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Abstract. In this note we draw some interesting consequences of the recent

results on squarefree Gröbner degenerations obtained by Conca and the second

author.

1. Introduction

Let R = K[x1, ..., xn] be a positively graded polynomial ring over a field K,

where xi is homogeneous of degree gi ∈ N>0, and m = (x1, . . . , xn) denotes its

homogeneous maximal ideal. Also denote the canonical module of R by ωR =

R(−|g|), where |g| = g1 + . . .+ gn.

Definition 1.1. A graded finitely generatedR-moduleM is called canonical Cohen-

Macaulay (CCM for short) if Extn−dimM
R (M,ωR) is Cohen-Macaulay.

This notion was introduced by Schenzel in [10], who proved in the same paper the

following result that contributes to make it interesting: given a homogeneous prime

ideal I ⊂ R, the ring R/I is CCM if and only if it admits a birational Macaulayfi-

cation (that is a birational extension R/I ⊂ A ⊂ Q(R/I) such that A is a finitely

generated Cohen-Macaulay R/I-module, where Q(R/I) is the fraction field of R/I).

In this case, furthermore, A is the endomorphism ring of Ext
n−dimR/I
R (R/I, ωR).

In this note, we will derive by the recent result obtained by Conca and the second

author in [4] the following: if a homogeneous ideal I ⊂ R has a radical initial ideal

in≺(I) for some monomial order ≺, then R/I is CCM whenever R/ in≺(I) is CCM.

In fact we prove something more general, from which we can also infer that, in

positive characteristic, under the same assumptions the Lyubeznik numbers of R/I

are bounded above from those of R/ in≺(I). As a consequence of the latter result,

we can infer that, also in characteristic 0 by reduction to positive characteristic, if

in≺(I) is a radical monomial ideal the following are equivalent:

(1) The dual graph (a.k.a. Hochster-Huneke graph) of R/I is connected.

(2) The dual graph of R/ in≺(I) is connected.
1
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Motivated by these results, in the last section we study the CCM property for

Stanley-Reisner rings K[∆]. We show that K[∆] is CCM whenever ∆ is a simply

connected 2-dimensional simplicial complex.

2. CCM, Lyubeznik numbers and Gröbner deformations

Throughout this section, let us fix a monomial order ≺ on R. We start with the

following crucial lemma:

Lemma 2.1. Let I be a homogeneous ideal of R such that in≺(I) is radical. Then,

for all i, j, k ∈ Z, we have:

dimK ExtiR(ExtjR(R/I, ωR), ωR)k ≤ dimK ExtiR(ExtjR(R/ in≺(I), ωR), ωR)k

Proof. Let w = (w1, ..., wn) ∈ Nn be a weight such that inw(I) = in≺(I). Let t be

a new indeterminate over R. Set P = R[t] and S = P/ homw(I). By providing

P with the graded structure given by deg(xi) = gi and deg(t) = 0, homw(I) is

homogeneous. If x ∈ {t, t− 1}, apply the functor ExtiP (ExtjP (S, P ),−) to the short

exact sequence

0→ P
·x−→ P → P/xP → 0

getting the short exact sequences

0→ Cokerµi−1,j
x → ExtiP (ExtjP (S, P ), P/xP )→ Kerµi,jx → 0.

where µi,jx is the multiplication by x on ExtiP (ExtjP (S, P ), P ). So, for all k ∈ Z we

have exact sequences of K-vector spaces:

0→ [Cokerµi−1,j
x ]k → ExtiP (ExtjP (S, P ), P/xP )k → [Kerµi,jx ]k → 0.

Since Ei,jk = ExtiP (ExtjP (S, P ), P )k is a finitely generated graded (w.r.t. the stan-

dard grading) K[t]-module, we can write Ei,jk = F i,jk + T i,jk where F i,jk = K[t]f
i,j
k

and T i,jk =
⊕gi,jk

r=1K[t]/(tdr ) with dr ≥ 1. Therefore we have:

dimK [Cokerµi−1,j
t−1 ]k = f i−1,j

k ≤ f i−1,j
k + gi−1,j

k = dimK [Cokerµi−1,j
t ]k

and

dimK [Kerµi,jt−1]k = 0 ≤ gi,jk = dimK [Kerµi−1,j
t ]k.

