Commutative algebra of Stanley-Reisner rings

Matteo Varbaro (University of Genoa, Italy)

January 2016, Borel seminar SM'ART, Les Diablerets, Switzerland

Matteo Varbaro (University of Genoa, Italy) Commutative algebra of Stanley-Reisner rings

Let d < n be positive integers. Consider the *moment curve*

$$\{(t, t^2, \ldots, t^d) : t \in \mathbb{R}\} \subseteq \mathbb{R}^d,$$

take *n* distinct points on it and let *P* be the convex hull of them. It is not difficult to show that the combinatorial type of the polytope *P* does not depend on the chosen points, so we denote *P* by C(n, d) and call it a cyclic polytope.

Recall that the number of *i*-dimensional faces of a polytope P is denoted by $f_i(P)$. One can check that:

$$f_i(C(n,d)) = inom{n}{i+1} \quad \forall \ 0 \leq i \leq \lfloor d/2
floor - 1.$$

Upper Bound Conjecture (Motzkin, 1957)

For any d-polytope P on n vertices we have

 $f_i(P) \leq f_i(C(n,d)) \quad \forall \ i=0,\ldots,d.$

Clearly $f_i(P) \leq \binom{n}{i+1}$ for any polytope on *n* vertices and $i \in \mathbb{N}$, so:

$$f_i(P) \leq f_i(C(n,d)) \quad \forall \ i=0,\ldots,\lfloor d/2 \rfloor -1.$$

It is easy to reduce the UBC to *simplicial* polytopes (btw, C(n, d) is simplicial). In 1964, **Klee** conjectured that the UBC is valid more generally for any triangulation Δ on *n* vertices of a (d - 1)-sphere.

It is easy to see that the UBC for a (d-1)-sphere would follow by the inequalities:

$$h_i \leq \binom{n-d+i-1}{i} \quad \forall \ i=0,\ldots,d,$$

where $h_i = \sum_{j=0}^{i} (-1)^{i-j} {d-j \choose d-i} f_{i-1}$. By the Stanley-Reisner correspondence, we can exploit tools from commutative algebra and infer the inequality above by the simple fact that the degree *i* monomials in n - d variables are $\binom{n-d+i-1}{i}$

Let *n* be a positive integer and $[n] := \{1, \ldots, n\}$.

A simplicial complex Δ on [n] is a subset of $2^{[n]}$ such that:

$$\sigma \in \Delta, \ \tau \subseteq \sigma \implies \tau \in \Delta.$$

For simplicity, when $i \in [n]$, we write $i \in \Delta$ if $\{i\} \in \Delta$ and refer to i as a *vertex* of Δ .

Any element of Δ is called *face*, and a face maximal by inclusion is called *facet*. The set of facets is denoted by $\mathcal{F}(\Delta)$.

EXAMPLE: A matroid is a simplicial complex on its ground set: faces correspond to *independent sets*, and facets to *bases*.

Simplicial complexes I

Given a subset $A \subseteq 2^{[n]}$, $\langle A \rangle$ denotes the smallest simplicial complex containing A. In particular, notice that

$$\Delta = \langle \mathcal{F}(\Delta) \rangle.$$

The dimension of a face σ is dim $\sigma := |\sigma| - 1$, and the dimension of a simplicial complex Δ is

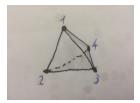
$$\dim \Delta := \sup \{\dim \sigma : \sigma \in \Delta\}.$$

The *f*-vector of a (d-1)-dimensional simplicial complex Δ is the vector $f(\Delta) = (f_{-1}, f_0, \dots, f_{d-1})$ where

$$f_i := |\{\sigma \in \Delta : \dim \sigma = i\}|.$$

Examples

 $\Delta = \langle \{1, 2\}, \{2, 3\} \rangle$ $f(\Delta) = (1, 3, 2)$ dem A = 1 $\Delta^{=} \langle \{1, 2, 3\}, \{2, 4\}, \{3, 4\} \rangle$ $f(4) = \langle 1, 4, 5, 1 \rangle$ Olim A=2



• $\Delta = \langle \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\} \rangle.$ • dim $\Delta = 2.$ • $f(\Delta) = (1, 4, 6, 4).$ Any simplicial complex Δ has a geometric realization $\|\Delta\| \subseteq \mathbb{R}^N$:

A *k*-simplex $\sigma \subseteq \mathbb{R}^N$ is the convex hull of k+1 affinely independent points; a face τ of σ is the convex hull of any subset of the k+1 points above; to denote that τ is a face of σ we write $\tau \leq \sigma$.

