Polytopes, dual graphs and line arrangements II

The algebraic point of view

ET'nA 2017

Catania, May 31 - June 4, 2017

Matteo Varbaro
Università degli Studi di Genova

- $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over a field $\mathbb{k} ;$
- $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over a field $\mathbb{k} ;$
- $\operatorname{deg}\left(x_{i}\right)=1 \forall i=1, \ldots, n$ (standard grading);
- $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over a field \mathbb{k};
- $\operatorname{deg}\left(x_{i}\right)=1 \forall i=1, \ldots, n$ (standard grading);
- $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$ the irrelevant ideal;
- $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over a field \mathbb{k};
- $\operatorname{deg}\left(x_{i}\right)=1 \forall i=1, \ldots, n$ (standard grading);
- $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$ the irrelevant ideal;
- $I \subset S$ homogeneous ideal.
- $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over a field \mathbb{k};
- $\operatorname{deg}\left(x_{i}\right)=1 \forall i=1, \ldots, n$ (standard grading);
- $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$ the irrelevant ideal;
- $I \subset S$ homogeneous ideal.

A minimal graded free resolution of S / I is a complex of free S-modules

$$
F_{\bullet}: \cdot \xrightarrow{d_{i+1}} F_{i} \xrightarrow{d_{i}} F_{i-1} \xrightarrow{d_{i-1}} \cdots \xrightarrow{d_{1}} F_{0} \rightarrow 0
$$

such that:

- $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over a field \mathbb{k};
- $\operatorname{deg}\left(x_{i}\right)=1 \forall i=1, \ldots, n$ (standard grading);
- $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$ the irrelevant ideal;
- $I \subset S$ homogeneous ideal.

A minimal graded free resolution of S / I is a complex of free S-modules

$$
F_{\bullet}: \cdot \xrightarrow{d_{i+1}} F_{i} \xrightarrow{d_{i}} F_{i-1} \xrightarrow{d_{i-1}} \cdots \xrightarrow{d_{1}} F_{0} \rightarrow 0
$$

such that:

- $F_{0}=S, d_{1}\left(F_{1}\right)=I$ and $H_{i}\left(F_{\bullet}\right)=0 \forall i>0$ ("resolution");
- $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over a field \mathbb{k};
- $\operatorname{deg}\left(x_{i}\right)=1 \forall i=1, \ldots, n$ (standard grading);
- $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$ the irrelevant ideal;
- $I \subset S$ homogeneous ideal.

A minimal graded free resolution of S / I is a complex of free S-modules

$$
F_{\bullet}: \cdot \xrightarrow{d_{i+1}} F_{i} \xrightarrow{d_{i}} F_{i-1} \xrightarrow{d_{i-1}} \cdots \xrightarrow{d_{1}} F_{0} \rightarrow 0
$$

such that:

- $F_{0}=S, d_{1}\left(F_{1}\right)=I$ and $H_{i}\left(F_{\bullet}\right)=0 \forall i>0$ ("resolution");
- for all $i>0$ and $j \in \mathbb{Z}, d_{i}\left(\left[F_{i}\right]_{j}\right) \subseteq\left[F_{i-1}\right]_{j}$ ("graded")
- $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over a field \mathbb{k};
- $\operatorname{deg}\left(x_{i}\right)=1 \forall i=1, \ldots, n$ (standard grading);
- $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$ the irrelevant ideal;
- $I \subset S$ homogeneous ideal.

A minimal graded free resolution of S / I is a complex of free S-modules

$$
F_{\bullet}: \cdot \xrightarrow{d_{i+1}} F_{i} \xrightarrow{d_{i}} F_{i-1} \xrightarrow{d_{i-1}} \cdots \xrightarrow{d_{1}} F_{0} \rightarrow 0
$$

such that:

- $F_{0}=S, d_{1}\left(F_{1}\right)=I$ and $H_{i}\left(F_{\bullet}\right)=0 \forall i>0$ ("resolution");
- for all $i>0$ and $j \in \mathbb{Z}, d_{i}\left(\left[F_{i}\right]_{j}\right) \subseteq\left[F_{i-1}\right]_{j}$ ("graded") and $d_{i}\left(F_{i}\right) \subset \mathfrak{m} F_{i-1}($ "minimal" $)$.

It is easy to check that a minimal graded free resolution of S / I always exists,

It is easy to check that a minimal graded free resolution of S / I always exists, and it is unique up to isomorphism of graded complexes of S-modules.

It is easy to check that a minimal graded free resolution of S / I always exists, and it is unique up to isomorphism of graded complexes of S-modules. Furthermore:

Hilbert syzygy theorem (1890)

If F_{\bullet} is the minimal graded free resolution of S / I, then $F_{i}=0$ whenever $i>n(n$ is the number of variables of S).

It is easy to check that a minimal graded free resolution of S / I always exists, and it is unique up to isomorphism of graded complexes of S-modules. Furthermore:

Hilbert syzygy theorem (1890)

If F_{\bullet} is the minimal graded free resolution of S / I, then $F_{i}=0$ whenever $i>n$ (n is the number of variables of S).

The projective dimension of S / I is the length of the minimal graded free resolution $F_{\text {© }}$ of S / I :

It is easy to check that a minimal graded free resolution of S / I always exists, and it is unique up to isomorphism of graded complexes of S-modules. Furthermore:

Hilbert syzygy theorem (1890)

If F_{0} is the minimal graded free resolution of S / I, then $F_{i}=0$ whenever $i>n$ (n is the number of variables of S).

The projective dimension of S / I is the length of the minimal graded free resolution $F_{\text {© }}$ of S / I :

$$
\operatorname{projdim} S / I=\max \left\{k: F_{k} \neq 0\right\} .
$$

It is easy to check that a minimal graded free resolution of S / I always exists, and it is unique up to isomorphism of graded complexes of S-modules. Furthermore:

Hilbert syzygy theorem (1890)

If F_{0} is the minimal graded free resolution of S / I, then $F_{i}=0$ whenever $i>n(n$ is the number of variables of S).

The projective dimension of S / I is the length of the minimal graded free resolution $F_{\text {© }}$ of S / I :

$$
\operatorname{projdim} S / I=\max \left\{k: F_{k} \neq 0\right\} .
$$

We always have projdim $S / I \geq$ ht I (recall that ht I equals the codimension of $\left.V(I) \subset \mathbb{P}^{n-1}\right)$.

It is easy to check that a minimal graded free resolution of S / I always exists, and it is unique up to isomorphism of graded complexes of S-modules. Furthermore:

Hilbert syzygy theorem (1890)

If F_{0} is the minimal graded free resolution of S / I, then $F_{i}=0$ whenever $i>n(n$ is the number of variables of S).

The projective dimension of S / I is the length of the minimal graded free resolution $F_{\text {© }}$ of S / I :

$$
\operatorname{projdim} S / I=\max \left\{k: F_{k} \neq 0\right\} .
$$

We always have projdim $S / I \geq$ ht I (recall that ht I equals the codimension of $\left.V(I) \subset \mathbb{P}^{n-1}\right)$. If equality holds, then S / I is called Cohen-Macaulay.

