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@ deg(x;) =1V i=1,...,n (standard grading);
@ m = (xi,...,X,) the irrelevant ideal;

@ | C 5§ homogeneous ideal.

A minimal graded free resolution of S// is a complex of free
S-modules

d; d; di—1 d
Fo:-—5%F S F -5 5 F—0

such that:
@ Fp =S5, di(F1) =1 and H;j(Fs) =0V i >0 ("“resolution”);

o forall i >0and ;€ Z, di([F];) C [Fi-1]; (“graded”) and
di(Fi) € mF;_1 (“minimal™).
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always exists, and it is unique up to isomorphism of graded
complexes of S-modules. Furthermore:

Hilbert syzygy theorem (1890)

If Fo is the minimal graded free resolution of S//, then F; =0
whenever i > n (n is the number of variables of S).

The projective dimension of S// is the length of the minimal
graded free resolution F, of S/I:

projdim S/l = max{k : Fx # 0}.

We always have projdim S// > ht | (recall that ht / equals the
codimension of V/(I) C P"~1). If equality holds, then S// is called
Cohen-Macaulay. If furthermore Fy;; has rank 1, then S// is said
to be Gorenstein.
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and 3jj = 0 whenever j < ior j > 0. So, it makes sense to define
the (Castelnuovo-Mumford) regularity of S// as:

reg S/l = max{j —i: Bj # 0}.

Let S =K[x,y,z, u] and | = (x?, y3z* u30). Being | a complete
intersection (/ is generated by as many polynomials as its height)

the minimal graded free resolution of S// is provided by the Koszul

complex of x2, y3z* 13, and has the form:

0— S(—39) — S(—9) ® S(—32) & S(—37) —
S(—2)eS(-7)®S(—30) — S—0

In particular, S/I is Gorenstein and reg S/l = 36.
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homogeneous polynomials, then the Koszul complex of fi,..., f, is
the minimal graded free resolution of S//. From it, one sees that
in this case S// is Gorenstein and reg S/| = Z,’-’Zl deg(f;) — h.

However, there are many more Gorenstein rings than these:

Consider the monomial ideal | = (x1x3, x1X4, XoX4, X2X5, X3Xs5) Of
S =Kk[xi1,...,xs5]. Then S/I is Gorenstein (although ht/ = 3). In
this case | = Ip is the Stanley-Reisner ideal of the pentagon A:

! In general, if A is the triangulation of a sphere
z@n of dimension d — 1 (e.g. the boundary of a sim-
\ plicial d-polytope), then S/In is Gorenstein and

:;\ | regS//A:d.
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For simplicity, from now on we will assume that / is radical. Let
{p1,...,ps} be the set of minimal prime ideals of /. The dual
graph G(/) of I is the simple graph with:

o [s]:={1,...,s} as vertex set;
e edges {/,/} such that ht(p; +p;) =ht/ + 1.

Note that “G(/) connected = [ height-unmixed (htp; = ht / Vi)".
On the other hand, in 1962 Hartshorne proved that:

S/Iis Cohen-Macaulay =- G(/) is connected.
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Given a subset A C [s], by G(/)a we mean the subgraph of G(/)
induced on the vertices in A. Equivalently, G(/)a is the dual graph
of the ideal N;cap;. Using ideas coming from liaison theory and
some properties of local cohomology, we managed to prove the
following:

Theorem (Benedetti-V, 2015)

If S/1 is Gorenstein, then G(/)a is connected whenever A C [s] is
such that reg Njcspapi < reg S/I.

The above result allows us to say something on the dual graph of
an ideal defining a Gorenstein ring.
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Being the intersection of ideals generated by variables,
Stanley-Reisner ideals define subspace arrangements.

Theorem (Derksen-Sidman, 2002)

If I =p3N---Np: where each p; is generated by linear forms, then

regl <t.
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triangulation of a (d — 1)-sphere), then each facet shares each of its
codimension 1 faces with exactly one other facet. On the dual graph, this
translates into the fact that each vertex has exactly d neighbors; In other
words, the dual graph of a triangulation of a (d — 1)-sphere is d-regular,
in particular it is not (d + 1)-connected. On the other hand:

Take f and g homogeneous polynomials of degrees a and b in Kk[x, y, z].
If they generate a radical ideal J of height 2, V(J) will consist in ab
points in P2, If | = (f,g) C S =Kk[x,y,z,w], V(I) C P? consists of ab
lines passing through the point [0;0; 0; 1].
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If they generate a radical ideal J of height 2, V(J) will consist in ab
points in P2, If | = (f,g) C S =Kk[x,y,z,w], V(I) C P? consists of ab
lines passing through the point [0;0;0;1]. So / C S defines a subspace
arrangement, S// is Gorenstein of regularity a+ b — 2, but G(/) is the
complete graph on ab vertices, in particular it is (ab — 1)-connected,
although ab — 1 > a+ b — 2 whenever min{a, b} > 2.
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Theorem (Benedetti-Di Marca-V, 2016)

Let / C S define an subspace arrangement such that S// is
Gorenstein. If V(1) is a hypersurface in codimension 1, then the
following are equivalent:

o regS/l =d,

@ G(I) is d-connected but not (d + 1)-connected;

e G(I) is d-regular.

Note that, if a line arrangement lies on a smooth surface of P3,
then it automatically has planar singularities ...
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@ let / be the vertex corresponding to the strict transform of the
unique conic passing through all P; with j # i;
One easily checks that:
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e {i,j} is an edge of G(I) & i # j;
o {ij,k} is an edge of G(I) & k € {i,j};
e {ij, hk} is an edge of G(I) & {i,j} N{h k} =10;
e {i,j} and {/,j} are never edges of G(/).
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One can realize that | = (f, g), where f is the polynomial defining
the cubic and g is the product of nine linear forms. So S// is
Gorenstein of regularity 3 + 9 — 2 = 10; one can verify that:

e G(/) is 10-connected;
e G(I) is 10-regular,

which confirms our theorem.

16 /19



17/19



If, among the 27 lines on a smooth cubic, we take only the 6
corresponding to the exceptional divisors

17/19



If, among the 27 lines on a smooth cubic, we take only the 6
corresponding to the exceptional divisors and the 6 corresponding
to the strict transforms of the conics,

17/19



If, among the 27 lines on a smooth cubic, we take only the 6
corresponding to the exceptional divisors and the 6 corresponding
to the strict transforms of the conics, we get a line arrangement
X = V(1) C P3 known as Schlifli double six.

17/19



If, among the 27 lines on a smooth cubic, we take only the 6
corresponding to the exceptional divisors and the 6 corresponding
to the strict transforms of the conics, we get a line arrangement

X = V(1) C P3 known as Schlifli double six. One can check that
| = (f,g), where f is the polynomial defining the cubic and g is a
polynomial of degree 4 coprime with f.

17/19



If, among the 27 lines on a smooth cubic, we take only the 6
corresponding to the exceptional divisors and the 6 corresponding
to the strict transforms of the conics, we get a line arrangement

X = V(1) C P3 known as Schlifli double six. One can check that
| = (f,g), where f is the polynomial defining the cubic and g is a
polynomial of degree 4 coprime with f. So S// is Gorenstein and
regS/l =3+4—-2=5.

17/19



If, among the 27 lines on a smooth cubic, we take only the 6
corresponding to the exceptional divisors and the 6 corresponding
to the strict transforms of the conics, we get a line arrangement

X = V(1) C P3 known as Schlifli double six. One can check that
| = (f,g), where f is the polynomial defining the cubic and g is a
polynomial of degree 4 coprime with f. So S// is Gorenstein and
regS/l =3+4—-2=5. G(I) is:

17/19



If, among the 27 lines on a smooth cubic, we take only the 6
corresponding to the exceptional divisors and the 6 corresponding
to the strict transforms of the conics, we get a line arrangement

X = V(1) C P3 known as Schlifli double six. One can check that
| = (f,g), where f is the polynomial defining the cubic and g is a
polynomial of degree 4 coprime with f. So S// is Gorenstein and
regS/l =3+4—-2=5. G(I) is:

@ G(I) is 5-connected.
e G(I) is 5-regular.
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Given a d-dimensional simplicial complex A, by taking d — 1
general hyperplane sections of V/(/a) we get a line arrangement
with same dual graph as A. The 27 lines and Schlafli double six
arrangements do not arise in this way:

Concerning Schlafli's double six, for example, the dual graph has
diameter 3, while the dual graph of any normal simplicial complex
of codimension 2 has diameter at most 2.

For the moment, we are not able to find a family of complete

intersection line arrangements in P2 with dual graph of arbitrarily
large diameter (not even > 3) ...
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