So dimK ExtiP (ExtjP (S, P ), P/(t− 1)P )k ≤ dimK ExtiP (ExtjP (S, P ), P/tP )k.

Note that, by using [3, Proposition 1.1.5] one can infer the following: if A is a

ring, M and N are A-modules, and a ∈ Ann(N) is A-regular and M -regular, then

ExtiA(M,N) ∼= ExtiA/aA(M/aM,N) ∀ i ∈ N.

Since by [4, Proposition 2.4] ExtjP (S, P ) is a flat K[t]-module, the multiplication

by x on it is injective: that is, x is ExtjP (S, P )-regular. Therefore we have:

ExtiP (ExtjP (S, P ), P/xP ) ∼= ExtiP/xP (ExtjP (S, P )/xExtjP (S, P ), P/xP ).



CCM PROPERTY AND LYUBEZNIK NUMBERS UNDER GRÖBNER DEFORMATIONS 3

Again because the multiplication by x is injective on ExtjP (S, P ) and by the property

mentioned above, we have

ExtjP (S, P )/xExtjP (S, P ) ∼= ExtjP (S, P/xP ) ∼= ExtjP/xP (S/xS, P/xP ).

Putting all together we get:

dimK ExtiP/(t−1)P (ExtjP/(t−1)P (S/(t− 1)S, P/(t− 1)P ), P/(t− 1)P )k ≤

dimK ExtiP/tP (ExtjP/tP (S/tS, P/tP ), P/tP )k,

that, because ωR ∼= R(−|g|), is what we wanted:

dimK ExtiR(ExtjR(R/I,R), R)k ≤ dimK ExtiR(ExtjR(R/ in≺(I), R), R)k.

�

Corollary 2.2. Let I be a homogeneous ideal of R such that in≺(I) is radical.

Then, R/I is canonical Cohen-Macaulay whenever R/ in≺(I) is so.

Proof. For a homogeneous ideal J ⊂ R, R/J is CCM if and only if

Extn−iR (Ext
n−dimR/J
R (R/J, ωR), ωR) = 0 ∀ i < dimR/J,

so the result follows from Lemma 2.1. �

Remark 2.3. Corollary 2.2 fails without assuming that in≺(I) is radical. In fact, if

≺ is a degrevlex monomial order and I is in generic coordinates, by [8, Theorem 2.2]

R/ in≺(I) is sequentially Cohen-Macaulay, thus CCM (for example see [8, Theorem

1.4]). However, it is plenty of homogeneous ideals I such that R/I is not CCM.

We do not know whether the implication of Corollary 2.2 can be reversed. With-

out assuming that in≺(I) is radical, we already noticed that Corollary 2.2 fails in

Remark 2.3. The following example shows that in general R/I CCM but R/ in≺(I)

not CCM can also happen:

Example 2.4. Let R = K[x1, ..., x9] and

I = (x3
1 + x3

2, x
2
5x9 + x2

4x8, x
3
5x7 + x3

6x9, x
2
7x1 + x2

6x5, x3x9 − x4x8).

Since I is a complete intersection, R/I is CCM. However one can check that, if ≺
is the lexicographic order extending x1 > . . . > x9, R/ in≺(I) is not CCM.
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2.1. Lyubeznik numbers and connectedness. Let I ⊂ R = K[x1, . . . , xn]. In

[9] Lyubeznik introduced the following invariants of A = R/I:

λi,j(A) = dimKExtiR(K,Hn−j
I (R)) ∀ i, j ∈ N.

It turns out that these numbers, later named Lyubeznik numbers, depend only

on A, i and j, in the sense that if A ∼= S/J where J ⊂ S = K[y1, . . . , ym],

λi,j(A) = dimKExtiS(K,Hm−j
J (S)) ∀ i, j ∈ N.

