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Minimal graded free resolutions

S = k[x1, . . . , xn] polynomial ring over a field k;

deg(xi ) = 1 ∀ i = 1, . . . , n (standard grading);

m = (x1, . . . , xn) the irrelevant ideal;

I ⊂ S homogeneous ideal.

A minimal graded free resolution of S/I is a complex of free
S-modules

F• : · di+1−−→ Fi
di−→ Fi−1

di−1−−→ · · · d1−→ F0 → 0

such that:

F0 = S , d1(F1) = I and Hi (F•) = 0 ∀ i > 0 (“resolution”);

for all i > 0 and j ∈ Z, di ([Fi ]j) ⊆ [Fi−1]j (“graded”) and
di (Fi ) ⊂ mFi−1 (“minimal”).
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Minimal graded free resolutions

It is easy to check that a minimal graded free resolution of S/I
always exists,

and it is unique up to isomorphism of graded
complexes of S-modules. Furthermore:

Hilbert syzygy theorem (1890)

If F• is the minimal graded free resolution of S/I , then Fi = 0
whenever i > n (n is the number of variables of S).

The projective dimension of S/I is the length of the minimal
graded free resolution F• of S/I :

projdim S/I = max{k : Fk 6= 0}.

We always have projdim S/I ≥ ht I (recall that ht I equals the
codimension of V (I ) ⊂ Pn−1). If equality holds, then S/I is called
Cohen-Macaulay. If furthermore Fht I has rank 1, then S/I is said
to be Gorenstein.
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Castelnuovo-Mumford regularity

Being graded free S-modules, Fi =
⊕

j∈Z S(−j)βij ,

and it is simple
to check that the graded Betti numbers βij are natural numbers
and βij = 0 whenever j < i or j � 0. So, it makes sense to define
the (Castelnuovo-Mumford) regularity of S/I as:

reg S/I = max{j − i : βij 6= 0}.

Example

Let S = k[x , y , z , u] and I = (x2, y3z4, u30). Being I a complete
intersection (I is generated by as many polynomials as its height)
the minimal graded free resolution of S/I is provided by the Koszul
complex of x2, y3z4, u30, and has the form:

0→ S(−39) −→ S(−9)⊕ S(−32)⊕ S(−37) −→
S(−2)⊕ S(−7)⊕ S(−30) −→ S → 0

In particular, S/I is Gorenstein and reg S/I = 36.
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Gorenstein rings

If I = (f1, . . . , fh) ⊂ S is a complete intersection where the fi ’s are
homogeneous polynomials,

then the Koszul complex of f1, . . . , fh is
the minimal graded free resolution of S/I . From it, one sees that
in this case S/I is Gorenstein and reg S/I =

∑h
i=1 deg(fi )− h.

However, there are many more Gorenstein rings than these:

Example

Consider the monomial ideal I = (x1x3, x1x4, x2x4, x2x5, x3x5) of
S = k[x1, . . . , x5]. Then S/I is Gorenstein (although ht I = 3). In
this case I = I∆ is the Stanley-Reisner ideal of the pentagon ∆:

In general, if ∆ is the triangulation of a sphere
of dimension d − 1 (e.g. the boundary of a sim-
plicial d-polytope), then S/I∆ is Gorenstein and
reg S/I∆ = d .
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Dual graphs

For simplicity, from now on we will assume that I is radical. Let
{p1, . . . , ps} be the set of minimal prime ideals of I . The dual
graph G (I ) of I is the simple graph with:

[s] := {1, . . . , s} as vertex set;

edges {i , j} such that ht(pi + pj) = ht I + 1.

Note that “G (I ) connected ⇒ I height-unmixed (ht pi = ht I ∀i)”.
On the other hand, in 1962 Hartshorne proved that:

S/I is Cohen-Macaulay ⇒ G (I ) is connected.
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Connectedness properties of dual graphs

Given a subset A ⊆ [s], by G (I )A we mean the subgraph of G (I )
induced on the vertices in A.

Equivalently, G (I )A is the dual graph
of the ideal ∩i∈Api . Using ideas coming from liaison theory and
some properties of local cohomology, we managed to prove the
following:

Theorem (Benedetti-V, 2015)

If S/I is Gorenstein, then G (I )A is connected whenever A ⊆ [s] is
such that reg∩i∈[s]\Api < reg S/I .

The above result allows us to say something on the dual graph of
an ideal defining a Gorenstein ring.

7 / 19



Connectedness properties of dual graphs

Given a subset A ⊆ [s], by G (I )A we mean the subgraph of G (I )
induced on the vertices in A. Equivalently, G (I )A is the dual graph
of the ideal ∩i∈Api .

