CANONICAL COHEN-MACAULAY PROPERTY AND LYUBEZNIK NUMBERS UNDER GRÖBNER DEFORMATIONS

PARVANEH NADI AND MATTEO VARBARO

Abstract

In this note we draw some interesting consequences of the recent results on squarefree Gröbner degenerations obtained by Conca and the second author.

1. Introduction

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ be a positively graded polynomial ring over a field K, where x_{i} is homogeneous of degree $g_{i} \in \mathbb{N}_{>0}$, and $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$ denotes its homogeneous maximal ideal. Also denote the canonical module of R by $\omega_{R}=$ $R(-|g|)$, where $|g|=g_{1}+\ldots+g_{n}$.

Definition 1.1. A graded finitely generated R-module M is called canonical CohenMacaulay (CCM for short) if $\operatorname{Ext}_{R}^{n-\operatorname{dim} M}\left(M, \omega_{R}\right)$ is Cohen-Macaulay.

This notion was introduced by Schenzel in [10], who proved in the same paper the following result that contributes to make it interesting: given a homogeneous prime ideal $I \subset R$, the ring R / I is CCM if and only if it admits a birational Macaulayfication (that is a birational extension $R / I \subset A \subset Q(R / I)$ such that A is a finitely generated Cohen-Macaulay R / I-module, where $Q(R / I)$ is the fraction field of $R / I)$. In this case, furthermore, A is the endomorphism ring of $\operatorname{Ext}_{R}^{n-\operatorname{dim} R / I}\left(R / I, \omega_{R}\right)$.

In this note, we will derive by the recent result obtained by Conca and the second author in [4] the following: if a homogeneous ideal $I \subset R$ has a radical initial ideal $\operatorname{in}_{\prec}(I)$ for some monomial order \prec, then R / I is CCM whenever $R / \mathrm{in}_{\prec}(I)$ is CCM. In fact we prove something more general, from which we can also infer that, in positive characteristic, under the same assumptions the Lyubeznik numbers of R / I are bounded above from those of $R / \operatorname{in}_{\prec}(I)$. As a consequence of the latter result, we can infer that, also in characteristic 0 by reduction to positive characteristic, if $\mathrm{in}_{\prec}(I)$ is a radical monomial ideal the following are equivalent:
(1) The dual graph (a.k.a. Hochster-Huneke graph) of R / I is connected.
(2) The dual graph of $R / \operatorname{in}_{\prec}(I)$ is connected.

Motivated by these results, in the last section we study the CCM property for Stanley-Reisner rings $K[\Delta]$. We show that $K[\Delta]$ is CCM whenever Δ is a simply connected 2-dimensional simplicial complex.

2. CCM, Lyubeznik numbers and Gröbner deformations

Throughout this section, let us fix a monomial order \prec on R. We start with the following crucial lemma:

Lemma 2.1. Let I be a homogeneous ideal of R such that $\mathrm{in}_{\prec}(I)$ is radical. Then, for all $i, j, k \in \mathbb{Z}$, we have:

$$
\operatorname{dim}_{K} \operatorname{Ext}_{R}^{i}\left(\operatorname{Ext}_{R}^{j}\left(R / I, \omega_{R}\right), \omega_{R}\right)_{k} \leq \operatorname{dim}_{K} \operatorname{Ext}_{R}^{i}\left(\operatorname{Ext}_{R}^{j}\left(R / \operatorname{in}_{\prec}(I), \omega_{R}\right), \omega_{R}\right)_{k}
$$

Proof. Let $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}^{n}$ be a weight such that $\operatorname{in}_{w}(I)=\mathrm{in}_{\prec}(I)$. Let t be a new indeterminate over R. Set $P=R[t]$ and $S=P / \operatorname{hom}_{w}(I)$. By providing P with the graded structure given by $\operatorname{deg}\left(x_{i}\right)=g_{i}$ and $\operatorname{deg}(t)=0, \operatorname{hom}_{w}(I)$ is homogeneous. If $x \in\{t, t-1\}$, apply the functor $\operatorname{Ext}_{P}^{i}\left(\operatorname{Ext}_{P}^{j}(S, P),-\right)$ to the short exact sequence

$$
0 \rightarrow P \xrightarrow{\cdot x} P \rightarrow P / x P \rightarrow 0
$$

getting the short exact sequences

$$
0 \rightarrow \operatorname{Coker} \mu_{x}^{i-1, j} \rightarrow \operatorname{Ext}_{P}^{i}\left(\operatorname{Ext}_{P}^{j}(S, P), P / x P\right) \rightarrow \operatorname{Ker} \mu_{x}^{i, j} \rightarrow 0 .
$$

where $\mu_{x}^{i, j}$ is the multiplication by x on $\operatorname{Ext}_{P}^{i}\left(\operatorname{Ext}_{P}^{j}(S, P), P\right)$. So, for all $k \in \mathbb{Z}$ we have exact sequences of K-vector spaces:

$$
0 \rightarrow\left[\operatorname{Coker} \mu_{x}^{i-1, j}\right]_{k} \rightarrow \operatorname{Ext}_{P}^{i}\left(\operatorname{Ext}_{P}^{j}(S, P), P / x P\right)_{k} \rightarrow\left[\operatorname{Ker} \mu_{x}^{i, j}\right]_{k} \rightarrow 0
$$