It is easy to check that a minimal graded free resolution of S / I always exists, and it is unique up to isomorphism of graded complexes of S-modules. Furthermore:

Hilbert syzygy theorem (1890)

If F_{\bullet} is the minimal graded free resolution of S / I, then $F_{i}=0$ whenever $i>n(n$ is the number of variables of $S)$.

The projective dimension of S / I is the length of the minimal graded free resolution $F_{\text {© }}$ of S / I :

$$
\operatorname{projdim} S / I=\max \left\{k: F_{k} \neq 0\right\} .
$$

We always have projdim $S / I \geq$ ht I (recall that ht I equals the codimension of $\left.V(I) \subset \mathbb{P}^{n-1}\right)$. If equality holds, then S / I is called Cohen-Macaulay. If furthermore $F_{\text {ht }} /$ has rank 1 , then S / I is said to be Gorenstein.

Being graded free S-modules, $F_{i}=\bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{i j}}$,

Being graded free S-modules, $F_{i}=\bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{i j}}$, and it is simple to check that the graded Betti numbers $\beta_{i j}$ are natural numbers and $\beta_{i j}=0$ whenever $j<i$ or $j \gg 0$.

Being graded free S-modules, $F_{i}=\bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{i j}}$, and it is simple to check that the graded Betti numbers $\beta_{i j}$ are natural numbers and $\beta_{i j}=0$ whenever $j<i$ or $j \gg 0$. So, it makes sense to define the (Castelnuovo-Mumford) regularity of S / I as:

$$
\operatorname{reg} S / I=\max \left\{j-i: \beta_{i j} \neq 0\right\}
$$

Being graded free S-modules, $F_{i}=\bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{i j}}$, and it is simple to check that the graded Betti numbers $\beta_{i j}$ are natural numbers and $\beta_{i j}=0$ whenever $j<i$ or $j \gg 0$. So, it makes sense to define the (Castelnuovo-Mumford) regularity of S / I as:

$$
\operatorname{reg} S / I=\max \left\{j-i: \beta_{i j} \neq 0\right\}
$$

Example

Let $S=\mathbb{k}[x, y, z, u]$ and $I=\left(x^{2}, y^{3} z^{4}, u^{30}\right)$.

Being graded free S-modules, $F_{i}=\bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{i j}}$, and it is simple to check that the graded Betti numbers $\beta_{i j}$ are natural numbers and $\beta_{i j}=0$ whenever $j<i$ or $j \gg 0$. So, it makes sense to define the (Castelnuovo-Mumford) regularity of S / I as:

$$
\operatorname{reg} S / I=\max \left\{j-i: \beta_{i j} \neq 0\right\}
$$

Example

Let $S=\mathbb{k}[x, y, z, u]$ and $I=\left(x^{2}, y^{3} z^{4}, u^{30}\right)$. Being I a complete intersection (I is generated by as many polynomials as its height) the minimal graded free resolution of S / I is provided by the Koszul complex of $x^{2}, y^{3} z^{4}, u^{30}$,

Being graded free S-modules, $F_{i}=\bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{i j}}$, and it is simple to check that the graded Betti numbers $\beta_{i j}$ are natural numbers and $\beta_{i j}=0$ whenever $j<i$ or $j \gg 0$. So, it makes sense to define the (Castelnuovo-Mumford) regularity of S / I as:

$$
\operatorname{reg} S / I=\max \left\{j-i: \beta_{i j} \neq 0\right\}
$$

Example

Let $S=\mathbb{k}[x, y, z, u]$ and $I=\left(x^{2}, y^{3} z^{4}, u^{30}\right)$. Being I a complete intersection (I is generated by as many polynomials as its height) the minimal graded free resolution of S / I is provided by the Koszul complex of $x^{2}, y^{3} z^{4}, u^{30}$, and has the form:

$$
\begin{aligned}
0 \rightarrow S(-39) & \longrightarrow S(-9) \oplus S(-32) \oplus S(-37)
\end{aligned} \longrightarrow
$$

Being graded free S-modules, $F_{i}=\bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{i j}}$, and it is simple to check that the graded Betti numbers $\beta_{i j}$ are natural numbers and $\beta_{i j}=0$ whenever $j<i$ or $j \gg 0$. So, it makes sense to define the (Castelnuovo-Mumford) regularity of S / I as:

$$
\operatorname{reg} S / I=\max \left\{j-i: \beta_{i j} \neq 0\right\}
$$

Example

Let $S=\mathbb{k}[x, y, z, u]$ and $I=\left(x^{2}, y^{3} z^{4}, u^{30}\right)$. Being I a complete intersection (I is generated by as many polynomials as its height) the minimal graded free resolution of S / I is provided by the Koszul complex of $x^{2}, y^{3} z^{4}, u^{30}$, and has the form:

$$
\begin{array}{r}
0 \rightarrow S(-39) \longrightarrow S(-9) \oplus S(-32) \oplus S(-37) \longrightarrow \\
S(-2) \oplus S(-7) \oplus S(-30) \longrightarrow S
\end{array}
$$

In particular, S / I is Gorenstein and reg $S / I=36$.

If $I=\left(f_{1}, \ldots, f_{h}\right) \subset S$ is a complete intersection where the f_{i} 's are homogeneous polynomials,

If $I=\left(f_{1}, \ldots, f_{h}\right) \subset S$ is a complete intersection where the f_{i} 's are homogeneous polynomials, then the Koszul complex of f_{1}, \ldots, f_{h} is the minimal graded free resolution of S / I.

If $I=\left(f_{1}, \ldots, f_{h}\right) \subset S$ is a complete intersection where the f_{i} 's are homogeneous polynomials, then the Koszul complex of f_{1}, \ldots, f_{h} is the minimal graded free resolution of S / I. From it, one sees that in this case S / I is Gorenstein and reg $S / I=\sum_{i=1}^{h} \operatorname{deg}\left(f_{i}\right)-h$.

If $I=\left(f_{1}, \ldots, f_{h}\right) \subset S$ is a complete intersection where the f_{i} 's are homogeneous polynomials, then the Koszul complex of f_{1}, \ldots, f_{h} is the minimal graded free resolution of S / I. From it, one sees that in this case S / I is Gorenstein and reg $S / I=\sum_{i=1}^{h} \operatorname{deg}\left(f_{i}\right)-h$.

However, there are many more Gorenstein rings than these:

If $I=\left(f_{1}, \ldots, f_{h}\right) \subset S$ is a complete intersection where the f_{i} 's are homogeneous polynomials, then the Koszul complex of f_{1}, \ldots, f_{h} is the minimal graded free resolution of S / I. From it, one sees that in this case S / I is Gorenstein and reg $S / I=\sum_{i=1}^{h} \operatorname{deg}\left(f_{i}\right)-h$.

