer. Math. Soc. 358, 2006.
- L. Gruson, C. Peskine, R. Lazarsfeld, On a Theorem of Castelnuovo, and the Equations Defining Space Curves. Invent. Math. 72, 1983.
- R. Hartshorne, Complete intersections and connectedness. Amer. J. Math. 84, 1962.
- S. Kwak, Castelnuovo regularity for smooth subvarieties of dimension 3 and 4. J. Alg. Geom. 7, 1998.
- R. Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces. Duke Math. J. 55, 1987.
- F. Santos, A counterexample to the Hirsch conjecture. Ann. Math. 176, 2012.