Since $E_{k}^{i, j}=\operatorname{Ext}_{P}^{i}\left(\operatorname{Ext}_{P}^{j}(S, P), P\right)_{k}$ is a finitely generated graded (w.r.t. the standard grading) $K[t]$-module, we can write $E_{k}^{i, j}=F_{k}^{i, j}+T_{k}^{i, j}$ where $F_{k}^{i, j}=K[t]_{k}^{f_{k}^{i, j}}$ and $T_{k}^{i, j}=\bigoplus_{r=1}^{g_{k}^{i, j}} K[t] /\left(t^{d_{r}}\right)$ with $d_{r} \geq 1$. Therefore we have:

$$
\operatorname{dim}_{K}\left[\operatorname{Coker} \mu_{t-1}^{i-1, j}\right]_{k}=f_{k}^{i-1, j} \leq f_{k}^{i-1, j}+g_{k}^{i-1, j}=\operatorname{dim}_{K}\left[\operatorname{Coker} \mu_{t}^{i-1, j}\right]_{k}
$$

and

$$
\operatorname{dim}_{K}\left[\operatorname{Ker} \mu_{t-1}^{i, j}\right]_{k}=0 \leq g_{k}^{i, j}=\operatorname{dim}_{K}\left[\operatorname{Ker} \mu_{t}^{i-1, j}\right]_{k}
$$

So $\operatorname{dim}_{K} \operatorname{Ext}_{P}^{i}\left(\operatorname{Ext}_{P}^{j}(S, P), P /(t-1) P\right)_{k} \leq \operatorname{dim}_{K} \operatorname{Ext}_{P}^{i}\left(\operatorname{Ext}_{P}^{j}(S, P), P / t P\right)_{k}$.
Note that, by using [3, Proposition 1.1.5] one can infer the following: if A is a ring, M and N are A-modules, and $a \in \operatorname{Ann}(N)$ is A-regular and M-regular, then

$$
\operatorname{Ext}_{A}^{i}(M, N) \cong \operatorname{Ext}_{A / a A}^{i}(M / a M, N) \quad \forall i \in \mathbb{N}
$$

Since by [4, Proposition 2.4] $\operatorname{Ext}_{P}^{j}(S, P)$ is a flat $K[t]$-module, the multiplication by x on it is injective: that is, x is $\operatorname{Ext}_{P}^{j}(S, P)$-regular. Therefore we have:

$$
\operatorname{Ext}_{P}^{i}\left(\operatorname{Ext}_{P}^{j}(S, P), P / x P\right) \cong \operatorname{Ext}_{P / x P}^{i}\left(\operatorname{Ext}_{P}^{j}(S, P) / x \operatorname{Ext}_{P}^{j}(S, P), P / x P\right)
$$

Again because the multiplication by x is injective on $\operatorname{Ext}_{P}^{j}(S, P)$ and by the property mentioned above, we have

$$
\operatorname{Ext}_{P}^{j}(S, P) / x \operatorname{Ext}_{P}^{j}(S, P) \cong \operatorname{Ext}_{P}^{j}(S, P / x P) \cong \operatorname{Ext}_{P / x P}^{j}(S / x S, P / x P)
$$

Putting all together we get:

$$
\begin{array}{r}
\operatorname{dim}_{K} \operatorname{Ext}_{P /(t-1) P}^{i}\left(\operatorname{Ext}_{P /(t-1) P}^{j}(S /(t-1) S, P /(t-1) P), P /(t-1) P\right)_{k} \leq \\
\operatorname{dim}_{K} \operatorname{Ext}_{P / t P}^{i}\left(\operatorname{Ext}_{P / t P}^{j}(S / t S, P / t P), P / t P\right)_{k},
\end{array}
$$

that, because $\omega_{R} \cong R(-|g|)$, is what we wanted:

$$
\operatorname{dim}_{K} \operatorname{Ext}_{R}^{i}\left(\operatorname{Ext}_{R}^{j}(R / I, R), R\right)_{k} \leq \operatorname{dim}_{K} \operatorname{Ext}_{R}^{i}\left(\operatorname{Ext}_{R}^{j}\left(R / \operatorname{in}_{\prec}(I), R\right), R\right)_{k}
$$

Corollary 2.2. Let I be a homogeneous ideal of R such that $\mathrm{in}_{\prec}(I)$ is radical. Then, R / I is canonical Cohen-Macaulay whenever $R / \mathrm{in}_{\prec}(I)$ is so.

Proof. For a homogeneous ideal $J \subset R, R / J$ is CCM if and only if

$$
\operatorname{Ext}_{R}^{n-i}\left(\operatorname{Ext}_{R}^{n-\operatorname{dim} R / J}\left(R / J, \omega_{R}\right), \omega_{R}\right)=0 \quad \forall i<\operatorname{dim} R / J
$$

so the result follows from Lemma 2.1.