However, there are many more Gorenstein rings than these:

Example

Consider the monomial ideal $I=\left(x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{4}, x_{2} x_{5}, x_{3} x_{5}\right)$ of $S=\mathbb{k}\left[x_{1}, \ldots, x_{5}\right]$.

If $I=\left(f_{1}, \ldots, f_{h}\right) \subset S$ is a complete intersection where the f_{i} 's are homogeneous polynomials, then the Koszul complex of f_{1}, \ldots, f_{h} is the minimal graded free resolution of S / I. From it, one sees that in this case S / I is Gorenstein and reg $S / I=\sum_{i=1}^{h} \operatorname{deg}\left(f_{i}\right)-h$.

However, there are many more Gorenstein rings than these:

Example

Consider the monomial ideal $I=\left(x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{4}, x_{2} x_{5}, x_{3} x_{5}\right)$ of $S=\mathbb{k}\left[x_{1}, \ldots, x_{5}\right]$. Then S / I is Gorenstein (although ht $I=3$).

If $I=\left(f_{1}, \ldots, f_{h}\right) \subset S$ is a complete intersection where the f_{i} 's are homogeneous polynomials, then the Koszul complex of f_{1}, \ldots, f_{h} is the minimal graded free resolution of S / I. From it, one sees that in this case S / I is Gorenstein and reg $S / I=\sum_{i=1}^{h} \operatorname{deg}\left(f_{i}\right)-h$.

However, there are many more Gorenstein rings than these:

Example

Consider the monomial ideal $I=\left(x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{4}, x_{2} x_{5}, x_{3} x_{5}\right)$ of $S=\mathbb{k}\left[x_{1}, \ldots, x_{5}\right]$. Then S / I is Gorenstein (although ht $I=3$). In this case $I=I_{\Delta}$ is the Stanley-Reisner ideal of the pentagon Δ :

If $I=\left(f_{1}, \ldots, f_{h}\right) \subset S$ is a complete intersection where the f_{i} 's are homogeneous polynomials, then the Koszul complex of f_{1}, \ldots, f_{h} is the minimal graded free resolution of S / I. From it, one sees that in this case S / I is Gorenstein and $\operatorname{reg} S / I=\sum_{i=1}^{h} \operatorname{deg}\left(f_{i}\right)-h$.

However, there are many more Gorenstein rings than these:

Example

Consider the monomial ideal $I=\left(x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{4}, x_{2} x_{5}, x_{3} x_{5}\right)$ of $S=\mathbb{k}\left[x_{1}, \ldots, x_{5}\right]$. Then S / I is Gorenstein (although ht $I=3$). In this case $I=I_{\Delta}$ is the Stanley-Reisner ideal of the pentagon Δ :

In general, if Δ is the triangulation of a sphere of dimension $d-1$ (e.g. the boundary of a simplicial d-polytope),

If $I=\left(f_{1}, \ldots, f_{h}\right) \subset S$ is a complete intersection where the f_{i} 's are homogeneous polynomials, then the Koszul complex of f_{1}, \ldots, f_{h} is the minimal graded free resolution of S / I. From it, one sees that in this case S / I is Gorenstein and reg $S / I=\sum_{i=1}^{h} \operatorname{deg}\left(f_{i}\right)-h$.

However, there are many more Gorenstein rings than these:

Example

Consider the monomial ideal $I=\left(x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{4}, x_{2} x_{5}, x_{3} x_{5}\right)$ of $S=\mathbb{k}\left[x_{1}, \ldots, x_{5}\right]$. Then S / I is Gorenstein (although ht $I=3$). In this case $I=I_{\Delta}$ is the Stanley-Reisner ideal of the pentagon Δ :

In general, if Δ is the triangulation of a sphere of dimension $d-1$ (e.g. the boundary of a simplicial d-polytope), then S / I_{Δ} is Gorenstein and reg $S / I_{\Delta}=d$.

For simplicity, from now on we will assume that I is radical. Let $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\}$ be the set of minimal prime ideals of I.

For simplicity, from now on we will assume that I is radical. Let $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\}$ be the set of minimal prime ideals of I. The dual graph $G(I)$ of I is the simple graph with:

- $[s]:=\{1, \ldots, s\}$ as vertex set;

For simplicity, from now on we will assume that I is radical. Let $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\}$ be the set of minimal prime ideals of I. The dual graph $G(I)$ of I is the simple graph with:

- $[s]:=\{1, \ldots, s\}$ as vertex set;
- edges $\{i, j\}$ such that $\operatorname{ht}\left(\mathfrak{p}_{i}+\mathfrak{p}_{j}\right)=\mathrm{ht} I+1$.

For simplicity, from now on we will assume that I is radical. Let $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\}$ be the set of minimal prime ideals of I. The dual graph $G(I)$ of I is the simple graph with:

- $[s]:=\{1, \ldots, s\}$ as vertex set;
- edges $\{i, j\}$ such that $\operatorname{ht}\left(\mathfrak{p}_{i}+\mathfrak{p}_{j}\right)=\mathrm{ht} I+1$.

Note that " $G(I)$ connected $\Rightarrow I$ height-unmixed (ht $\mathfrak{p}_{i}=\mathrm{ht} I \forall i$)".

For simplicity, from now on we will assume that I is radical. Let $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\}$ be the set of minimal prime ideals of I. The dual graph $G(I)$ of I is the simple graph with:

- $[s]:=\{1, \ldots, s\}$ as vertex set;
- edges $\{i, j\}$ such that $\operatorname{ht}\left(\mathfrak{p}_{i}+\mathfrak{p}_{j}\right)=\mathrm{ht} I+1$.

Note that " $G(I)$ connected $\Rightarrow I$ height-unmixed (ht $\mathfrak{p}_{i}=\mathrm{ht} I \forall i$)". On the other hand, in 1962 Hartshorne proved that:
S / I is Cohen-Macaulay $\Rightarrow G(I)$ is connected.

Given a subset $A \subseteq[s]$, by $G(I)_{A}$ we mean the subgraph of $G(I)$ induced on the vertices in A.

Given a subset $A \subseteq[s]$, by $G(I)_{A}$ we mean the subgraph of $G(I)$ induced on the vertices in A. Equivalently, $G(I)_{A}$ is the dual graph of the ideal $\cap_{i \in A} \mathfrak{p}_{i}$.

Given a subset $A \subseteq[s]$, by $G(I)_{A}$ we mean the subgraph of $G(I)$ induced on the vertices in A. Equivalently, $G(I)_{A}$ is the dual graph of the ideal $\cap_{i \in A} \mathfrak{p}_{i}$. Using ideas coming from liaison theory and some properties of local cohomology, we managed to prove the following:

Given a subset $A \subseteq[s]$, by $G(I)_{A}$ we mean the subgraph of $G(I)$ induced on the vertices in A. Equivalently, $G(I)_{A}$ is the dual graph of the ideal $\cap_{i \in A} \mathfrak{p}_{i}$. Using ideas coming from liaison theory and some properties of local cohomology, we managed to prove the following:

Theorem (Benedetti-V, 2015)

If S / I is Gorenstein, then $G(I)_{A}$ is connected whenever $A \subseteq[s]$ is such that reg $\cap_{i \in[s] \backslash A \mathfrak{p}_{i}}<\operatorname{reg} S / I$.