A geometric simplicial complex \mathcal{K} is a collection of simplices of \mathbb{R}^N such that whenever $\sigma, \sigma' \in \mathcal{K}$:

(i) $\tau \leq \sigma \implies \tau \in \mathcal{K};$

(ii) $\sigma \cap \sigma'$ is a face both of σ and of σ' .

Clearly to any geometric simplicial complex \mathcal{K} can be associated an abstract simplicial complex Δ on the set of 0-simplices of \mathcal{K} , sending a simplex $\sigma \in \mathcal{K}$ to the set of 0-simplices of \mathcal{K} contained in σ (note that they are forced to be faces of σ).

If \mathcal{K} and \mathcal{K}' are associated to the same Δ , then the topological spaces $\bigcup_{\sigma \in \mathcal{K}} \sigma$ and $\bigcup_{\sigma \in \mathcal{K}'} \sigma$ are homeomorphic. Such a topological space is called the **geometric realization** of Δ , and denoted by $||\Delta||$. It is not difficult to show that the image of the above function contains all the abstract simplicial complexes Δ such that $2 \dim \Delta + 1 \leq N$. In particular every simplicial complex admits a geometric realization, just choose N large enough.

Let *K* be a field and $S := K[x_1, ..., x_n]$ be the polynomial ring supplied with the *standard grading* deg $(x_i) = 1 \quad \forall i = 1, ..., n$.

Given a homogeneous ideal $I \subseteq S$, consider the K-algebra R = S/I. The K-algebras arising this way are called **standard graded** K-algebras.

By definition the (Krull) dimension of R is n minus the minimum height of a minimal prime ideal of I. If K is algebraically closed, the dimension of R agrees with the dimension of

$$\mathcal{Z}(I) := \{ P \in \mathbb{A}^n : f(P) = 0 \ \forall f \in I \} \subseteq \mathbb{A}^n,$$

i.e. the maximum dimension of an irreducible component of $\mathcal{Z}(I)$.

There are other various ways to define the dimension of a standard graded K-algebra R = S/I: if $\mathfrak{m} := (x_1, \ldots, x_n) \subseteq S$,

$$\dim R = \min\{d : \exists \ \theta_1, \dots, \theta_d \in \mathfrak{m} \text{ such that } \frac{R}{(\overline{\theta_1}, \dots, \overline{\theta_d})} = \frac{S}{I + (\theta_1, \dots, \theta_d)} \text{ is a finite dimensional } K \text{-vector space}\}$$

Elements $\theta_1, \ldots, \theta_d$ attaining the minimum above are called a **system of parameters (s.o.p.)** for *R*. If *K* is infinite, then $\theta_1, \ldots, \theta_d$ can be chosen to be linear forms, and in this case they are called a **linear system of parameters (l.s.o.p.)** for *R*.

Standard graded algebras I

The subindex \cdot_k means the degree k piece of the object \cdot we are considering. For example, S_k denotes the set of homogeneous polynomials of S of degree k. Notice that S_k is a K-vector space of dimension $\binom{n+k-1}{k}$, so the numerical function:

$$k \mapsto \dim_{\mathcal{K}} S_k = \frac{(k+n-1)(k+n-2)\cdots(k+1)}{(n-1)!}$$

is a polynomial of degree n-1. Let us consider the formal series

$$H_n(t) = \sum_{k \in \mathbb{N}} \dim_K S_k t^k \in \mathbb{Z}[[t]].$$

It is easy to check that:

(i)
$$H_1(t) = \sum_{k \in \mathbb{N}} t^k = 1/(1-t);$$

(ii) $H_n(t) = H_1(t)^n = 1/(1-t)^n.$

Standard graded algebras I

The facts that we saw for *S* hold more in general: for a standard graded *K*-algebra R = S/I, the numerical function $HF_R : \mathbb{N} \to \mathbb{N}$:

 $k \mapsto \dim_K R_k$

is called the *Hilbert function* of *R*. The formal series $HS_R(t) = \sum_{k \in \mathbb{N}} HF_R(k)t^k \in \mathbb{Z}[[t]]$ is the *Hilbert series* of *R*.