Remark 2.3. Corollary 2.2 fails without assuming that $\mathrm{in}_{\prec}(I)$ is radical. In fact, if \prec is a degrevlex monomial order and I is in generic coordinates, by [8, Theorem 2.2] $R / \operatorname{in}_{\prec}(I)$ is sequentially Cohen-Macaulay, thus CCM (for example see [8, Theorem 1.4]). However, it is plenty of homogeneous ideals I such that R / I is not CCM.

We do not know whether the implication of Corollary 2.2 can be reversed. Without assuming that $\mathrm{in}_{\prec}(I)$ is radical, we already noticed that Corollary 2.2 fails in Remark 2.3. The following example shows that in general R / I CCM but $R / \mathrm{in}_{\prec}(I)$ not CCM can also happen:

Example 2.4. Let $R=K\left[x_{1}, \ldots, x_{9}\right]$ and

$$
I=\left(x_{1}^{3}+x_{2}^{3}, x_{5}^{2} x_{9}+x_{4}^{2} x_{8}, x_{5}^{3} x_{7}+x_{6}^{3} x_{9}, x_{7}^{2} x_{1}+x_{6}^{2} x_{5}, x_{3} x_{9}-x_{4} x_{8}\right)
$$

Since I is a complete intersection, R / I is CCM. However one can check that, if \prec is the lexicographic order extending $x_{1}>\ldots>x_{9}, R / \operatorname{in}_{\prec}(I)$ is not CCM.
2.1. Lyubeznik numbers and connectedness. Let $I \subset R=K\left[x_{1}, \ldots, x_{n}\right]$. In [9] Lyubeznik introduced the following invariants of $A=R / I$:

$$
\lambda_{i, j}(A)=\operatorname{dim}_{K} \operatorname{Ext}_{R}^{i}\left(K, H_{I}^{n-j}(R)\right) \quad \forall i, j \in \mathbb{N} .
$$

It turns out that these numbers, later named Lyubeznik numbers, depend only on A, i and j, in the sense that if $A \cong S / J$ where $J \subset S=K\left[y_{1}, \ldots, y_{m}\right]$,

$$
\lambda_{i, j}(A)=\operatorname{dim}_{K} \operatorname{Ext}_{S}^{i}\left(K, H_{J}^{m-j}(S)\right) \quad \forall i, j \in \mathbb{N} .
$$

Also, $\lambda_{i, j}(A)=0$ whenever $i>j$ or $j>\operatorname{dim} A$, and $\lambda_{d, d}(A)$ is the number of connected components of the dual graph (also known as the Hochster-Huneke graph) of $A \otimes_{K} \bar{K}$, [17]. (We recall that the dual graph of a Noetherian ring A of dimension d is the graph with the minimal primes of A as vertices and such that $\{\mathfrak{p}, \mathfrak{q}\}$ is an edge if and only if $\operatorname{dim} A /(\mathfrak{p}+\mathfrak{q})=d-1)$. We will refer to the upper triangular $\operatorname{matrix} \Lambda(A)=\left(\lambda_{i, j}(A)\right)$ of size $(\operatorname{dim} A+1) \times(\operatorname{dim} A+1)$ as the Lyubeznik table of A. By trivial Lyubeznik table we mean that $\lambda_{\operatorname{dim}} A, \operatorname{dim} A(A)=1$ and $\lambda_{i, j}(A)=0$ otherwise.

Corollary 2.5. Let I be a homogeneous ideal of R such that $\mathrm{in}_{\prec}(I)$ is radical. If K has positive characteristic,

$$
\lambda_{i, j}(R / I) \leq \lambda_{i, j}\left(R / \operatorname{in}_{\prec}(I)\right) \quad \forall i, j \in \mathbb{N}
$$

Proof. By [18, Theorem 1.2], if $J \subset R$ is a homogeneous ideal,

$$
\lambda_{i, j}(R / J)=\operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{n-i}\left(\operatorname{Ext}_{R}^{n-j}\left(R / J, \omega_{R}\right), \omega_{R}\right)_{0}\right)_{s},
$$

where the subscript $(-)_{s}$ stands for the stable part under the natural Frobenius action. In particular

$$
\lambda_{i, j}(R / J) \leq \operatorname{dim}_{K} \operatorname{Ext}_{R}^{n-i}\left(\operatorname{Ext}_{R}^{n-j}\left(R / J, \omega_{R}\right), \omega_{R}\right)_{0} .
$$

On the other hand, if $J \subset R$ is a radical monomial ideal, Yanagawa proved in [16, Corollary 3.10] (independently of the characteristic of K) that:

$$
\lambda_{i, j}(R / J)=\operatorname{dim}_{K} \operatorname{Ext}_{R}^{n-i}\left(\operatorname{Ext}_{R}^{n-j}\left(R / J, \omega_{R}\right), \omega_{R}\right)_{0}
$$

So the result follows from Lemma 2.1.
The following two examples show that Corolarry 2.5 is false without assuming both that $\operatorname{in}_{\prec}(I)$ is radical and that K has positive characteristic:

Example 2.6. [5, Example 4.11] Let $R=K\left[x_{1}, \ldots, x_{6}\right]$ and $\operatorname{char}(K)=5$. Let

$$
\begin{array}{r}
I=\left(x_{4}^{3}+x_{5}^{3}+x_{6}^{3}, x_{4}^{2} x_{1}+x_{5}^{2} x_{2}+x_{6}^{2} x_{3}, x_{1}^{2} x_{4}+x_{2}^{2} x_{5}+x_{3}^{2} x_{6},\right. \\
\left.x_{1}^{3}+x_{2}^{3}+x_{3}^{3}, x_{5} x_{3}-x_{6} x_{2}, x_{6} x_{1}-x_{4} x_{3}, x_{4} x_{2}-x_{5} x_{1}\right) .
\end{array}
$$

Then

$$
\Lambda(R / I)=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
& 0 & 0 & 0 \\
& & 0 & 1 \\
& & & 1
\end{array}\right]
$$

If \prec is the degree reverse lexicographic term order extending $x_{1}>\ldots>x_{6}$ one has:

$$
\operatorname{in}_{\prec}(I)=\left(x_{3} x_{5}, x_{3} x_{4}, x_{2} x_{4}, x_{4}^{3}, x_{1} x_{4}^{2}, x_{1}^{2} x_{4}, x_{1}^{3}\right)
$$

One can check that $R / \mathrm{in}_{\prec}(I)$ has a trivial Lyubeznik table.
Example 2.7. Let K be a field of characteristic 0 and $R=K\left[x_{1}, \ldots, x_{6}\right]$. Let $I=\left(x_{1} x_{5}-x_{2} x_{4}, x_{1} x_{6}-x_{3} x_{4}, x_{2} x_{6}-x_{3} x_{5}\right)$. By [1, Example 2.2], Lyubeznik table of R / I is

$$
\Lambda(R / I)=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
& 0 & 0 & 0 & 0 \\
& & 0 & 0 & 1 \\
& & & 0 & 0 \\
& & & & 1
\end{array}\right]
$$

If \prec is the degree reverse lexicographic term order extending $x_{1}>\ldots>x_{6}$ we have

$$
\operatorname{in}_{\prec}(I)=\left(x_{2} x_{4}, x_{3} x_{4}, x_{3} x_{5}\right) .
$$

So in $\prec_{\prec}(I)$ is a radical monomial ideal, however $\Lambda\left(R / \operatorname{in}_{\prec}(I)\right)$ is trivial.
In Corollary 2.5 we have an equality when R / I is generalized Cohen-Macaulay:
Corollary 2.8. Let I be a homogeneous ideal of R such that $\mathrm{in}_{\prec}(I)$ is radical. If K has positive characteristic and R / I is generalized Cohen-Macaulay,

$$
\lambda_{i, j}(R / I)=\lambda_{i, j}\left(R / \operatorname{in}_{\prec}(I)\right) \quad \forall i, j \in \mathbb{N}
$$

Proof. Since R / I is generalized Cohen-Macaulay so is $R / \mathrm{in}_{\prec}(I)$ by [4, Corollary 2.11]. Therefore it is enough to show that $\lambda_{0, j}(R / I)=\lambda_{0, j}\left(R / \mathrm{in}_{\prec}(I)\right)$ for all j (see [1, Subsection 4.3]). By [4, Proposition 3.3], both $R / \operatorname{in}_{\prec}(I)$ and R / I are cohomologically full. So from [6, Proposition 4.11]:

$$
\begin{array}{r}
\lambda_{0, j}(R / I)=\operatorname{dim}_{K}\left[H_{\mathfrak{m}}^{j}(R / I)\right]_{0}, \\
\lambda_{0, j}\left(R / \operatorname{in}_{\prec}(I)\right)=\operatorname{dim}_{K}\left[H_{\mathfrak{m}}^{j}\left(R / \operatorname{in}_{\prec}(I)\right)\right]_{0} .
\end{array}
$$

Now by [4, Theorem 1.3] we get the result.

Remark 2.9. Let I be an ideal of $R=K\left[x_{1}, \ldots, x_{n}\right]$ such that $\mathrm{in}_{\prec}(I)$ is generated by monomials u_{1}, \ldots, u_{r}. Suppose that K has characteristic 0 . Since I is finitely generated, there exists a finitely generated \mathbb{Z}-algebra $A \subset K$ such that I is defined over A, i.e. $I^{\prime} R=I$ if $I^{\prime}=I \cap A\left[x_{1}, \ldots, x_{n}\right]$. Given a prime number p and a prime ideal $\mathfrak{p} \in \operatorname{Spec} A$ minimal over (p), let $Q(\mathfrak{p})$ denote the field of fractions of A / \mathfrak{p} (note that $Q(\mathfrak{p})$ has characteristic $p), R(\mathfrak{p})=Q(\mathfrak{p})\left[x_{1}, \ldots, x_{n}\right]$ and $I(\mathfrak{p})=I^{\prime} R(\mathfrak{p})$. We call the objects $R(\mathfrak{p}), I(\mathfrak{p}), R(\mathfrak{p}) / I(\mathfrak{p})$ reductions $\bmod p$ of $R, I, R / I$, and by abusing notation we denote them by $R_{p}, I_{p}, R_{p} / I_{p}$.