Given a subset $A \subseteq[s]$, by $G(I)_{A}$ we mean the subgraph of $G(I)$ induced on the vertices in A. Equivalently, $G(I)_{A}$ is the dual graph of the ideal $\cap_{i \in A} \mathfrak{p}_{i}$. Using ideas coming from liaison theory and some properties of local cohomology, we managed to prove the following:

Theorem (Benedetti-V, 2015)

If S / I is Gorenstein, then $G(I)_{A}$ is connected whenever $A \subseteq[s]$ is such that reg $\cap_{i \in[s] \backslash A \mathfrak{p}_{i}}<\operatorname{reg} S / I$.

The above result allows us to say something on the dual graph of an ideal defining a Gorenstein ring.

If Δ is a simplicial complex on n vertices, then the minimal prime ideals of I_{Δ} are $P_{F}=\left(x_{i}: i \notin F\right)$, for any facet $F \in \Delta$.

If Δ is a simplicial complex on n vertices, then the minimal prime ideals of I_{Δ} are $P_{F}=\left(x_{i}: i \notin F\right)$, for any facet $F \in \Delta$. So, the dual graph of Δ and the one of I_{Δ} are the same object!

If Δ is a simplicial complex on n vertices, then the minimal prime ideals of I_{Δ} are $P_{F}=\left(x_{i}: i \notin F\right)$, for any facet $F \in \Delta$. So, the dual graph of Δ and the one of I_{Δ} are the same object!

As explained by Bruno, Balinski's theorem states that, if Δ is the boundary of a simplicial d-polytope, then the dual graph of Δ is d-connected.

If Δ is a simplicial complex on n vertices, then the minimal prime ideals of I_{Δ} are $P_{F}=\left(x_{i}: i \notin F\right)$, for any facet $F \in \Delta$. So, the dual graph of Δ and the one of I_{Δ} are the same object!

As explained by Bruno, Balinski's theorem states that, if Δ is the boundary of a simplicial d-polytope, then the dual graph of Δ is d-connected. In this case, S / I_{Δ} is Gorenstein and reg $S / I_{\Delta}=d \ldots$

The ideal $I \subset S$ defines a subspace arrangement if I is the intersection of ideals generated by linear forms.

The ideal $I \subset S$ defines a subspace arrangement if I is the intersection of ideals generated by linear forms.
Being the intersection of ideals generated by variables, Stanley-Reisner ideals define subspace arrangements.

The ideal $I \subset S$ defines a subspace arrangement if I is the intersection of ideals generated by linear forms.

Being the intersection of ideals generated by variables, Stanley-Reisner ideals define subspace arrangements.

Theorem (Derksen-Sidman, 2002)
If $I=\mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{t}$ where each \mathfrak{p}_{i} is generated by linear forms, then

$$
\operatorname{reg} I \leq t
$$

Corollary (Benedetti-V, 2015)
If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein and reg $S / I=d$, then $G(I)$ is d-connected.

Corollary (Benedetti-V, 2015)

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein and reg $S / I=d$, then $G(I)$ is d-connected.

To prove it, let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ the minimal prime ideals of I (which by the assumption are generated by linear forms).

Corollary (Benedetti-V, 2015)

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein and reg $S / I=d$, then $G(I)$ is d-connected.

To prove it, let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ the minimal prime ideals of I (which by the assumption are generated by linear forms). Note that $d=\operatorname{reg} S / I<s$ by DS,

Corollary (Benedetti-V, 2015)

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein and reg $S / I=d$, then $G(I)$ is d-connected.

To prove it, let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ the minimal prime ideals of I (which by the assumption are generated by linear forms). Note that $d=\operatorname{reg} S / I<s$ by DS, so $G(I)$ has at least $d+1$ vertices.

Corollary (Benedetti-V, 2015)

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein and reg $S / I=d$, then $G(I)$ is d-connected.

To prove it, let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ the minimal prime ideals of I (which by the assumption are generated by linear forms). Note that $d=\operatorname{reg} S / I<s$ by DS, so $G(I)$ has at least $d+1$ vertices.

Now pick a set of vertices $A \subseteq[s]$ of cardinality less than d.

Corollary (Benedetti-V, 2015)

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein and reg $S / I=d$, then $G(I)$ is d-connected.

To prove it, let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ the minimal prime ideals of I (which by the assumption are generated by linear forms). Note that $d=\operatorname{reg} S / I<s$ by DS, so $G(I)$ has at least $d+1$ vertices.

Now pick a set of vertices $A \subseteq[s]$ of cardinality less than d. Then reg $\cap_{i \in A} \mathfrak{p}_{i}<d$ again by DS,

Corollary (Benedetti-V, 2015)

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein and reg $S / I=d$, then $G(I)$ is d-connected.

To prove it, let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ the minimal prime ideals of I (which by the assumption are generated by linear forms). Note that $d=\operatorname{reg} S / I<s$ by DS, so $G(I)$ has at least $d+1$ vertices.

Now pick a set of vertices $A \subseteq[s]$ of cardinality less than d. Then reg $\cap_{i \in A \mathfrak{p}_{i}}<d$ again by DS, so $G(I)_{[s] \backslash A}$ is connected by BV.

Corollary (Benedetti-V, 2015)

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein and reg $S / I=d$, then $G(I)$ is d-connected.

To prove it, let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ the minimal prime ideals of I (which by the assumption are generated by linear forms). Note that $d=\operatorname{reg} S / I<s$ by DS, so $G(I)$ has at least $d+1$ vertices.

Now pick a set of vertices $A \subseteq[s]$ of cardinality less than d. Then reg $\cap_{i \in A} \mathfrak{p}_{i}<d$ again by DS, so $G(I)_{[s] \backslash A}$ is connected by BV. \square

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity d, then $G(I)$ is d-connected.

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity d, then $G(I)$ is d-connected. Can $G(I)$ be r-connected for $r>d$?

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity d, then $G(I)$ is d-connected. Can $G(I)$ be r-connected for $r>d$?

If Δ is the boundary of a simplicial d-polytope (or more generally a triangulation of a ($d-1$)-sphere),

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity d, then $G(I)$ is d-connected. Can $G(I)$ be r-connected for $r>d$?

If Δ is the boundary of a simplicial d-polytope (or more generally a triangulation of a $(d-1)$-sphere), then each facet shares each of its codimension 1 faces with exactly one other facet.

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity d, then $G(I)$ is d-connected. Can $G(I)$ be r-connected for $r>d$?