Using ideas coming from liaison theory and
some properties of local cohomology, we managed to prove the
following:

Theorem (Benedetti-V, 2015)

If S/I is Gorenstein, then G (I )A is connected whenever A ⊆ [s] is
such that reg∩i∈[s]\Api < reg S/I .

The above result allows us to say something on the dual graph of
an ideal defining a Gorenstein ring.

7 / 19



Connectedness properties of dual graphs

Given a subset A ⊆ [s], by G (I )A we mean the subgraph of G (I )
induced on the vertices in A. Equivalently, G (I )A is the dual graph
of the ideal ∩i∈Api . Using ideas coming from liaison theory and
some properties of local cohomology, we managed to prove the
following:

Theorem (Benedetti-V, 2015)

If S/I is Gorenstein, then G (I )A is connected whenever A ⊆ [s] is
such that reg∩i∈[s]\Api < reg S/I .

The above result allows us to say something on the dual graph of
an ideal defining a Gorenstein ring.

7 / 19



Connectedness properties of dual graphs

Given a subset A ⊆ [s], by G (I )A we mean the subgraph of G (I )
induced on the vertices in A. Equivalently, G (I )A is the dual graph
of the ideal ∩i∈Api . Using ideas coming from liaison theory and
some properties of local cohomology, we managed to prove the
following:

Theorem (Benedetti-V, 2015)

If S/I is Gorenstein, then G (I )A is connected whenever A ⊆ [s] is
such that reg∩i∈[s]\Api < reg S/I .

The above result allows us to say something on the dual graph of
an ideal defining a Gorenstein ring.

7 / 19



Connectedness properties of dual graphs

Given a subset A ⊆ [s], by G (I )A we mean the subgraph of G (I )
induced on the vertices in A. Equivalently, G (I )A is the dual graph
of the ideal ∩i∈Api . Using ideas coming from liaison theory and
some properties of local cohomology, we managed to prove the
following:

Theorem (Benedetti-V, 2015)

If S/I is Gorenstein, then G (I )A is connected whenever A ⊆ [s] is
such that reg∩i∈[s]\Api < reg S/I .

The above result allows us to say something on the dual graph of
an ideal defining a Gorenstein ring.

7 / 19



Connectedness properties of dual graphs

If ∆ is a simplicial complex on n vertices, then the minimal prime
ideals of I∆ are PF = (xi : i /∈ F ), for any facet F ∈ ∆.

So, the
dual graph of ∆ and the one of I∆ are the same object !

As explained by Bruno, Balinski’s theorem states that, if ∆ is the
boundary of a simplicial d-polytope, then the dual graph of ∆ is
d-connected. In this case, S/I∆ is Gorenstein and reg S/I∆ = d ...
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Subspace arrangements

The ideal I ⊂ S defines a subspace arrangement if I is the
intersection of ideals generated by linear forms.

Being the intersection of ideals generated by variables,
Stanley-Reisner ideals define subspace arrangements.

Theorem (Derksen-Sidman, 2002)

If I = p1 ∩ · · · ∩ pt where each pi is generated by linear forms, then

reg I ≤ t.
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Subspace arrangements

Corollary (Benedetti-V, 2015)

If I ⊂ S defines a subspace arrangement, S/I is Gorenstein and
reg S/I = d , then G (I ) is d-connected.

To prove it, let p1, . . . , ps the minimal prime ideals of I (which by
the assumption are generated by linear forms). Note that
d = reg S/I < s by DS, so G (I ) has at least d + 1 vertices.

Now pick a set of vertices A ⊆ [s] of cardinality less than d . Then
reg∩i∈Api < d again by DS, so G (I )[s]\A is connected by BV. �
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Subspace arrangements

If I ⊂ S defines a subspace arrangement, S/I is Gorenstein of regularity
d , then G (I ) is d-connected.

Can G (I ) be r -connected for r > d?

If ∆ is the boundary of a simplicial d-polytope (or more generally a
triangulation of a (d − 1)-sphere), then each facet shares each of its
codimension 1 faces with exactly one other facet. On the dual graph, this
translates into the fact that each vertex has exactly d neighbors; In other
words, the dual graph of a triangulation of a (d − 1)-sphere is d-regular,
in particular it is not (d + 1)-connected. On the other hand:

Example

Take f and g homogeneous polynomials of degrees a and b in k[x , y , z ].
If they generate a radical ideal J of height 2, V (J) will consist in ab
points in P2. If I = (f , g) ⊂ S = k[x , y , z ,w ], V (I ) ⊂ P3 consists of ab
lines passing through the point [0; 0; 0; 1]. So I ⊂ S defines a subspace
arrangement, S/I is Gorenstein of regularity a + b − 2, but G (I ) is the
complete graph on ab vertices, in particular it is (ab − 1)-connected,
although ab − 1 > a + b − 2 whenever min{a, b} ≥ 2.
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Subspace arrangements hypersurfaces in codimension 1

Let I ⊂ S define a subspace arrangement V = V (I ) ⊂ Pn−1.