Seccia proved in [11] that

$$
\operatorname{in}_{\prec}\left(I_{p}\right)=\operatorname{in}_{\prec}(I)_{p}
$$

for any reduction $\bmod p$ if p is a large enough prime number, i.e. $\operatorname{in}_{\prec}\left(I_{p}\right)$ is generated by u_{1}, \ldots, u_{r}.

Remark 2.10. Let A be a Noetherian ring of dimension d. The ring A is said to be connected in codimension 1 if $\operatorname{Spec} A \backslash V(\mathfrak{a})$ is connected whenever $\operatorname{dim} A / \mathfrak{a}<d-1$ (here $V(\mathfrak{a})$ denotes the set of primes containing \mathfrak{a}). A result of Hartshorne [7, Proposition 1.1] implies that the dual graph of A is connected if and only if A is connected in codimension 1.

Proposition 2.11. Let I be a homogeneous ideal of R such that $\mathrm{in}_{\prec}(I)$ is radical. Then:
(1) $\operatorname{Proj} R / I$ is connected if and only if $\operatorname{Proj} R / \operatorname{in}_{\prec}(I)$ is connected.
(2) The dual graph of R / I is connected if and only if the dual graph of $R / \operatorname{in} n_{\prec}(I)$ is connected.

Proof. The "only if" parts hold without the assumption that in ${ }_{\prec}(I)$ is radical and they have been proved in [14]. So we will concentrate on the "if" parts.

Since computing initial ideal, as well as the connectedness properties concerning $R / \operatorname{in}_{\prec}(I)$, are not affected extending the field, while the connectedness properties concerning R / I follow from the corresponding connectedness properties of $R / I \otimes_{K}$ \bar{K}, it is harmless to assume that K is algebraically closed. Under this assumption, if $J \subset R$ is a homogeneous radical ideal, we have that:
(a) $\operatorname{Proj} R / J$ is connected if and only if $H_{\mathfrak{m}}^{1}(R / J)_{0}=0$.
(b) The dual graph of R / J is connected if and only if $\lambda_{\operatorname{dim} R / J, \operatorname{dim} R / J}(R / J)=1$ by the main theorem of [17].

Under our hypothesis I is radical, so (1) follows at once from (a) and the fact that the Hilbert function of the local cohomology modules of R / I is bounded above by that of the ones of $R / \operatorname{in}_{\prec}(I)$ (in this case we even have equality by [4]). Concerning the "if-part" of (2), since $\lambda_{\operatorname{dim} R / I, \operatorname{dim} R / I}(R / I) \neq 0$ in any case, if K has
positive characteristic it follows from (b) and Corollary 2.5. So, assume that K has characteristic 0 . If, by contradiction, R / I were not connected in codimension 1, there would be two ideals $H \supsetneq I$ and $J \supsetneq I$ such that $H \cap J=I$ and $\operatorname{dim} R /(H+J)<\operatorname{dim} R / I-1$ (see [2, Lemma 19.1.15]). By Remark 2.9, it is not difficult to check that we can choose a prime number $p \gg 0$ such that $H_{p} \supsetneq I_{p}$ and $J_{p} \supsetneq I_{p}, H_{p} \cap J_{p}=I_{p}, \operatorname{dim} R_{p} /\left(H_{p}+J_{p}\right)<\operatorname{dim} R_{p} / I_{p}-1$ and $\operatorname{in}_{\prec}\left(I_{p}\right)=\operatorname{in}_{\prec}(I)_{p}($ for instance, to compute the intersection of two ideals amounts to perform a Gröbner basis calculation). Clearly the dual graph of a Stanley-Reisner ring does not depend on the characteristic of the base field. So the dual graph of $R_{p} / \mathrm{in}_{\prec}\left(I_{p}\right)$ would be connected but that of R_{p} / I_{p} would be not, and this contradicts the fact that we already proved the result in positive characteristic.

3. CCM Simplicial Complexes

Let Δ be a simplicial complex on the vertex set $[n]=\{1, \ldots, n\}$. We denote the Stanley-Reisner ring R / I_{Δ} by $K[\Delta]$. See [12] for generalities on these objects. The aim of this section is to examine the CCM property for the Stanley-Reisner rings $K[\Delta]$, especially when Δ has dimension 2 .

Recall that a \mathbb{N}^{n}-graded R-module M is squarefree if, for all $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in$ \mathbb{N}^{n}, the multiplication by x_{j} from M_{α} to $M_{\alpha+e_{j}}$ is bijective whenever $\alpha_{j} \neq 0$. It turns out that $K[\Delta], I_{\Delta}$ and $\operatorname{Ext}_{R}^{i}\left(K[\Delta], \omega_{R}\right)$ are squarefree modules by [15].