If Δ is the boundary of a simplicial d-polytope (or more generally a triangulation of a $(d-1)$-sphere), then each facet shares each of its codimension 1 faces with exactly one other facet. On the dual graph, this translates into the fact that each vertex has exactly d neighbors;

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity d, then $G(I)$ is d-connected. Can $G(I)$ be r-connected for $r>d$?

If Δ is the boundary of a simplicial d-polytope (or more generally a triangulation of a $(d-1)$-sphere), then each facet shares each of its codimension 1 faces with exactly one other facet. On the dual graph, this translates into the fact that each vertex has exactly d neighbors; In other words, the dual graph of a triangulation of a $(d-1)$-sphere is d-regular,

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity d, then $G(I)$ is d-connected. Can $G(I)$ be r-connected for $r>d$?

If Δ is the boundary of a simplicial d-polytope (or more generally a triangulation of a ($d-1$)-sphere), then each facet shares each of its codimension 1 faces with exactly one other facet. On the dual graph, this translates into the fact that each vertex has exactly d neighbors; In other words, the dual graph of a triangulation of a $(d-1)$-sphere is d-regular, in particular it is not $(d+1)$-connected.

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity d, then $G(I)$ is d-connected. Can $G(I)$ be r-connected for $r>d$?

If Δ is the boundary of a simplicial d-polytope (or more generally a triangulation of a $(d-1)$-sphere), then each facet shares each of its codimension 1 faces with exactly one other facet. On the dual graph, this translates into the fact that each vertex has exactly d neighbors; In other words, the dual graph of a triangulation of a $(d-1)$-sphere is d-regular, in particular it is not $(d+1)$-connected. On the other hand:

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity d, then $G(I)$ is d-connected. Can $G(I)$ be r-connected for $r>d$?

If Δ is the boundary of a simplicial d-polytope (or more generally a triangulation of a ($d-1$)-sphere), then each facet shares each of its codimension 1 faces with exactly one other facet. On the dual graph, this translates into the fact that each vertex has exactly d neighbors; In other words, the dual graph of a triangulation of a $(d-1)$-sphere is d-regular, in particular it is not $(d+1)$-connected. On the other hand:

Example

Take f and g homogeneous polynomials of degrees a and b in $\mathbb{k}[x, y, z]$.

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity d, then $G(I)$ is d-connected. Can $G(I)$ be r-connected for $r>d$?

If Δ is the boundary of a simplicial d-polytope (or more generally a triangulation of a $(d-1)$-sphere), then each facet shares each of its codimension 1 faces with exactly one other facet. On the dual graph, this translates into the fact that each vertex has exactly d neighbors; In other words, the dual graph of a triangulation of a $(d-1)$-sphere is d-regular, in particular it is not $(d+1)$-connected. On the other hand:

Example

Take f and g homogeneous polynomials of degrees a and b in $\mathbb{k}[x, y, z]$. If they generate a radical ideal J of height $2, V(J)$ will consist in $a b$ points in \mathbb{P}^{2}.

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity d, then $G(I)$ is d-connected. Can $G(I)$ be r-connected for $r>d$?

If Δ is the boundary of a simplicial d-polytope (or more generally a triangulation of a $(d-1)$-sphere), then each facet shares each of its codimension 1 faces with exactly one other facet. On the dual graph, this translates into the fact that each vertex has exactly d neighbors; In other words, the dual graph of a triangulation of a $(d-1)$-sphere is d-regular, in particular it is not $(d+1)$-connected. On the other hand:

Example

Take f and g homogeneous polynomials of degrees a and b in $\mathbb{k}[x, y, z]$. If they generate a radical ideal J of height $2, V(J)$ will consist in $a b$ points in \mathbb{P}^{2}. If $I=(f, g) \subset S=\mathbb{k}[x, y, z, w], V(I) \subset \mathbb{P}^{3}$ consists of $a b$ lines passing through the point $[0 ; 0 ; 0 ; 1]$.

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity d, then $G(I)$ is d-connected. Can $G(I)$ be r-connected for $r>d$?

If Δ is the boundary of a simplicial d-polytope (or more generally a triangulation of a $(d-1)$-sphere), then each facet shares each of its codimension 1 faces with exactly one other facet. On the dual graph, this translates into the fact that each vertex has exactly d neighbors; In other words, the dual graph of a triangulation of a $(d-1)$-sphere is d-regular, in particular it is not $(d+1)$-connected. On the other hand:

Example

Take f and g homogeneous polynomials of degrees a and b in $\mathbb{k}[x, y, z]$. If they generate a radical ideal J of height $2, V(J)$ will consist in $a b$ points in \mathbb{P}^{2}. If $I=(f, g) \subset S=\mathbb{k}[x, y, z, w], V(I) \subset \mathbb{P}^{3}$ consists of $a b$ lines passing through the point $[0 ; 0 ; 0 ; 1]$. So $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity $a+b-2$,

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity d, then $G(I)$ is d-connected. Can $G(I)$ be r-connected for $r>d$?

If Δ is the boundary of a simplicial d-polytope (or more generally a triangulation of a $(d-1)$-sphere), then each facet shares each of its codimension 1 faces with exactly one other facet. On the dual graph, this translates into the fact that each vertex has exactly d neighbors; In other words, the dual graph of a triangulation of a $(d-1)$-sphere is d-regular, in particular it is not $(d+1)$-connected. On the other hand:

Example

Take f and g homogeneous polynomials of degrees a and b in $\mathbb{k}[x, y, z]$. If they generate a radical ideal J of height $2, V(J)$ will consist in $a b$ points in \mathbb{P}^{2}. If $I=(f, g) \subset S=\mathbb{k}[x, y, z, w], V(I) \subset \mathbb{P}^{3}$ consists of $a b$ lines passing through the point $[0 ; 0 ; 0 ; 1]$. So $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity $a+b-2$, but $G(I)$ is the complete graph on $a b$ vertices,

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity d, then $G(I)$ is d-connected. Can $G(I)$ be r-connected for $r>d$?

If Δ is the boundary of a simplicial d-polytope (or more generally a triangulation of a $(d-1)$-sphere), then each facet shares each of its codimension 1 faces with exactly one other facet. On the dual graph, this translates into the fact that each vertex has exactly d neighbors; In other words, the dual graph of a triangulation of a $(d-1)$-sphere is d-regular, in particular it is not $(d+1)$-connected. On the other hand:

Example

Take f and g homogeneous polynomials of degrees a and b in $\mathbb{k}[x, y, z]$. If they generate a radical ideal J of height $2, V(J)$ will consist in $a b$ points in \mathbb{P}^{2}. If $I=(f, g) \subset S=\mathbb{k}[x, y, z, w], V(I) \subset \mathbb{P}^{3}$ consists of $a b$ lines passing through the point $[0 ; 0 ; 0 ; 1]$. So $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity $a+b-2$, but $G(I)$ is the complete graph on $a b$ vertices, in particular it is $(a b-1)$-connected,

If $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity d, then $G(I)$ is d-connected. Can $G(I)$ be r-connected for $r>d$?

