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COHEN–MACAULAYNESS OF GENERICALLY
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of Science and Technology, Hanoi, Vietnam
2Dipartimento di Matematica, Università di Genova, Genova, Italy

In this article, we try to understand which generically complete intersection
monomial ideals with fixed radical are Cohen–Macaulay. We are able to give a
complete characterization for a special class of simplicial complexes, namely the
Cohen–Macaulay complexes without cycles in codimension 1. Moreover, we give
sufficient conditions when the square-free monomial ideal has minimal multiplicity.
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1. INTRODUCTION

Let R = k�x1� � � � � xn� be a polynomial ring over a field k and � be a simplicial
complex on V = �v1� � � � � vn�. The Stanley–Reisner ideal of � is

I� = ⋂
F∈���	

�xi 
 vi � F	�

where ���	 is the set of facets of �. Given an ideal J ⊂ R such that
√
J = I�,

it turns out that R/I� is Cohen–Macaulay whenever R/J is Cohen–Macaulay. Of
course the converse is not true, so in this article we are going to study the following
problem: How to discribe a family of ideals J such that R/J is Cohen–Macaulay and√
J = I�?

We restrict our attention on monomial ideals J . This problem has been already
considered, for instance see the article of Miller et al. [11]. Also, independently and
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932 NAM AND VARBARO

Figure 1 Simplicial complex �.

with different proofs, Minh and Trung in [12] and the second author of this article
in [15], characterized the simplicial complexes � for which all the symbolic powers
of I� are Cohen–Macaulay. However, we consider a different type of family of
monomial ideals with a fixed radical, namely, the generically complete intersection
monomial ideals

I���	 =
⋂

F∈���	
�x

�i�F	
i 
 vi � F	�

where �i�F	 are positive integers. In [8], Herzog, Takayama, and Terai characterized
those simplicial complexes for which R/I���	 is Cohen–Macaulay for any choice of
�. It turns out that such complexes are very rare.

The purpose of this article is to give conditions, depending on �, on the
values �i�F	 in such a way that R/I���	 is Cohen–Macaulay. It is easy to see that if
�i�F	 is constant for any i, then the depth of R/I���	 is equal to the depth of R/I�.
However, even if R/I� is Cohen–Macaulay, R/I���	 might not be Cohen–Macaulay
for “simple” functions �. For instance, consider the triangulation of the projective
plane in Fig. 1 (all the visible triangles are actually faces).

With the help of CoCoA [4] we can check that, for any vertex i0 and any facet
F0 not containing i0, we have R/I���	 is not Cohen–Macaulay for the following �:

�i�F	 =
{
2 if i = i0� F = F0�

1 otherwise

In this article, we are going to face the above problem for a special kind
of simplicial complexes, namely, the Cohen–Macaulay complexes without cycles in
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COHEN–MACAULAYNESS OF MONOMIAL IDEALS 933

codimension 1, which we are going to introduce in Definition 2.3. In this case,
we give necessary and sufficient conditions on � for R/I���	 being Cohen–Macaulay.
Without entering into the details, every �i has to be weakly decreasing along
particular shellings (Theorem 3.5).

By similar tools, in the last section we give sufficient conditions on � for R/I���	
to be Cohen–Macaulay when R/I� has minimal multiplicity (Theorem 4.8). We will
also notice that such conditions are, in general, not necessary.

Some results in this article have been conjectured and confirmed by using
the computer algebra package CoCoA [4]. We wish to thank Aldo Conca for
suggesting the problem. We want also to thank Satoshi Murai for introducing us to
Example 4.9.

2. COHEN–MACAULAY COMPLEX WITHOUT CYCLES IN CODIMENSION 1

For general facts about commutative algebra and combinatorics, see the books
of Bruns and Herzog [3], Björner [2], Stanley [14], or Miller and Sturmfels [10].