Also, λi,j(A) = 0 whenever i > j or j > dimA, and λd,d(A) is the number of

connected components of the dual graph (also known as the Hochster-Huneke graph)

of A⊗KK, [17]. (We recall that the dual graph of a Noetherian ring A of dimension

d is the graph with the minimal primes of A as vertices and such that {p, q} is an

edge if and only if dimA/(p + q) = d − 1). We will refer to the upper triangular

matrix Λ(A) = (λi,j(A)) of size (dimA + 1) × (dimA + 1) as the Lyubeznik table

of A. By trivial Lyubeznik table we mean that λdimA,dimA(A) = 1 and λi,j(A) = 0

otherwise.

Corollary 2.5. Let I be a homogeneous ideal of R such that in≺(I) is radical. If

K has positive characteristic,

λi,j(R/I) ≤ λi,j(R/ in≺(I)) ∀ i, j ∈ N.

Proof. By [18, Theorem 1.2], if J ⊂ R is a homogeneous ideal,

λi,j(R/J) = dimK(Extn−iR (Extn−jR (R/J, ωR), ωR)0)s,

where the subscript (−)s stands for the stable part under the natural Frobenius

action. In particular

λi,j(R/J) ≤ dimKExtn−iR (Extn−jR (R/J, ωR), ωR)0.

On the other hand, if J ⊂ R is a radical monomial ideal, Yanagawa proved in [16,

Corollary 3.10] (independently of the characteristic of K) that:

λi,j(R/J) = dimKExtn−iR (Extn−jR (R/J, ωR), ωR)0.

So the result follows from Lemma 2.1. �

The following two examples show that Corolarry 2.5 is false without assuming

both that in≺(I) is radical and that K has positive characteristic:

Example 2.6. [5, Example 4.11] Let R = K[x1, ..., x6] and char(K) = 5. Let

I = (x3
4 + x3

5 + x3
6, x

2
4x1 + x2

5x2 + x2
6x3, x

2
1x4 + x2

2x5 + x2
3x6,

x3
1 + x3

2 + x3
3, x5x3 − x6x2, x6x1 − x4x3, x4x2 − x5x1).
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Then

Λ(R/I) =


0 0 1 0

0 0 0

0 1

1

 .
If ≺ is the degree reverse lexicographic term order extending x1 > . . . > x6 one

has:

in≺(I) = (x3x5, x3x4, x2x4, x
3
4, x1x

2
4, x

2
1x4, x

3
1).

One can check that R/in≺(I) has a trivial Lyubeznik table.

Example 2.7. Let K be a field of characteristic 0 and R = K[x1, ..., x6]. Let

I = (x1x5−x2x4, x1x6−x3x4, x2x6−x3x5). By [1, Example 2.2], Lyubeznik table

of R/I is

Λ(R/I) =


0 0 0 1 0

0 0 0 0

0 0 1

0 0

1

 .

If ≺ is the degree reverse lexicographic term order extending x1 > . . . > x6 we have

in≺(I) = (x2x4, x3x4, x3x5).

So in≺(I) is a radical monomial ideal, however Λ(R/ in≺(I)) is trivial.

In Corollary 2.5 we have an equality when R/I is generalized Cohen-Macaulay:

Corollary 2.8. Let I be a homogeneous ideal of R such that in≺(I) is radical. If

K has positive characteristic and R/I is generalized Cohen-Macaulay,

λi,j(R/I) = λi,j(R/ in≺(I)) ∀ i, j ∈ N.

Proof. Since R/I is generalized Cohen-Macaulay so is R/in≺(I) by [4, Corollary

2.11]. Therefore it is enough to show that λ0,j(R/I) = λ0,j(R/in≺(I)) for all j

(see [1, Subsection 4.3]). By [4, Proposition 3.3], both R/ in≺(I) and R/I are

cohomologically full. So from [6, Proposition 4.11]:

λ0,j(R/I) = dimK [Hj
m(R/I)]0,

λ0,j(R/ in≺(I)) = dimK [Hj
m(R/ in≺(I))]0.