If Δ is the boundary of a simplicial d-polytope (or more generally a triangulation of a $(d-1)$-sphere), then each facet shares each of its codimension 1 faces with exactly one other facet. On the dual graph, this translates into the fact that each vertex has exactly d neighbors; In other words, the dual graph of a triangulation of a $(d-1)$-sphere is d-regular, in particular it is not $(d+1)$-connected. On the other hand:

Example

Take f and g homogeneous polynomials of degrees a and b in $\mathbb{k}[x, y, z]$. If they generate a radical ideal J of height $2, V(J)$ will consist in $a b$ points in \mathbb{P}^{2}. If $I=(f, g) \subset S=\mathbb{k}[x, y, z, w], V(I) \subset \mathbb{P}^{3}$ consists of $a b$ lines passing through the point $[0 ; 0 ; 0 ; 1]$. So $I \subset S$ defines a subspace arrangement, S / I is Gorenstein of regularity $a+b-2$, but $G(I)$ is the complete graph on $a b$ vertices, in particular it is $(a b-1)$-connected, although $a b-1>a+b-2$ whenever $\min \{a, b\} \geq 2$.

Let $I \subset S$ define a subspace arrangement $V=V(I) \subset \mathbb{P}^{n-1}$.

Let $I \subset S$ define a subspace arrangement $V=V(I) \subset \mathbb{P}^{n-1}$. So $V=\cup_{i=1}^{s} V_{i}$, where the V_{i} 's are linear subspaces of \mathbb{P}^{n-1}.

Let $I \subset S$ define a subspace arrangement $V=V(I) \subset \mathbb{P}^{n-1}$. So $V=\cup_{i=1}^{s} V_{i}$, where the V_{i} 's are linear subspaces of \mathbb{P}^{n-1}. We say that V is a hypersurface in codimension 1 if, whenever $\cap_{i \in A} V_{i}$ has codimension 1 in $V, \cup_{i \in A} V_{i}$ is a hyperplane arrangement.

Let $I \subset S$ define a subspace arrangement $V=V(I) \subset \mathbb{P}^{n-1}$. So $V=\cup_{i=1}^{s} V_{i}$, where the V_{i} 's are linear subspaces of \mathbb{P}^{n-1}. We say that V is a hypersurface in codimension 1 if, whenever $\cap_{i \in A} V_{i}$ has codimension 1 in $V, \cup_{i \in A} V_{i}$ is a hyperplane arrangement.

Remarks

1. If $\cap_{i \in A} V_{i}$ has codimension more than 1 whenever $|A|>2$ (that is the usual case), then V is a hypersurface in codimension 1.

Let $I \subset S$ define a subspace arrangement $V=V(I) \subset \mathbb{P}^{n-1}$. So $V=\cup_{i=1}^{s} V_{i}$, where the V_{i} 's are linear subspaces of \mathbb{P}^{n-1}. We say that V is a hypersurface in codimension 1 if, whenever $\cap_{i \in A} V_{i}$ has codimension 1 in $V, \cup_{i \in A} V_{i}$ is a hyperplane arrangement.

Remarks

1. If $\cap_{i \in A} V_{i}$ has codimension more than 1 whenever $|A|>2$ (that is the usual case), then V is a hypersurface in codimension 1.
2. For line arrangements, being a hypersurface in codimension 1 means that if three or more lines in the arrangement meet at the same point, they must be coplanar.

Let $I \subset S$ define a subspace arrangement $V=V(I) \subset \mathbb{P}^{n-1}$. So $V=\cup_{i=1}^{s} V_{i}$, where the V_{i} 's are linear subspaces of \mathbb{P}^{n-1}. We say that V is a hypersurface in codimension 1 if, whenever $\cap_{i \in A} V_{i}$ has codimension 1 in $V, \cup_{i \in A} V_{i}$ is a hyperplane arrangement.

Remarks

1. If $\cap_{i \in A} V_{i}$ has codimension more than 1 whenever $|A|>2$ (that is the usual case), then V is a hypersurface in codimension 1.
2. For line arrangements, being a hypersurface in codimension 1 means that if three or more lines in the arrangement meet at the same point, they must be coplanar. This notion is also known has having planar singularities.

Let $I \subset S$ define a subspace arrangement $V=V(I) \subset \mathbb{P}^{n-1}$. So $V=\cup_{i=1}^{s} V_{i}$, where the V_{i} 's are linear subspaces of \mathbb{P}^{n-1}. We say that V is a hypersurface in codimension 1 if, whenever $\cap_{i \in A} V_{i}$ has codimension 1 in $V, \cup_{i \in A} V_{i}$ is a hyperplane arrangement.

Remarks

1. If $\cap_{i \in A} V_{i}$ has codimension more than 1 whenever $|A|>2$ (that is the usual case), then V is a hypersurface in codimension 1.
2. For line arrangements, being a hypersurface in codimension 1 means that if three or more lines in the arrangement meet at the same point, they must be coplanar. This notion is also known has having planar singularities.
3. Stanley-Reisner ideals defining Gorenstein rings are as in 1 .,

Let $I \subset S$ define a subspace arrangement $V=V(I) \subset \mathbb{P}^{n-1}$. So $V=\cup_{i=1}^{s} V_{i}$, where the V_{i} 's are linear subspaces of \mathbb{P}^{n-1}. We say that V is a hypersurface in codimension 1 if, whenever $\cap_{i \in A} V_{i}$ has codimension 1 in $V, \cup_{i \in A} V_{i}$ is a hyperplane arrangement.

Remarks

1. If $\cap_{i \in A} V_{i}$ has codimension more than 1 whenever $|A|>2$ (that is the usual case), then V is a hypersurface in codimension 1.
2. For line arrangements, being a hypersurface in codimension 1 means that if three or more lines in the arrangement meet at the same point, they must be coplanar. This notion is also known has having planar singularities.
3. Stanley-Reisner ideals defining Gorenstein rings are as in 1 ., so the subspace arrangement they define is a hypersurface in codimension 1.

Let $I \subset S$ define a subspace arrangement $V=V(I) \subset \mathbb{P}^{n-1}$. So $V=\cup_{i=1}^{s} V_{i}$, where the V_{i} 's are linear subspaces of \mathbb{P}^{n-1}. We say that V is a hypersurface in codimension 1 if, whenever $\cap_{i \in A} V_{i}$ has codimension 1 in $V, \cup_{i \in A} V_{i}$ is a hyperplane arrangement.

Remarks

1. If $\cap_{i \in A} V_{i}$ has codimension more than 1 whenever $|A|>2$ (that is the usual case), then V is a hypersurface in codimension 1.
2. For line arrangements, being a hypersurface in codimension 1 means that if three or more lines in the arrangement meet at the same point, they must be coplanar. This notion is also known has having planar singularities.
3. Stanley-Reisner ideals defining Gorenstein rings are as in 1 ., so the subspace arrangement they define is a hypersurface in codimension 1.