Theorem (Hilbert)

There exists $\operatorname{HP}_R \in \mathbb{Q}[x]$ of degree dim R-1 such that $\operatorname{HF}_R(k) =$ $\operatorname{HP}_R(k)$ for all $k \gg 0$. HP_R is called the *Hilbert polynomial* of R. There also exists $h(t) = h_0 + h_1t + \ldots + h_st^s \in \mathbb{Z}[t]$ such that $h(1) \neq 0$ and

$$\operatorname{HS}_R(t) = rac{h(t)}{(1-t)^{\dim R}}.$$

h is called the h-polynomial of R, and (h_0, h_1, \ldots, h_s) the h-vector of R.

Let *K* be a field and $S := K[x_1, \ldots, x_n]$ be the polynomial ring.

To a simplicial complex Δ on [n] we associate the ideal of S:

$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq S.$$

 I_{Δ} is a square-free monomial ideal, and conversely to any such ideal $I \subseteq S$ we associate the simplicial complex on [n]:

$$\Delta(I) := \{\{i_1,\ldots,i_k\} : x_{i_1}\cdots x_{i_k} \notin I\} \subseteq 2^{[n]}$$

It is straightforward to check that the operations above yield a 1-1 correspondence:

{simplicial complexes on [n]} \leftrightarrow {square-free monomial ideals of *S*}

For a simplicial complex Δ on [n]:

- (i) $I_{\Delta} \subseteq S$ is called the **Stanley-Reisner ideal** of Δ ;
- (ii) $K[\Delta] := S/I_{\Delta}$ is called the **Stanley-Reisner ring** of Δ .

Lemma

 $I_{\Delta} = \bigcap_{\sigma \in \Delta} (x_i : i \in [n] \setminus \sigma)$. In particular dim $K[\Delta] = \dim \Delta + 1$.

Proof: For any $\sigma \subseteq [n]$, the ideal $(x_i : i \in \sigma)$ contains I_Δ if and only if $[n] \setminus \sigma \in \Delta$. Being I_Δ a monomial ideal, its minimal primes are monomial prime ideals, i.e. ideals generated by variables. So $\sqrt{I_\Delta} = \bigcap_{\sigma \in \Delta} (x_i : i \in [n] \setminus \sigma)$, and being I_Δ radical we conclude. \Box

Given a linear form $\ell = \sum_{i=1}^{n} \lambda_i x_i \in S$, for any subset $\sigma \subseteq [n]$ by $\ell_{|\sigma}$ we mean the linear form $\sum_{i \in \sigma} \lambda_i x_i$.

Lemma

Given linear forms $\ell_1, \ldots, \ell_d \in S$, the following are equivalent:

(i)
$$\ell_1, \ldots, \ell_d$$
 are a l.s.o.p. for $K[\Delta]$.

(ii) Δ has dimension d-1 and the *K*-vector space generated by $(\ell_1)_{|\sigma}, \ldots, (\ell_d)_{|\sigma}$ has dimension $|\sigma|$ for all $\sigma \in \mathcal{F}(\Delta)$.

Given a (d-1)-dimensional simplicial complex Δ , its *f*-vector and the *h*-polynomial of $K[\Delta]$ are related by a simple formula

Stanley-Reisner correspondence I

Let Δ be a (d-1)-dimensional simplicial complex, $(f_{-1}, \ldots, f_{d-1})$ its *f*-vector and $h(t) = h_0 + \ldots + h_s t^s$ the *h*-polynomial of $K[\Delta]$.