Let V = �v1� � � � � vn� be a finite set. A simplicial complex � on V is a collection
of subsets of V such that F ∈ � whenever F ⊂ G for some G ∈ �, and such that
�vi� ∈ � for i = 1� � � � � n� Given finite sets F1� � � � � Fm the simplicial complex on V =⋃m

i=1 Fi generated by them, i.e., consisting in all the subsets of any Fi, is denoted by
�F1� � � � � Fm�. The elements of a simplicial complex � are its faces. Maximal faces
under inclusion are called facets. The set of facets is denoted by ���	. The dimension
of a face F , dim F , is the number |F | − 1. The dimension of � is

dim� = max�dim F 
 F ∈ ���

A simplicial complex is pure if all its facets are of the same dimension. It is called
strongly connected if each pair F�G ∈ ���	 can be connected by a strongly connected
sequence, i.e., a sequence of facets F = F0� F1� � � � � Fk = G such that �Fi ∩ Fi+1� = d −
1 for all i = 0� � � � � k− 1, where dim� = d − 1. We will say that � is shellable if it
is pure and it can be given a linear order F1� � � � � Fm to the facets of � in a way that
�Fi� ∩ �F1� � � � � Fi−1� is generated by a nonempty set of maximal proper faces of �Fi�
for all i = 2� � � � � m. Such a linear order is called a shelling of �. The link of a face
F of � is the simplicial complex lk��F	 = �G 
 F ∪G ∈ �� F ∩G = ∅�.

The relations between commutative algebra and combinatorics come from
the Stanley–Reisner ideal of �, denoted by I�: it is the ideal generated by all
monomials xi1 � � � xis such that �vi1� � � � � vis � � �. If the Stanley–Reisner ring k��� =
k�x1� � � � � xn�/I� is a Cohen–Macaulay ring, then � is called a Cohen–Macaulay
complex.

The following are well known facts:

i) � is shellable ⇒ � is Cohen–Macaulay ⇒ � is pure;
ii) If � is Cohen–Macaulay, then � and lk��F	 are strongly connected for all faces

F of ��

Lemma 2.1. Let � be a �d − 1	-dimensional Cohen–Macaulay complex and F�G ∈
���	 with �F ∩G� < d − 1. Then, there exists a facet H ∈ ���	 such that �F ∩G	 ⊂
�H ∩G	 and �H ∩G� = d − 1�
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934 NAM AND VARBARO

Proof. From what said above lk��F ∩G	 is strongly connected. Set G′ =
G\�F ∩G	 and F ′ = F\�G ∩ F	. There exists a strongly connected sequence F ′ =
F ′
0� F

′
1� � � � � F

′
k = G′ of facets of lk��F ∩G	. Then it is enough to set H = F ′

k−1 ∪ �F ∩
G	. The lemma is proved. �

Let F be a face of �. Denote by BF the ideal �xi 
 vi � F	. Lemma 2.1 yields
the useful corollary below.

Corollary 2.2. Let � be a �d − 1	-dimensional Cohen–Macaulay complex with
���	 = �F1� � � � � Fm�. Then, for all i = 1� � � � � m,

⋂
j �=i

BFj
+ BFi

= ⋂
j �=i

�Fj∩Fi �=d−1

BFj∩Fi �

Proof. For i = 1� � � � � m, we have

⋂
j �=i

BFj
+ BFi

= ⋂
j �=i

�BFj
+ BFi

	 = ⋂
j �=i

�BFj∩Fi 	�

Using Lemma 2.1, we have the corollary. �

Definition 2.3. Let � be a �d − 1	-dimensional pure simplicial complex. We recall
that the facet graph of � (see White [16]), denoted by G��	, is defined as follows:

a) The set of vertices is V�G��		 = ���	,
b) The set of egdes is

E�G��		 = ��F�G� 
 F�G ∈ ���	 and �F ∩G� = d − 1��

Remark 2.4. Notice that a pure simplicial complex � is strongly connected if and
only if G��	 is connected.

We say that � is a Cohen–Macaulay complex without cycles in codimension 1 if
� is Cohen–Macaulay and G��	 is a tree.