Theorem (Benedetti-Di Marca-V, 2016)

Let $I \subset S$ define an subspace arrangement such that S / I is Gorenstein.

Theorem (Benedetti-Di Marca-V, 2016)

Let $I \subset S$ define an subspace arrangement such that S / I is Gorenstein. If $V(I)$ is a hypersurface in codimension 1 , then the following are equivalent:

Theorem (Benedetti-Di Marca-V, 2016)

Let $I \subset S$ define an subspace arrangement such that S / I is Gorenstein. If $V(I)$ is a hypersurface in codimension 1 , then the following are equivalent:

- reg $S / I=d$;
- $G(I)$ is d-connected but not $(d+1)$-connected;

Theorem (Benedetti-Di Marca-V, 2016)

Let $I \subset S$ define an subspace arrangement such that S / I is Gorenstein. If $V(I)$ is a hypersurface in codimension 1 , then the following are equivalent:

- reg $S / I=d$;
- $G(I)$ is d-connected but not $(d+1)$-connected;
- $G(I)$ is d-regular.

Theorem (Benedetti-Di Marca-V, 2016)

Let $I \subset S$ define an subspace arrangement such that S / I is Gorenstein. If $V(I)$ is a hypersurface in codimension 1 , then the following are equivalent:

- reg $S / I=d$;
- $G(I)$ is d-connected but not $(d+1)$-connected;
- $G(I)$ is d-regular.

Note that, if a line arrangement lies on a smooth surface of \mathbb{P}^{3}, then it automatically has planar singularities ...

Let $Z=V(f) \subseteq \mathbb{P}^{3}$ be a smooth cubic,

Let $Z=V(f) \subseteq \mathbb{P}^{3}$ be a smooth cubic, and $X=V(I)=\bigcup_{i=1}^{27} X_{i}$ be the union of all the lines on Z.

Let $Z=V(f) \subseteq \mathbb{P}^{3}$ be a smooth cubic, and $X=V(I)=\bigcup_{i=1}^{27} X_{i}$ be the union of all the lines on Z. Below is a representation of the Clebsch's cubic, given by:

$$
f=x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}-\left(x_{0}+x_{1}+x_{2}+x_{3}\right)^{3}
$$

Let $Z=V(f) \subseteq \mathbb{P}^{3}$ be a smooth cubic, and $X=V(I)=\bigcup_{i=1}^{27} X_{i}$ be the union of all the lines on Z. Below is a representation of the Clebsch's cubic, given by:

$$
f=x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}-\left(x_{0}+x_{1}+x_{2}+x_{3}\right)^{3}
$$

The cubic Z is the blow-up of \mathbb{P}^{2} along $\cup_{i=1}^{6} P_{i}$; let E_{i} denote the exceptional divisor corresponding to P_{i}.

The cubic Z is the blow-up of \mathbb{P}^{2} along $\cup_{i=1}^{6} P_{i}$; let E_{i} denote the exceptional divisor corresponding to P_{i}. Let us describe $G(I)$:

The cubic Z is the blow-up of \mathbb{P}^{2} along $\cup_{i=1}^{6} P_{i}$; let E_{i} denote the exceptional divisor corresponding to P_{i}. Let us describe $G(I)$:

- let i be the vertex corresponding to E_{i};

The cubic Z is the blow-up of \mathbb{P}^{2} along $\cup_{i=1}^{6} P_{i}$; let E_{i} denote the exceptional divisor corresponding to P_{i}. Let us describe $G(I)$:

- let i be the vertex corresponding to E_{i};
- let $i j$ be the vertex corresponding to the strict transform of the line passing through P_{i} and P_{j};

The cubic Z is the blow-up of \mathbb{P}^{2} along $\cup_{i=1}^{6} P_{i}$; let E_{i} denote the exceptional divisor corresponding to P_{i}. Let us describe $G(I)$:

- let i be the vertex corresponding to E_{i};
- let $i j$ be the vertex corresponding to the strict transform of the line passing through P_{i} and P_{j};
- let i be the vertex corresponding to the strict transform of the unique conic passing through all P_{j} with $j \neq i$;

The cubic Z is the blow-up of \mathbb{P}^{2} along $\cup_{i=1}^{6} P_{i}$; let E_{i} denote the exceptional divisor corresponding to P_{i}. Let us describe $G(I)$:

- let i be the vertex corresponding to E_{i};
- let $i j$ be the vertex corresponding to the strict transform of the line passing through P_{i} and P_{j};
- let i be the vertex corresponding to the strict transform of the unique conic passing through all P_{j} with $j \neq i$;

The cubic Z is the blow-up of \mathbb{P}^{2} along $\cup_{i=1}^{6} P_{i}$; let E_{i} denote the exceptional divisor corresponding to P_{i}. Let us describe $G(I)$:

- let i be the vertex corresponding to E_{i};
- let $i j$ be the vertex corresponding to the strict transform of the line passing through P_{i} and P_{j};
- let i be the vertex corresponding to the strict transform of the unique conic passing through all P_{j} with $j \neq i$;
One easily checks that:
- $\{i, j k\}$ is an edge of $G(I) \Leftrightarrow i \in\{j, k\}$;

The cubic Z is the blow-up of \mathbb{P}^{2} along $\cup_{i=1}^{6} P_{i}$; let E_{i} denote the exceptional divisor corresponding to P_{i}. Let us describe $G(I)$:

- let i be the vertex corresponding to E_{i};
- let $i j$ be the vertex corresponding to the strict transform of the line passing through P_{i} and P_{j};
- let i be the vertex corresponding to the strict transform of the unique conic passing through all P_{j} with $j \neq i$;
One easily checks that:
- $\{i, j k\}$ is an edge of $G(I) \Leftrightarrow i \in\{j, k\}$;
- $\{i, j\}$ is an edge of $G(I) \Leftrightarrow i \neq j$;

The cubic Z is the blow-up of \mathbb{P}^{2} along $\cup_{i=1}^{6} P_{i}$; let E_{i} denote the exceptional divisor corresponding to P_{i}. Let us describe $G(I)$:

- let i be the vertex corresponding to E_{i};
- let $i j$ be the vertex corresponding to the strict transform of the line passing through P_{i} and P_{j};
- let i be the vertex corresponding to the strict transform of the unique conic passing through all P_{j} with $j \neq i$;
One easily checks that:
- $\{i, j k\}$ is an edge of $G(I) \Leftrightarrow i \in\{j, k\}$;
- $\{i, j\}$ is an edge of $G(I) \Leftrightarrow i \neq j$;
- $\{i j, k\}$ is an edge of $G(I) \Leftrightarrow k \in\{i, j\}$;