Now by [4, Theorem 1.3] we get the result.

�
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Remark 2.9. Let I be an ideal of R = K[x1, . . . , xn] such that in≺(I) is generated

by monomials u1, . . . , ur. Suppose that K has characteristic 0. Since I is finitely

generated, there exists a finitely generated Z-algebra A ⊂ K such that I is defined

over A, i.e. I ′R = I if I ′ = I ∩A[x1, . . . , xn]. Given a prime number p and a prime

ideal p ∈ SpecA minimal over (p), let Q(p) denote the field of fractions of A/p (note

that Q(p) has characteristic p), R(p) = Q(p)[x1, . . . , xn] and I(p) = I ′R(p). We

call the objects R(p), I(p), R(p)/I(p) reductions mod p of R, I,R/I, and by abusing

notation we denote them by Rp, Ip, Rp/Ip.

Seccia proved in [11] that

in≺(Ip) = in≺(I)p

for any reduction mod p if p is a large enough prime number, i.e. in≺(Ip) is generated

by u1, . . . , ur.

Remark 2.10. Let A be a Noetherian ring of dimension d. The ring A is said to be

connected in codimension 1 if SpecA\V (a) is connected whenever dimA/a < d−1

(here V (a) denotes the set of primes containing a). A result of Hartshorne [7,

Proposition 1.1] implies that the dual graph of A is connected if and only if A is

connected in codimension 1.

Proposition 2.11. Let I be a homogeneous ideal of R such that in≺(I) is radical.

Then:

(1) ProjR/I is connected if and only if ProjR/ in≺(I) is connected.

(2) The dual graph of R/I is connected if and only if the dual graph of R/ in≺(I)

is connected.

Proof. The “only if” parts hold without the assumption that in≺(I) is radical and

they have been proved in [14]. So we will concentrate on the “if” parts.

Since computing initial ideal, as well as the connectedness properties concerning

R/ in≺(I), are not affected extending the field, while the connectedness properties

concerning R/I follow from the corresponding connectedness properties of R/I⊗K
K, it is harmless to assume that K is algebraically closed. Under this assumption,

if J ⊂ R is a homogeneous radical ideal, we have that:

(a) ProjR/J is connected if and only if H1
m(R/J)0 = 0.

(b) The dual graph of R/J is connected if and only if λdimR/J,dimR/J(R/J) = 1

by the main theorem of [17].

Under our hypothesis I is radical, so (1) follows at once from (a) and the fact that

the Hilbert function of the local cohomology modules of R/I is bounded above by

that of the ones of R/ in≺(I) (in this case we even have equality by [4]). Con-

cerning the “if-part” of (2), since λdimR/I,dimR/I(R/I) 6= 0 in any case, if K has
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positive characteristic it follows from (b) and Corollary 2.5. So, assume that K

has characteristic 0. If, by contradiction, R/I were not connected in codimen-

sion 1, there would be two ideals H ) I and J ) I such that H ∩ J = I and

dimR/(H + J) < dimR/I − 1 (see [2, Lemma 19.1.15]). By Remark 2.9, it is not

difficult to check that we can choose a prime number p� 0 such that Hp ) Ip and

Jp ) Ip, Hp∩Jp = Ip, dimRp/(Hp+Jp) < dimRp/Ip−1 and in≺(Ip) = in≺(I)p (for

instance, to compute the intersection of two ideals amounts to perform a Gröbner

basis calculation). Clearly the dual graph of a Stanley-Reisner ring does not depend

on the characteristic of the base field. So the dual graph of Rp/ in≺(Ip) would be

connected but that of Rp/Ip would be not, and this contradicts the fact that we

already proved the result in positive characteristic. �

3. CCM Simplicial Complexes

Let ∆ be a simplicial complex on the vertex set [n] = {1, ..., n}. We denote the

Stanley-Reisner ring R/I∆ by K[∆]. See [12] for generalities on these objects. The

aim of this section is to examine the CCM property for the Stanley-Reisner rings

K[∆], especially when ∆ has dimension 2.