Lemma 2.5. Let � be a �d − 1	-dimensional Cohen–Macaulay complex without
cycles in codimension 1 and F1� � � � � Fk be a strongly connected sequence with k ≥ 2.
Then we have �Fk ∩ F1	 ⊂ �F2 ∩ F1	�

Proof. We can assume F1 = �v1� � � � � vd�� F2 = �v2� � � � � vd+1�, and k > 2. Because
G��	 is a tree, �F1 ∩ Fk� < d − 1� If �Fk ∩ F1	 �⊂ �F2 ∩ F1	� then v1 ∈ Fk. Moreover,
we have lk��v1� is strongly connected. Set F ′

1 = F1\�v1� and F ′
k = Fk\�v1�. There

exists a sequence of facets of lk��v1�, namely F ′
1� F

′
t1
� � � � � F ′

th
� F ′

k, such that �F ′
1 ∩

F ′
t1
� = �F ′

t1
∩ F ′

t2
� = · · · = �F ′

th
∩ F ′

k� = d − 2� So we have the strongly connected
sequence F1� Ft1

� � � � � Fth
� Fk, with Ftj

= �v1� ∪ F ′
tj
for all j = 1� � � � � h. On the other
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COHEN–MACAULAYNESS OF MONOMIAL IDEALS 935

hand, since G��	 is a tree, then the sequence F1� Ft1
� � � � � Fth

� Fk coincides with the
sequence F1� F2� � � � � Fk. So F2 = �v1� ∪ F ′

t1
. This is a contradiction. �

Corollary 2.6. A Cohen–Macaulay complex without cycles in codimension 1 is
shellable.

Proof. Let � be a Cohen–Macaulay complex without cycles in codimension 1.
Because G��	 is a tree, we can choose a linear order F1� � � � � Fm over ���	 such that
Fj is a free vertex of G��	��F1�����Fj�, i.e., there exists only one edge of G��	��F1�����Fj�
which contains Fj . By using Lemma 2.5 and induction on m, it is easy to show that
F1� � � � � Fm is a shelling of �. Hence, � is shellable. �

Lemma 2.7. Let F1� � � � � Fm be a shelling of a Cohen–Macaulay complex � without
cycles in codimension 1. Then Fm is a free vertex of G��	.

Proof. If Fm is not a free vertex of G��	, then there exist distinct numbers h� k < m

such that �Fh ∩ Fm� = �Fk ∩ Fm� = d − 1� where dim��	 = d − 1. But �F1� � � � � Fm−1�
is shellable too. In particular, it is strongly connected. Then there exists a strongly
connected sequence Fh� Ft1

� � � � � Fts
� Fk, with each ti < m. Therefore, we have a cycle

Fh� Ft1
� � � � � Fts

� Fk� Fm� Fh in G��	, a contradiction. �

Definition 2.8. Let � be a �d − 1	-dimensional pure simplicial complex. For any
i = 1� � � � � n we define the graph Gi��	 as follows:

i) The set of vertices is V�Gi��		 = �Vi� ∪ �F ∈ ���	 
 vi � F�� where Vi is a new
vertex;

ii) The set of egdes is

E�Gi��		 = ��F�G� 
 �F ∩G� = d − 1�

∪ ��Vi� F� 
 there exists a facet G � vi and �G ∩ F � = d − 1��

The graph Gi��	 is called the vi-graph of ��

Remark 2.9. If � is a Cohen–Macaulay complex, G��	 and Gi��	 are connected
for i = 1� � � � � n�

Lemma 2.10. Let � be a Cohen–Macaulay complex without cycles in codimension 1.
Then Gi��	 is a tree for all i = 1� � � � � n�

Proof. Because G��	 is a tree, Gi��	 is not a tree if and only if there exists a
strongly connected sequence of facets F1� � � � � Fk such that vi ∈ F1� Fk and vi � Fj

for j = 2� � � � � k− 1� But by Lemma 2.5, we have �Fk ∩ F1	 ⊂ �F2 ∩ F1	. The proof
is completed. �
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936 NAM AND VARBARO

Example 2.11. Consider the following simplicial complex �:

3. THE COHEN–MACAULAYNESS FOR A SIMPLICIAL COMPLEX WITHOUT
CYCLES IN CODIMENSION 1

Throughout this section, � will be a �d − 1	-dimensional Cohen–Macaulay
complex without cycles in codimension 1. Moreover, the set of its facets will be
���	 = �F1� � � � � Fm�. The Stanley–Reisner ideal of � is

I� =
m⋂
j=1

�xi 
 vi � Fj	�
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COHEN–MACAULAYNESS OF MONOMIAL IDEALS 937

For i = 1� � � � � n, let �i = ��i�j	 
 j ∈ �1� � � � � m� and vi � Fj	 be positive integer
vectors. Set Qj = �x

�i�j	
i 
 vi � Fj	 for all j = 1� � � � � m, and define the following ideal:

I���	 =
m⋂
j=1

Qj�

Obviously, Qj is the BFj
-primary component of I���	 and

√
I���	 = I�.

For any vector a = �a1� � � � � an	 ∈ �n, denote by ���	a the subcomplex of �
with the set of facets

�����	a	 = �Fj ∈ ���	�ai < �i�j	 for all i such that vi � Fj��

By [12, Theorem 1.6], we have the following theorem.

Theorem 3.1. I���	 is Cohen–Macaulay if and only if ���	a is a Cohen–Macaulay
complex for all a ∈ �n�

Albeit Theorem 3.1 gives necessary and sufficient conditions for I���	 to be
Cohen–Macaulay, we would like to give a simpler characterization on the numbers
�i�j	. By some experiments with CoCoA [4] on some concrete examples, we came to
the following definition.

Definition 3.2. Let G be a tree. For any vertex v of G, we consider the directed
graph �G� v	 as follows:

i) The set of vertices is V��G� v		 = V�G	;
ii) The pair �u2� u1	 ∈ E��G� v		 iff there is a path v� uk� � � � � u2� u1 in G. We will call

it a directed edge of �G� v	.

By Lemma 2.10, Gi��	 is a tree for all i = 1� � � � � n� We have the following
definition.

Definition 3.3. A vector �i = ��i�j	 
 vi � Fj	 is called Gi��	-satisfying if �i�h	 ≥
�i�k	 for all directed edges �Fh� Fk	 of �Gi��	� Vi	� Moreover, � = ��i�j		 is called
�-satisfying if �i is G

i��	-satisfying for all i = 1� � � � � n�

Lemma 3.4. Let F1� � � � � Fm be a shelling of �. If � is �-satisfying, then there exists
i ∈ �1� � � � � n� and a positive integer s such that

m−1⋂
j=1

Qj +Qm = �xsi 	+Qm�

Proof. By Lemma 2.7, Fm is a free vertex of G��	. We can assume Fm =
�v1� � � � � vd� and there exists a facet Fh = �v2� � � � � vd+1� with Fj ∩ Fm � Fh ∩ Fm

for all j �= h�m, see Lemma 2.5. So Fj ∩ Fm is a proper subset of �v2� � � � � vd�
for all j �= h�m� Notice that for each i > d + 1, the pair �Fh� Fm	 is a directed
edge of �Gi��	� Vi	. Then, because � is �-satisfying, we have Qh +Qm = �x

�1�h	
1 	+
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938 NAM AND VARBARO

Qm. Moreover, �1�h	 ≥ �1�j	 for all j �= h�m, since �1 is G1��	-satisfying. Hence
�x

�1�h	
1 	 ⊂ Qj for all j �= h�m� So Qj +Qm ⊃ Qh +Qm for all j �= h�m� We have

m−1⋂
j=1

Qj +Qm =
m−1⋂
j=1

�Qj +Qm	 ⊇ �Qh ∩Qm	 = �x
�1�h	
1 	+Qm ⊇

m−1⋂
j=1

Qj +Qm�

So the lemma is proved. �

Theorem 3.5. Let � be a Cohen–Macaulay complex without cycles in codimension 1.
Then I���	 is Cohen–Macaulay if and only if � is �-satisfying.