Lemma 3.1. Let M be a nonzero squarefree module. If $M_{0}=0$, then $\operatorname{depth} M>0$.
Proof. Assume, by way of contradiction, that depth $M=0$. Then $\mathfrak{m} \in \operatorname{Ass} M$. So there exist $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ and $0 \neq u \in M_{\alpha}$ such that $\mathfrak{m}=\operatorname{Ann}(u)$. So for $j=1, \ldots, n, x_{j} \cdot u=0$. It follows that the multiplication map on M_{α} by x_{j} is not injective for all j. So, because M is a squarefree module, $\alpha=0$ and $u \in M_{0}=0$, a contradiction. Hence depth $M>0$.

Lemma 3.2. For any homogeneous ideal $I \subset R$, for all $i<3$ the R-module $\operatorname{Ext}_{R}^{n-i}\left(\operatorname{Ext}_{R}^{n-\operatorname{dim} R / I}(R / I, R), R\right)$ has finite length.

Proof. If $\left(\cap_{i=1}^{r} \mathfrak{q}_{i}\right) \cap\left(\cap_{j=1}^{s} \mathfrak{q}_{j}^{\prime}\right)$ is an irredundant primary decomposition of I with $\operatorname{dim} R / \mathfrak{q}_{i}=\operatorname{dim} R / I$ and $\operatorname{dim} R / \mathfrak{q}_{j}^{\prime}>\operatorname{dim} R / I$, one has

$$
\operatorname{Ext}_{R}^{n-\operatorname{dim} R / I}(R / I, R) \cong \operatorname{Ext}_{R}^{n-\operatorname{dim} R / I}\left(R / \cap_{i=1}^{r} \mathfrak{q}_{i}, R\right)
$$

So we can assume that $\operatorname{dim} R / \mathfrak{p}=\operatorname{dim} R / I$ for all $\mathfrak{p} \in \operatorname{Ass} R / I$.
Let $\mathfrak{p} \neq \mathfrak{m}$ be a homogeneous prime ideal of R containing I, and set $M_{i}=$ $\operatorname{Ext}_{R}^{n-i}\left(\operatorname{Ext}_{R}^{n-\operatorname{dim} R / I}(R / I, R), R\right)$. We have:

$$
\left(M_{i}\right)_{\mathfrak{p}}=\operatorname{Ext}_{R_{\mathfrak{p}}}^{\mathrm{ht}(\mathfrak{p})-(i-n+\mathrm{ht}(\mathfrak{p}))}\left(\operatorname{Ext}_{R_{\mathfrak{p}}}^{\mathrm{ht}(\mathfrak{p})-\left(\operatorname{dim} R_{\mathfrak{p}} / I R_{\mathfrak{p}}\right)}\left(R_{\mathfrak{p}} / I R_{\mathfrak{p}}, R_{\mathfrak{p}}\right), R_{\mathfrak{p}}\right)
$$

Since $i-n+\mathrm{ht}(\mathfrak{p}) \leq 1$ by the assumptions and $\left.\operatorname{Ext}_{R_{\mathfrak{p}}}^{\mathrm{ht}(\mathfrak{p})-\left(\operatorname{dim} R_{\mathfrak{p}} / I R_{\mathfrak{p}}\right)}\left(R_{\mathfrak{p}} / I R_{\mathfrak{p}}, R_{\mathfrak{p}}\right), R_{\mathfrak{p}}\right)$ has depth at least 2 by [10, Proposition 2.3] we have $\left(M_{i}\right)_{\mathfrak{p}}=0$.

Corollary 3.3. Let Δ be a 2-dimensional simplicial complex. Then $K[\Delta]$ is $C C M$ if and only if $\lambda_{2,3}(K[\Delta])=0$.

Proof. Since $\operatorname{Ext}_{R}^{n-3}\left(K[\Delta], \omega_{R}\right)$ satisfy Serre's condition $\left(S_{2}\right)$ by [10, Proposition 2.3], it is enough to show that $\operatorname{Ext}_{R}^{n-2}\left(\operatorname{Ext}_{R}^{n-3}\left(K[\Delta], \omega_{R}\right), \omega_{R}\right)=0$. By Lemma 3.2 $\operatorname{Ext}_{R}^{n-2}\left(\operatorname{Ext}_{R}^{n-3}\left(K[\Delta], \omega_{R}\right), \omega_{R}\right)$ has finite length; so, since it is a squarefree module,

$$
\operatorname{Ext}_{R}^{n-2}\left(\operatorname{Ext}_{R}^{n-3}\left(K[\Delta], \omega_{R}\right), \omega_{R}\right)=0 \Longleftrightarrow \operatorname{Ext}_{R}^{n-2}\left(\operatorname{Ext}_{R}^{n-3}\left(K[\Delta], \omega_{R}\right), \omega_{R}\right)_{0}=0
$$

We conclude because $\lambda_{2,3}(K[\Delta])=\operatorname{Ext}_{R}^{n-2}\left(\operatorname{Ext}_{R}^{n-3}\left(K[\Delta], \omega_{R}\right), \omega_{R}\right)_{0}$ by [16, Corollary 3.10].