So
V = ∪si=1Vi , where the Vi ’s are linear subspaces of Pn−1. We say
that V is a hypersurface in codimension 1 if, whenever ∩i∈AVi

has codimension 1 in V , ∪i∈AVi is a hyperplane arrangement.

Remarks

1. If ∩i∈AVi has codimension more than 1 whenever |A| > 2 (that
is the usual case), then V is a hypersurface in codimension 1.

2. For line arrangements, being a hypersurface in codimension 1
means that if three or more lines in the arrangement meet at the
same point, they must be coplanar. This notion is also known has
having planar singularities.

3. Stanley-Reisner ideals defining Gorenstein rings are as in 1., so
the subspace arrangement they define is a hypersurface in
codimension 1.
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Subspace arrangements hypersurfaces in codimension 1

Theorem (Benedetti-Di Marca-V, 2016)

Let I ⊂ S define an subspace arrangement such that S/I is
Gorenstein.

If V (I ) is a hypersurface in codimension 1, then the
following are equivalent:

reg S/I = d ;

G (I ) is d-connected but not (d + 1)-connected;

G (I ) is d-regular.

Note that, if a line arrangement lies on a smooth surface of P3,
then it automatically has planar singularities ...
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27 lines

Let Z = V (f ) ⊆ P3 be a smooth cubic, and X = V (I ) =
⋃27

i=1 Xi

be the union of all the lines on Z . Below is a representation of the
Clebsch’s cubic, given by:

f = x3
0 + x3

1 + x3
2 + x3

3 − (x0 + x1 + x2 + x3)3.
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27 lines

The cubic Z is the blow-up of P2 along ∪6
i=1Pi ; let Ei denote the

exceptional divisor corresponding to Pi .

Let us describe G (I ):

let i be the vertex corresponding to Ei ;

let ij be the vertex corresponding to the strict transform of
the line passing through Pi and Pj ;

let i be the vertex corresponding to the strict transform of the
unique conic passing through all Pj with j 6= i ;

One easily checks that:

{i , jk} is an edge of G (I ) ⇔ i ∈ {j , k};
{i , j} is an edge of G (I ) ⇔ i 6= j ;

{ij , k} is an edge of G (I ) ⇔ k ∈ {i , j};
{ij , hk} is an edge of G (I ) ⇔ {i , j} ∩ {h, k} = ∅;
{i , j} and {i , j} are never edges of G (I ).
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27 lines

One can realize that I = (f , g), where f is the polynomial defining
the cubic and g is the product of nine linear forms.

So S/I is
Gorenstein of regularity 3 + 9− 2 = 10; one can verify that:

G (I ) is 10-connected;

G (I ) is 10-regular,

which confirms our theorem.
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Schläfli double six

If, among the 27 lines on a smooth cubic, we take only the 6
corresponding to the exceptional divisors and the 6 corresponding
to the strict transforms of the conics, we get a line arrangement
X = V (I ) ⊆ P3 known as Schläfli double six. One can check that
I = (f , g), where f is the polynomial defining the cubic and g is a
polynomial of degree 4 coprime with f . So S/I is Gorenstein and
reg S/I = 3 + 4− 2 = 5. G (I ) is:

G (I ) is 5-connected.

G (I ) is 5-regular.
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X = V (I ) ⊆ P3 known as Schläfli double six. One can check that
I = (f , g), where f is the polynomial defining the cubic and g is a
polynomial of degree 4 coprime with f . So S/I is Gorenstein and
reg S/I = 3 + 4− 2 = 5. G (I ) is:

G (I ) is 5-connected.

G (I ) is 5-regular.

17 / 19
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X = V (I ) ⊆ P3 known as Schläfli double six. One can check that
I = (f , g), where f is the polynomial defining the cubic and g is a
polynomial of degree 4 coprime with f . So S/I is Gorenstein and
reg S/I = 3 + 4− 2 = 5. G (I ) is:

G (I ) is 5-connected.

G (I ) is 5-regular.

17 / 19



Stanley-Reisner ideals vs line arrangements

Given a d-dimensional simplicial complex ∆, by taking d − 1
general hyperplane sections of V (I∆) we get a line arrangement
with same dual graph as ∆. The 27 lines and Schläfli double six
arrangements do not arise in this way:

Concerning Schläfli’s double six, for example, the dual graph has
diameter 3, while the dual graph of any normal simplicial complex
of codimension 2 has diameter at most 2.

For the moment, we are not able to find a family of complete
intersection line arrangements in P3 with dual graph of arbitrarily
large diameter (not even > 3) ...
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arrangements do not arise in this way:
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THANKS !!
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