Proof. We choose a shelling F1� � � � � Fm of �. We denote by �j the simplicial
complex with the set of facets ���j	 = �F1� � � � � Fj� and I�j��	

the ideal
⋂j

t=1 Qt� We
will prove the theorem by induction on m. This is obvious for m = 1� We assume
that the assertion is true for j = 1� � � � � m− 1� By Lemma 2.7, we have Fm is a
free vertex of G��	. So Fm is a free vertex of Gi��	 for all i = 1� � � � � n whenever
Fm is a vertex of Gi��	. If �i is Gi��	-satisfying for all i = 1� � � � � n, then ��i	��m−1

is Gi��m−1	-satisfying for all i = 1� � � � � n� By induction, we have R/I�k��	
are d-

dimensional Cohen–Macaulay rings for all k = 1� � � � � m− 1� We have the following
exact sequence:

0 → R/I�m��	

f−→R/I�m−1��	
⊕ R/Qm

g−→R/�I�m−1��	
+Qm	 → 0� (3.1)

By using Lemma 3.4 we have R/�I�m−1��	
+Qm	 is a �d − 1	-dimensional Cohen–

Macaulay ring. Because R/I�m−1��	
and R/Qm are Cohen–Macaulay rings of

dimension d, we have that R/I�m��	
is d-dimensional Cohen–Macaulay ring by [3,

Proposition 1.2.9].
Conversely, if there exists an index i such that �i is not G

i��	-satisfying, then
there exists a directed edge �Fh� Fk	 in Gi��	 such that �i�k	 > �i�h	� We choose the
vector a = �a1� � � � � an	 with

at =
{
�i�h	 if t = i�

0 otherwise�

It turns out that if a facet F of � contains the vertex vi, then F ∈ �����	a	.
Moreover, Fk ∈ �����	a	 and Fh � �����	a	. So, ���	a is not strongly connected.
Hence, ���	a is not Cohen–Macaulay. This is a contradiction with Theorem 3.1. �

Example 3.6. Let � be the simplicial complex of Example 2.11.

I� = �x3� x5� x6� x7� x8	 ∩ �x1� x3� x6� x7� x8	 ∩ �x1� x4� x6� x7� x8	

∩ �x1� x2� x3� x6� x8	 ∩ �x1� x2� x3� x5� x8	 ∩ �x1� x2� x3� x4� x6	�

The ideal I���	 is

�x
�3�1	
3 � x

�5�1	
5 � x

�6�1	
6 � x

�7�1	
7 � x

�8�1	
8 	 ∩ �x

�1�2	
1 � x

�3�2	
3 � x

�6�2	
6 � x

�7�2	
7 � x

�8�2	
8 	
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COHEN–MACAULAYNESS OF MONOMIAL IDEALS 939

∩ �x
�1�3	
1 � x

�4�3	
4 � x

�6�3	
6 � x

�7�3	
7 � x

�8�3	
8 	 ∩ �x

�1�4	
1 � x

�2�4	
2 � x

�3�4	
3 � x

�6�4	
6 � x

�8�4	
8 	

∩ �x
�1�5	
1 � x

�2�5	
2 � x

�3�5	
3 � x

�5�5	
5 � x

�8�5	
8 	 ∩ �x

�1�6	
1 � x

�2�6	
2 � x

�3�6	
3 � x

�4�6	
4 � x

�6�6	
6 	�

Theorem 3.5 tells us that I���	 is Cohen–Macaulay if and only if �4�3	, �4�6	, �5�1	,
and �5�5	 are arbitrary positive integers and �i�j	 are positive integers which satisfy
the order as in the following figure:

Of course, we can define I���+1	 for any vector � ∈ ��n	m in the obvious way.
For such an �, we say that it is �-satisfying if the collection of numbers ���i	j + 1	
where i = 1� � � � � n and vi � Fj is �-satisfying.

Corollary 3.7. Let � be a Cohen–Macaulay complex without cycles in codimension
1 and �� � be vectors in ��n	m such that I���+1	� I���+1	 are Cohen–Macaulay, then
I���+�+1	 is Cohen–Macaulay.