Remark 3.4. If Δ is a ($d-1$)-dimensional simplicial complex, it is still true that if $K[\Delta]$ is CCM, then $\lambda_{j, d}(K[\Delta])=0$ for all $j<d$. The converse, however, is not true as soon as $\operatorname{dim}(\Delta)>2$:

Let $R=K\left[x_{1}, \ldots, x_{6}\right]$ and I be the monomial ideal of R generated by

```
x}\mp@subsup{x}{2}{}\mp@subsup{x}{2}{}\mp@subsup{x}{3}{}\mp@subsup{x}{4}{},\mp@subsup{x}{1}{}\mp@subsup{x}{3}{}\mp@subsup{x}{4}{}\mp@subsup{x}{5}{},\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\mp@subsup{x}{3}{}\mp@subsup{x}{6}{},\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\mp@subsup{x}{5}{}\mp@subsup{x}{6}{},\mp@subsup{x}{1}{}\mp@subsup{x}{4}{}\mp@subsup{x}{5}{}\mp@subsup{x}{6}{}\mathrm{ and }\mp@subsup{x}{3}{}\mp@subsup{x}{4}{}\mp@subsup{x}{5}{}\mp@subsup{x}{6}{}
```

The ring R / I has a trivial Lyubeznik table but it is not CCM. Here I is the StanleyReisner ring of a 3-dimensional simplicial complex.

Proposition 3.5. Let Δ be a 2-dimensional simplicial complex such that $H_{1}(\Delta ; K)$ vanishes. Then $K[\Delta]$ is CCM.

Proof. Since $H_{1}(\Delta ; K)=0$, by Hochster formula we get $\operatorname{Ext}_{R}^{n-2}\left(K[\Delta], \omega_{R}\right)_{0}=0$. If $\operatorname{Ext}_{R}^{n-2}\left(K[\Delta], \omega_{R}\right) \neq 0$, since it is a squarefree module it has positive depth by Lemma 3.1.

So, in any case, $\operatorname{Ext}_{R}^{n}\left(\operatorname{Ext}_{R}^{n-2}\left(K[\Delta], \omega_{R}\right), \omega_{R}\right)=0$, and hence

$$
\left.\lambda_{0,2}(K[\Delta])=\operatorname{Ext}_{R}^{n}\left(\operatorname{Ext}_{R}^{n-2}\left(K[\Delta], \omega_{R}\right)\right), \omega_{R}\right)_{0}=0
$$

By [1, Remark 2.3], $\lambda_{2,3}(K[\Delta])=\lambda_{0,2}(K[\Delta])=0$. Now by Corollary 3.3 $K[\Delta]$ is CCM.

The converse of this corollary does not hold in general:
Example 3.6. Let Δ be the simplicial complex on 6 vertices with facets $\{1,2,3\}$, $\{1,4,5\}$ and $\{3,4,6\}$. Then $K[\Delta]$ is CCM but $H_{1}(\Delta ; K) \neq 0$

Proposition 3.7. Let Δ be a $(d-1)$-dimensional Buchsbaum simplicial complex. The ring $K[\Delta]$ is $C C M$ if and only if $H_{i}(\Delta ; K)=0$ for all $1 \leq i<d-1$.

Proof. Let $K[\Delta]$ be CCM and fix $i \in\{1, \ldots, d-2\}$. Since Δ is Buchsbaum, $K[\Delta]$ behaves cohomologically like an isolated singularity, hence:

$$
\lambda_{0, i+1}(K[\Delta])=\lambda_{d-i, d}(K[\Delta])
$$

(see [1, Subsection 4.3]). On the other hand, since the canonical module of $K[\Delta]$ is a d-dimensional Cohen-Macaulay module, $\lambda_{d-i, d}(K[\Delta])=0$ by [16, Corollary 3.10]. So

$$
\lambda_{0, i+1}(K[\Delta])=\operatorname{dim}_{K} \operatorname{Ext}_{R}^{n}\left(\operatorname{Ext}_{R}^{n-i-1}\left(K[\Delta], \omega_{R}\right), \omega_{R}\right)_{0}=0
$$

By local duality $H_{\mathfrak{m}}^{0}\left(\operatorname{Ext}_{R}^{n-i-1}\left(K[\Delta], \omega_{R}\right)\right)_{0}=0$. Since $\operatorname{Ext}_{R}^{n-i-1}\left(K[\Delta], \omega_{R}\right)$ is of finite length

$$
H_{\mathfrak{m}}^{0}\left(\operatorname{Ext}_{R}^{n-i-1}\left(K[\Delta], \omega_{R}\right)\right)_{0}=\operatorname{Ext}_{R}^{n-i-1}\left(K[\Delta], \omega_{R}\right)_{0}=0 .
$$

Therefore Hochster formula tells us that $H_{i}(\Delta ; K)=0$.
Conversely, assume that $H_{i}(\Delta ; K)=0$ for all $1 \leq i<d-1$. Then we have that $\operatorname{Ext}_{R}^{n-i-1}\left(K[\Delta], \omega_{R}\right)_{0}=0$ by Hochster formula. As Δ is Buchsbaum, $\operatorname{Ext}_{R}^{n-i-1}\left(K[\Delta], \omega_{R}\right)$ is of finite length, so

$$
\operatorname{Ext}_{R}^{n-i-1}\left(K[\Delta], \omega_{R}\right)=\operatorname{Ext}_{R}^{n-i-1}\left(K[\Delta], \omega_{R}\right)_{0}=0 \quad \forall 1 \leq i<d-1
$$