The cubic Z is the blow-up of \mathbb{P}^{2} along $\cup_{i=1}^{6} P_{i}$; let E_{i} denote the exceptional divisor corresponding to P_{i}. Let us describe $G(I)$:

- let i be the vertex corresponding to E_{i};
- let $i j$ be the vertex corresponding to the strict transform of the line passing through P_{i} and P_{j};
- let i be the vertex corresponding to the strict transform of the unique conic passing through all P_{j} with $j \neq i$;
One easily checks that:
- $\{i, j k\}$ is an edge of $G(I) \Leftrightarrow i \in\{j, k\}$;
- $\{i, j\}$ is an edge of $G(I) \Leftrightarrow i \neq j$;
- $\{i j, k\}$ is an edge of $G(I) \Leftrightarrow k \in\{i, j\}$;
- $\{i j, h k\}$ is an edge of $G(I) \Leftrightarrow\{i, j\} \cap\{h, k\}=\emptyset$;

The cubic Z is the blow-up of \mathbb{P}^{2} along $\cup_{i=1}^{6} P_{i}$; let E_{i} denote the exceptional divisor corresponding to P_{i}. Let us describe $G(I)$:

- let i be the vertex corresponding to E_{i};
- let $i j$ be the vertex corresponding to the strict transform of the line passing through P_{i} and P_{j};
- let i be the vertex corresponding to the strict transform of the unique conic passing through all P_{j} with $j \neq i$;
One easily checks that:
- $\{i, j k\}$ is an edge of $G(I) \Leftrightarrow i \in\{j, k\}$;
- $\{i, j\}$ is an edge of $G(I) \Leftrightarrow i \neq j$;
- $\{i j, k\}$ is an edge of $G(I) \Leftrightarrow k \in\{i, j\}$;
- $\{i j, h k\}$ is an edge of $G(I) \Leftrightarrow\{i, j\} \cap\{h, k\}=\emptyset$;
- $\{i, j\}$ and $\{i, j\}$ are never edges of $G(I)$.

One can realize that $I=(f, g)$, where f is the polynomial defining the cubic and g is the product of nine linear forms.

One can realize that $I=(f, g)$, where f is the polynomial defining the cubic and g is the product of nine linear forms. So S / I is Gorenstein of regularity $3+9-2=10$;

One can realize that $I=(f, g)$, where f is the polynomial defining the cubic and g is the product of nine linear forms. So S / I is Gorenstein of regularity $3+9-2=10$; one can verify that:

- $G(I)$ is 10 -connected;
- $G(I)$ is 10 -regular,

One can realize that $I=(f, g)$, where f is the polynomial defining the cubic and g is the product of nine linear forms. So S / I is Gorenstein of regularity $3+9-2=10$; one can verify that:

- $G(I)$ is 10 -connected;
- $G(I)$ is 10 -regular,
which confirms our theorem.

If, among the 27 lines on a smooth cubic, we take only the 6 corresponding to the exceptional divisors

If, among the 27 lines on a smooth cubic, we take only the 6 corresponding to the exceptional divisors and the 6 corresponding to the strict transforms of the conics,

If, among the 27 lines on a smooth cubic, we take only the 6 corresponding to the exceptional divisors and the 6 corresponding to the strict transforms of the conics, we get a line arrangement $X=V(I) \subseteq \mathbb{P}^{3}$ known as Schläfli double six.

If, among the 27 lines on a smooth cubic, we take only the 6 corresponding to the exceptional divisors and the 6 corresponding to the strict transforms of the conics, we get a line arrangement $X=V(I) \subseteq \mathbb{P}^{3}$ known as Schläfli double six. One can check that $I=(f, g)$, where f is the polynomial defining the cubic and g is a polynomial of degree 4 coprime with f.

If, among the 27 lines on a smooth cubic, we take only the 6 corresponding to the exceptional divisors and the 6 corresponding to the strict transforms of the conics, we get a line arrangement $X=V(I) \subseteq \mathbb{P}^{3}$ known as Schläfli double six. One can check that $I=(f, g)$, where f is the polynomial defining the cubic and g is a polynomial of degree 4 coprime with f. So S / I is Gorenstein and $\operatorname{reg} S / I=3+4-2=5$.

If, among the 27 lines on a smooth cubic, we take only the 6 corresponding to the exceptional divisors and the 6 corresponding to the strict transforms of the conics, we get a line arrangement $X=V(I) \subseteq \mathbb{P}^{3}$ known as Schläfli double six. One can check that $I=(f, g)$, where f is the polynomial defining the cubic and g is a polynomial of degree 4 coprime with f. So S / I is Gorenstein and $\operatorname{reg} S / I=3+4-2=5 . G(I)$ is:

If, among the 27 lines on a smooth cubic, we take only the 6 corresponding to the exceptional divisors and the 6 corresponding to the strict transforms of the conics, we get a line arrangement $X=V(I) \subseteq \mathbb{P}^{3}$ known as Schläfli double six. One can check that $I=(f, g)$, where f is the polynomial defining the cubic and g is a polynomial of degree 4 coprime with f. So S / I is Gorenstein and $\operatorname{reg} S / I=3+4-2=5 . G(I)$ is:

- $G(I)$ is 5-connected.
- $G(I)$ is 5 -regular.

Given a d-dimensional simplicial complex Δ, by taking $d-1$ general hyperplane sections of $V\left(I_{\Delta}\right)$ we get a line arrangement with same dual graph as Δ.

Given a d-dimensional simplicial complex Δ, by taking $d-1$ general hyperplane sections of $V\left(I_{\Delta}\right)$ we get a line arrangement with same dual graph as Δ. The 27 lines and Schläfli double six arrangements do not arise in this way:

Given a d-dimensional simplicial complex Δ, by taking $d-1$ general hyperplane sections of $V\left(I_{\Delta}\right)$ we get a line arrangement with same dual graph as Δ. The 27 lines and Schläfli double six arrangements do not arise in this way:

Concerning Schläfli's double six, for example, the dual graph has diameter 3,

Given a d-dimensional simplicial complex Δ, by taking $d-1$ general hyperplane sections of $V\left(I_{\Delta}\right)$ we get a line arrangement with same dual graph as Δ. The 27 lines and Schläfli double six arrangements do not arise in this way:

Concerning Schläfli's double six, for example, the dual graph has diameter 3, while the dual graph of any normal simplicial complex of codimension 2 has diameter at most 2 .

Given a d-dimensional simplicial complex Δ, by taking $d-1$ general hyperplane sections of $V\left(I_{\Delta}\right)$ we get a line arrangement with same dual graph as Δ. The 27 lines and Schläfli double six arrangements do not arise in this way:

Concerning Schläfli's double six, for example, the dual graph has diameter 3 , while the dual graph of any normal simplicial complex of codimension 2 has diameter at most 2 .

For the moment, we are not able to find a family of complete intersection line arrangements in \mathbb{P}^{3} with dual graph of arbitrarily large diameter (not even >3) ...