Proof. Because I���+1	 and I���+1	 are Cohen–Macaulay, then � and � are
�-satisfying. Thus, �+ � is �-satisfying. So I���+�+1	 is Cohen–Macaulay. �

Corollary 3.7 says that, if � is a Cohen–Macaulay complex without cycles in
codimension 1, the set

S = �� ∈ ��n	m 
 I���+1	 is Cohen–Macaulay�

is an affine semigroup. It is possible to describe a finite system of generators of S.
Fixed i ∈ �1� � � � � n�, the idea is to pick the vectors �H = ���p	q	, for any poset ideal
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940 NAM AND VARBARO

H of �Gi��	� vi	, such that the nonzero entries of � are just in �i and

��i	j =
{
1 if Fj ∈ Gi��	\H�

0 otherwise
�

Remark 3.8. The conclusion of Corollary 3.7 is not true for general complexes.
For instance, consider the square

��1� 2�� �2� 3�� �3� 4�� �4� 1���

Corollary 3.9. Let � be a Cohen–Macaulay complex without cycles in codimension 1
and

�i�j	 =
{
ai if i ∈ H� j ∈ K�

1 otherwise�

where H is a subset of �n�, K is a subset of �m� and ai are integer numbers bigger than
1 for all i ∈ H . Then I���	 is Cohen–Macaulay if and only if Gi��	��Vi�∪�Fj �j∈K� are trees
for all i ∈ H�

Proof. If Gi��	��Vi�∪�Fj �j∈K� are trees for all i ∈ H� we have �i is Gi��	-satisfying
for all i = 1� � � � � n� It implies that I���	 is Cohen–Macaulay. Conversely, if
Gi��	��Vi�∪�Fj �j∈K� is not a tree for some i, then �i is not G

i��	-satisfying. Therefore,
we conclude by Theorem 3.5. �

4. THE COHEN–MACAULAYNESS FOR A STRONGLY CONNECTED
QUASI-TREE

Let � be a �d − 1	-dimensional simplicial complex. Denote by fi the number
of i-dimensional faces of �. The vector f��	 = �f0� f1� � � � � fd−1	 is called f-vector of
�� The Hilbert series of the Stanley–Reisner ring is

Hk����t	 =
h0 + h1t + · · · + hst

s

�1− t	d
�

where s ≤ d. The finite sequence of integers h��	 = �h0� h1� � � � � hs	 is called the h-
vector of �� The multiplicity of the Stanley–Reisner ring is e�k���	 = ∑s

i=0 hi� The
h-vector and the f -vector of a simplicial complex are related by a formula. In
particular, we have:

h0 = 1� h1 = f0 − d and
s∑

i=0

hi = fd−1�

for instance see [3, Corollary 5.1.9]. So, e�k���	 ≥ 1+ �n− d	 for all Cohen–
Macaulay simplicial complexes �. A Cohen–Macaulay simplicial complex has
minimal multiplicity if e�k���	 = 1+ �n− d	.

We recall the following definition. The facet F of � is called a leaf of � if there
exists a facet G such that �H ∩ F	 ⊆ �G ∩ F	 for all H ∈ ���	� The facet G is called
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COHEN–MACAULAYNESS OF MONOMIAL IDEALS 941

a branch of F . A simplicial complex � is called a quasi-forest if there exists a total
order ���	 = �F1� � � � � Fm� such that Fi is a leaf of �F1� � � � � Fi� for all i = 1� � � � � m.
This order is called a leaf order of the quasi-forest. A connected quasi-forest is called
a quasi-tree. For properties about quasi-tree see the article of the first author with
Constantinescu [5]. Maybe the following statement is already known. However, we
did not find it anywhere, so we prefer to include a proof here.

Proposition 4.1. Let � be a simplicial complex. The following conditions are
equivalent:

(i) � is a strongly, connected complex with minimal multiplicity;
(ii) � is a Cohen–Macaulay complex with minimal multiplicity;
(iii) � is a shellable complex with minimal multiplicity;
(iv) � is a strongly connected quasi-tree.

Proof. We assume � is a �d − 1	-dimensional simplicial complex with n vertices
and m facets.