Now [13, Theorem 4.9] and local duality follow that for $1 \leq i<d-1$,

$$
H_{\mathfrak{m}}^{i+1}\left(\operatorname{Ext}_{R}^{n-d}\left(K[\Delta], \omega_{R}\right) \cong \operatorname{Ext}_{R}^{n-d+i}\left(K[\Delta], \omega_{R}\right)=0\right.
$$

Thus $K[\Delta]$ is CCM.
Example 3.8. Propositions 3.5 and 3.7 provide the following situation concerning CCM 2-dimensional simplicial complexes:
(i) $H_{1}(\Delta ; K)=0 \Longrightarrow K[\Delta]$ is CCM.
(ii) If Δ is Buchsbaum, $H_{1}(\Delta ; K)=0 \Longleftrightarrow K[\Delta]$ is CCM.

Item (ii) above yields many examples of Buchsbaum 2-dimensional nonCCM simplicial complexes. We conclude this note with an example of a 2-dimensional simplicial complex which is neither Buchsbaum nor CCM:

Let $R=K\left[x_{1}, \ldots, x_{8}\right]$ and Δ be the simplicial complex with facets $\left\{x_{1}, x_{2}, x_{6}\right\}$, $\left\{x_{2}, x_{6}, x_{4}\right\},\left\{x_{2}, x_{4}, x_{5}\right\},\left\{x_{2}, x_{3}, x_{5}\right\},\left\{x_{3}, x_{5}, x_{6}\right\},\left\{x_{1}, x_{3}, x_{6}\right\},\left\{x_{1}, x_{7}, x_{8}\right\}$. One can check that Δ is not Buchsbaum and $K[\Delta]$ is not CCM. Accordingly with Proposition 3.5, $H_{1}(\Delta ; K) \neq 0$.

Acknowledgment. This work was completed when the first author was visiting Department of Mathematics of University of Genova. She wants to express her gratitude for the received hospitality.

References

[1] J. Àlvarez Montaner and K. Yanagawa, Lyubeznik numbers of local rings and linear strands of graded ideals., Nagoya. Math. J. , 1-32 (2017).
[2] M. Brodmann and R. Sharp, Local cohomology. An algebraic introduction with geometric applications. Second edition. Cambridge Studies in Advanced Mathematics, 136. Cambridge University Press, Cambridge, (2013).
[3] W. Bruns and J. Herzog, Cohen-Macaulay rings., Cambridge studies in advanced mathematics. (1993).
[4] A. Conca and M. Varbaro, Squarfree grobner degenerations., arXiv preprint.
[5] A. De Stefani and E. Grifo and L. Nùñez-Betancourt,Local cohomology and Lyubeznik numbers of F-pure rings., J. Algebra. (2018).
[6] H. Dao and A. De Stefani and L. Ma, Cohomologically full rings., arxiv:1806.00536. (2018).
[7] R. Hartshorne, Complete intersection and connectedness., American J. of Math. 84, pp. 497-508 (1962).
[8] J. Herzog and E. Sbarra, Sequentially Cohen-Macaulay modules and local cohomology., Algebra, arithmetic and geometry, Part I, II, 327-340, Tata Inst. Fund. Res. Stud. Math., 16, Tata Inst. Fund. Res., Bombay, (2002).
[9] G. Lyubeznik, Finiteness properties of local cohomology modules (an application of Dmodules to commutative algebra)., Invent. Math. 113, 41-55 (1993).
[10] P. Schenzel, On birational Macaulayfications and Cohen-Macaulay canonical modules., J. Algebra. 275, 751-770 (2004).
[11] L. Seccia, Knutson ideals, in preparation.
[12] R. P. Stanley, Combinatorics and commutative algebra., Springer Science \& Business Media. 41, (2007).
[13] J. Stückrad and W. Vogel, Buchsbaum rings and applications., 1986.
[14] M. Varbaro, Gröbner deformations, connectedness and cohomological dimension., J. Alg. 322, 2492-2507 (2009).
[15] K. Yanagawa, Alexander duality for Stanley-Reisner rings and squarefree \mathbb{N}^{n}-graded modules., J. Algebra. 225, 630-645 (2000).
[16] K. Yanagawa, Bass numbers of local cohomology modules with supports in monomial ideals., Math. Proc. Cambridge Philos. Soc. 131, 45-60 (2001).
[17] W. Zhang, On the highest Lyubeznik number of a local ring., Compos. Math. no. 1, 143, 82-88 (2007).
[18] W. Zhang, Lyubeznik numbers of projective schemes., Adv. Math. 228, 575-616 (2011).
E-mail address: nadi_p@aut.ac.ir

Department of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Av, Tehran, 1591634311, Iran.

E-mail address: varbaro@dima.unige.it
Dipartimento di Matematica, Università di Genova, Italy