Recall that a Nn-graded R-module M is squarefree if, for all α = (α1, . . . , αn) ∈
Nn, the multiplication by xj from Mα to Mα+ej is bijective whenever αj 6= 0. It

turns out that K[∆], I∆ and ExtiR(K[∆], ωR) are squarefree modules by [15].

Lemma 3.1. Let M be a nonzero squarefree module. If M0 = 0, then depthM > 0.

Proof. Assume, by way of contradiction, that depthM = 0. Then m ∈ AssM . So

there exist α = (α1, . . . , αn) ∈ Nn and 0 6= u ∈ Mα such that m = Ann(u). So for

j = 1, ..., n, xj · u = 0. It follows that the multiplication map on Mα by xj is not

injective for all j. So, because M is a squarefree module, α = 0 and u ∈M0 = 0, a

contradiction. Hence depthM > 0. �

Lemma 3.2. For any homogeneous ideal I ⊂ R, for all i < 3 the R-module

Extn−iR (Ext
n−dimR/I
R (R/I,R), R) has finite length.

Proof. If (∩ri=1qi) ∩
(
∩sj=1q

′
j

)
is an irredundant primary decomposition of I with

dimR/qi = dimR/I and dimR/q′j > dimR/I, one has

Ext
n−dimR/I
R (R/I,R) ∼= Ext

n−dimR/I
R (R/ ∩ri=1 qi, R).

So we can assume that dimR/p = dimR/I for all p ∈ AssR/I.

Let p 6= m be a homogeneous prime ideal of R containing I, and set Mi =

Extn−iR (Ext
n−dimR/I
R (R/I,R), R). We have:

(Mi)p = Ext
ht(p)−(i−n+ht(p))
Rp

(Ext
ht(p)−(dimRp/IRp)
Rp

(Rp/IRp, Rp), Rp).
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Since i−n+ht(p) ≤ 1 by the assumptions and Ext
ht(p)−(dimRp/IRp)
Rp

(Rp/IRp, Rp), Rp)

has depth at least 2 by [10, Proposition 2.3] we have (Mi)p = 0.

�

Corollary 3.3. Let ∆ be a 2-dimensional simplicial complex. Then K[∆] is CCM

if and only if λ2,3(K[∆]) = 0.

Proof. Since Extn−3
R (K[∆], ωR) satisfy Serre’s condition (S2) by [10, Proposition

2.3], it is enough to show that Extn−2
R (Extn−3

R (K[∆], ωR), ωR) = 0. By Lemma 3.2

Extn−2
R (Extn−3

R (K[∆], ωR), ωR) has finite length; so, since it is a squarefree module,

Extn−2
R (Extn−3

R (K[∆], ωR), ωR) = 0 ⇐⇒ Extn−2
R (Extn−3

R (K[∆], ωR), ωR)0 = 0.

We conclude because λ2,3(K[∆]) = Extn−2
R (Extn−3

R (K[∆], ωR), ωR)0 by [16, Corol-

lary 3.10]. �

Remark 3.4. If ∆ is a (d− 1)-dimensional simplicial complex, it is still true that

if K[∆] is CCM, then λj,d(K[∆]) = 0 for all j < d. The converse, however, is not

true as soon as dim(∆) > 2:

Let R = K[x1, ..., x6] and I be the monomial ideal of R generated by

x1x2x3x4, x1x3x4x5, x1x2x3x6, x1x2x5x6, x1x4x5x6 and x3x4x5x6.

The ring R/I has a trivial Lyubeznik table but it is not CCM. Here I is the Stanley-

Reisner ring of a 3-dimensional simplicial complex.

Proposition 3.5. Let ∆ be a 2-dimensional simplicial complex such that H1(∆;K)

vanishes. Then K[∆] is CCM.