If � is strongly connected, we build the facets order by choosing the facet Fi

such that �F1� � � � � Fi� is strongly connected for all i = 1� � � � � m� We have

�Fi\
i−1⋃
j=1

Fj� ≤ 1�

for all i = 1� � � � � m� However, e�k���	 = 1+ �n− d	 = m. So, n = d + �m− 1	� This
implies �Fi\

⋃i−1
j=1 Fj� = 1 for all i = 2� � � � � m� By this fact, (i), (ii), (iii), and (iv) are

easily seen to be equivalent. �

Notice that by Proposition 4.1 one can easily deduce that the notion of
“strongly connected quasi-tree” coincides with the one of “tree” introduced in the
article of Jarrah and Laubenbacher [9, Definition 4.4]. However, we do not call them
trees because such a term is also used by other authors with a different meaning
(for instance see the article of Faridi [6, Definition 9]). An interesting consequence
of Proposition 4.1 and [9, Theorem 4.10] is that strongly connected quasi-trees are
exactly the clique complexes of a chordal graph.

Remark 4.2.

(i) � is a Cohen–Macaulay complex without cycles in codimension 1 ⇒ � is a
strongly connected quasi-tree.

(ii) The converse is not true. For example, � = ��1� 2�� �1� 3�� �1� 4��.

Definition 4.3. Let � be a strongly connected quasi-tree with the leaf order
F1� � � � � Fm� We define a relation tree of �, denoted by T��	, in the following way:

i) The vertices of T��	 are the facets of �;
ii) The edges are obtained recursively as follows:

a) Take the leaf Fm of � and choose a branch G of Fm.
b) Set �Fm�G� to be an edge of T��	.
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942 NAM AND VARBARO

c) Remove Fm from � and proceed with the remaining complex as before to
determine the other edges of T��	.

Remark 4.4.

(i) The graph T��	 depends on the leaf order and the choice of the branch for each
leaf. However, it is always a tree.

(ii) The tree T��	 is a spanning tree of G��	.
(iii) If � is a Cohen–Macaulay complex without cycles in codimension 1, then the

relation tree of � is G��	.

Lemma 4.5. Let � be a strongly connected quasi-tree with the relation tree T��	 and
F1� F2� � � � � Fk adjacent vertices in T��	� If the vertex v ∈ F1 ∩ Fk, then v ∈ Fi for all
i = 1� � � � � k�

Proof. Let G1� � � � �Gm be the leaf order corresponding with the relation tree T��	
and Fi = Gti

for all i = 1� � � � � k. Because F1� F2� � � � � Fk are adjacent vertices in T��	,
for all i = 1� � � � � k− 1 we have the following:

a) If ti < ti+1, then Fi is a branch of Fi+1;
b) If ti > ti+1, then Fi+1 is a branch of Fi�

We have following two cases:

Case 1: t1 < t2 < · · · < tk� So, Fi is a branch of Fi+1 for all i = 1� � � � � k−
1. This implies �F1 ∩ Fk	 ⊆ �Fk−1 ∩ Fk	, �F1 ∩ Fk−1	 ⊆ �Fk−2 ∩ Fk−1	� � � � � �F1 ∩ F3	 ⊆
�F2 ∩ F3	� Hence, v ∈ Fi for all i = 1� � � � � k.

Case 2: t1 > t2 > · · · > th < th+1 < · · · < tk� We can assume t1 < tk, then tk is
the biggest number in �t1� � � � � tk�. So, v ∈ F1 ∩ Fk ⊆ Fk−1 ∩ Fk� This implies v ∈ F1 ∩
Fk−1. We continue with the pair �t1� tk−1	, so on. Hence, v ∈ Fi for all i = 1� � � � � k.

�

For all i = 1� � � � � n, we define the graph T i��	 with the set of vertices
V�T i��		 = V�Gi��		 and the set of edge E�T i��		 = E�Gi��		 ∩ E�T��		. By
Lemma 4.5, we have the following corollary.

Corollary 4.6. With the above assumptions, T i��	 are trees for all i = 1� � � � � n�

We consider the directed trees �T i��	� Vi	.