Proof. Since H1(∆;K) = 0, by Hochster formula we get Extn−2
R (K[∆], ωR)0 = 0.

If Extn−2
R (K[∆], ωR) 6= 0, since it is a squarefree module it has positive depth by

Lemma 3.1.

So, in any case, ExtnR(Extn−2
R (K[∆], ωR), ωR) = 0, and hence

λ0,2(K[∆]) = ExtnR(Extn−2
R (K[∆], ωR)), ωR)0 = 0.

By [1, Remark 2.3], λ2,3(K[∆]) = λ0,2(K[∆]) = 0. Now by Corollary 3.3 K[∆] is

CCM. �

The converse of this corollary does not hold in general:

Example 3.6. Let ∆ be the simplicial complex on 6 vertices with facets {1, 2, 3},
{1, 4, 5} and {3, 4, 6}. Then K[∆] is CCM but H1(∆;K) 6= 0

Proposition 3.7. Let ∆ be a (d− 1)-dimensional Buchsbaum simplicial complex.

The ring K[∆] is CCM if and only if Hi(∆;K) = 0 for all 1 ≤ i < d− 1.



CCM PROPERTY AND LYUBEZNIK NUMBERS UNDER GRÖBNER DEFORMATIONS 9

Proof. Let K[∆] be CCM and fix i ∈ {1, . . . , d− 2}. Since ∆ is Buchsbaum, K[∆]

behaves cohomologically like an isolated singularity, hence:

λ0,i+1(K[∆]) = λd−i,d(K[∆])

(see [1, Subsection 4.3]). On the other hand, since the canonical module of K[∆]

is a d-dimensional Cohen-Macaulay module, λd−i,d(K[∆]) = 0 by [16, Corollary

3.10]. So

λ0,i+1(K[∆]) = dimKExtnR(Extn−i−1
R (K[∆], ωR), ωR)0 = 0.

By local duality H0
m(Extn−i−1

R (K[∆], ωR))0 = 0. Since Extn−i−1
R (K[∆], ωR) is of

finite length

H0
m(Extn−i−1

R (K[∆], ωR))0 = Extn−i−1
R (K[∆], ωR)0 = 0.

Therefore Hochster formula tells us that Hi(∆;K) = 0.

Conversely, assume that Hi(∆;K) = 0 for all 1 ≤ i < d − 1. Then we

have that Extn−i−1
R (K[∆], ωR)0 = 0 by Hochster formula. As ∆ is Buchsbaum,

Extn−i−1
R (K[∆], ωR) is of finite length, so

Extn−i−1
R (K[∆], ωR) = Extn−i−1

R (K[∆], ωR)0 = 0 ∀ 1 ≤ i < d− 1.

Now [13, Theorem 4.9] and local duality follow that for 1 ≤ i < d− 1,

Hi+1
m (Extn−dR (K[∆], ωR) ∼= Extn−d+i

R (K[∆], ωR) = 0.

Thus K[∆] is CCM. �

Example 3.8. Propositions 3.5 and 3.7 provide the following situation concerning

CCM 2-dimensional simplicial complexes:

(i) H1(∆;K) = 0 =⇒ K[∆] is CCM.

(ii) If ∆ is Buchsbaum, H1(∆;K) = 0 ⇐⇒ K[∆] is CCM.

Item (ii) above yields many examples of Buchsbaum 2-dimensional nonCCM simpli-

cial complexes. We conclude this note with an example of a 2-dimensional simplicial

complex which is neither Buchsbaum nor CCM:

Let R = K[x1, ..., x8] and ∆ be the simplicial complex with facets {x1, x2, x6},
{x2, x6, x4}, {x2, x4, x5}, {x2, x3, x5}, {x3, x5, x6}, {x1, x3, x6}, {x1, x7, x8}. One

can check that ∆ is not Buchsbaum and K[∆] is not CCM. Accordingly with

Proposition 3.5, H1(∆;K) 6= 0.
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