Definition 4.7. Let � be a strongly connected quasi-tree and � = ��i�j		 for i =
1� � � � � n and j such that vi � Fj� The collection � is called �-satisfying if there exists
a relation tree T��	 such that, if the directed edge �Fh� Fk	 ∈ E��T i��	� Vi		, then
�i�h	 ≥ �i�k	�

The proof of Lemma 3.4 works also if � is a strongly connected quasi-tree.
So, arguing as in the proof of Theorem 3.5, we have the following theorem.

Theorem 4.8. Let � be a strongly connected quasi-tree and � be �-satisfying. Then,
I���	 is Cohen–Macaulay.
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COHEN–MACAULAYNESS OF MONOMIAL IDEALS 943

The converse is not true. For example, let � be the strongly connected quasi-
tree with the set of facets

���	 = ��1� 6�� �2� 6�� �3� 6�� �4� 6�� �5� 6���

The graph G��	 is the complete graph on �F1� � � � � F5�� The Stanley–Reisner ideal
I� is

�x2� x3� x4� x5	 ∩ �x1� x3� x4� x5	 ∩ �x1� x2� x4� x5	

∩ �x1� x2� x3� x5	 ∩ �x1� x2� x3� x4	�

Consider I���	:

�x22� x3� x4� x5	 ∩ �x1� x
2
3� x4� x5	 ∩ �x1� x2� x

2
4� x5	

∩ �x1� x2� x3� x
2
5	 ∩ �x21� x2� x3� x4	�

It is easy to check that I���	 is Cohen–Macaulay, but � is not �-satisfying.
We end the article by observing that we do not see how to extend the obtained

results to more general simplicial complexes.
Given a shellable simplicial complex � with ���	 = �F1� � � � � Fm�, we could

define a collection of positive integers � = ��i�j		, for i = 1� � � � � n and j such that
vi � Fj , to be �-satisfying if: For any i = 1� � � � � n there exists a shelling Fi1

� � � � � Fim

such that:

(1) There exists p = 1� � � � � m for which vi ∈
⋂p

h=1 Fih
and vi �

⋃m
h=p+1 Fih

;
(2) If �i�it	 > �i�is	, then t < s.

It is easy to see that Definitions 3.3 and 4.7 are included in the one above. However,
the analog of Theorem 4.8 does not hold in the general setting. For instance consider
� to be the square and the collection � corresponding to the following ideal:

I���	 = �x1� x
2
2	 ∩ �x1� x

3
3	 ∩ �x32� x4	 ∩ �x23� x4	�

Albeit � is �-satisfying, I���	 is not Cohen–Macaulay.
We can prove that I���	 is Cohen–Macaulay whenever � is �-satisfying and

there is an index i = 1� � � � � n such that �j is constant for any j �= i. But this is not so
nice, since in general, given a vertex of a shellable simplicial complex, we cannot find
any shelling for which the first condition of the general definition of “�-satisfying”
holds.
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944 NAM AND VARBARO

Example 4.9. The following example, due to Hachimori [7], is a modification of
the dunce hat. Consider the 2-dimensional simplicial complex �:

The above simplicial complex is easily seen to be shellable. However, for any shelling
F1� � � � � F13, we must have F13 = F . In fact, e is the only boundary of �, so if F13 �=
F then �12 ∩ �F13� = F13, where �12 denotes the simplicial complex �F1� � � � � F12�.
The Mayer-Vietories sequence yields the below long exact sequence of singular
homology groups:

· · · → H2��	 → H1��12 ∩ �F13�	 → H1��12	⊕H1��F13�	 → � � � �

Because �12 is a 2-dimensional shellable simplicial complex, Reisner’s theorem (see
[3, Corollary 5.3.9]) implies H1��12	 = H1��F13�	 = 0. On the other hand H1��12 ∩
�F13�	 = H1�F13	 �= 0. Thus the above exact sequence yields H2��	 �= 0. But this is a
contradiction, since, as it is easy to show, � is collapsible, in particular contractible.
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