Lemma

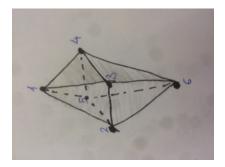
$$h(t) = \sum_{i=0}^{d} f_{i-1}t^{i}(1-t)^{d-i}$$
. Therefore

$$h_j = \sum_{i=0}^{j} (-1)^{j-i} {d-i \choose j-i} f_{i-1}$$
 and $f_{j-1} = \sum_{i=0}^{j} {d-i \choose j-i} h_i.$

Proof: Let $\mathcal{M}(S)$ denote the set of monomials of S and $\mathcal{M}_k(S) = \mathcal{M}(S) \cap S_k$. The support of $u \in \mathcal{M}(S)$ is supp $u := \{i \in [n] : x_i | u\}$. The class of u is nonzero in $K[\Delta]$ if and only if supp u is a face of Δ . So $HS_{K[\Delta]}(t) = \sum_{k \in \mathbb{N}} |\{u \in \mathcal{M}_k(S) : \text{supp } u \in \Delta\}| \cdot t^k$. To conclude, use that for a fixed face $\sigma \in \Delta$, we have the equality

$$\sum_{k\in\mathbb{N}}|\{u\in\mathcal{M}_k(\mathcal{S}): ext{supp } u=\sigma\}|\cdot t^k=t^{|\sigma|}/(1-t)^{|\sigma|}.\ \ \Box$$

Example



Octahedron

- $\bullet \ \Delta = \langle \{1,2,3\}, \{1,3,4\}, \{1,4,5\}, \{1,2,5\}, \{2,3,6\}, \{3,4,6\}, \{4,5,6\}, \{2,5,6\} \rangle.$
- dim $\Delta = 2$.
- f(Δ) = (1, 6, 12, 8).
- $h(\Delta) = (1, 3, 3, 1)$

Let R = S/I be a standard graded *K*-algebra. A homogeneous polynomial $f \in \mathfrak{m} = (x_1, \ldots, x_n)$ is *R*-regular if, for all $r \in R$:

$$fr = 0 \implies r = 0.$$

Homogeneous polynomials $f_1, \ldots, f_m \in \mathfrak{m}$ are called an *R*-regular sequence if:

$$f_{i+1}$$
 is $R/(\overline{f_1},\ldots,\overline{f_i})$ -regular for all $i=0,\ldots,m-1$.

It is easy to show that, if $f \in S$ is *R*-regular, then

 $\dim R/(\overline{f}) = \dim R - 1.$

Let h_R be the *h*-polynomial of a standard graded *K*-algebra *R*.

Lemma

Let ℓ be a linear form of S such that $\overline{\ell} \neq 0$ in R. Then ℓ is R-regular if and only if $h_{R/(\overline{\ell})} = h_R$.

Proof: If dim $R/(\bar{\ell}) = \dim R$, then $h_{R/(\bar{\ell})} \neq h_R$ because $HS_{R/(\bar{\ell})} \neq HS_R$. So assume dim $R/(\bar{\ell}) = \dim R - 1$. Then

$$h_{R/(\overline{\ell})} = h_R \iff \mathsf{HS}_{R/(\overline{\ell})}(t) = (1-t)\,\mathsf{HS}_R(t) = \sum_{k\in\mathbb{N}}(\mathsf{HF}_R(k) - \mathsf{HF}_R(k-1))t^k.$$

So $h_{R/(\overline{\ell})} = h_R \iff \dim_{\mathcal{K}}(R/(\overline{\ell}))_k = \dim_{\mathcal{K}} R_k - \dim_{\mathcal{K}} R_{k-1} \ \forall \ k \in \mathbb{N}.$

Consider the exact sequence of S-modules $R \xrightarrow{\cdot \ell} R \to R/(\overline{\ell}) \to 0$. For all $k \ge 1$, it yields the exact sequence of K-vector spaces

$$R_{k-1} \xrightarrow{\cdot \ell} R_k \to (R/(\overline{\ell}))_k \to 0.$$

So dim_K $(R/(\overline{\ell}))_k \ge \dim_K R_k - \dim_K R_{k-1}$, with equality if and only if the map $R_{k-1} \xrightarrow{\cdot \ell} R_k$ is injective. Finally, such a map is injective for any $k \ge 1$ if and only if ℓ is *R*-regular. \Box

Definition

Let R be a standard graded K-algebra. Then the **depth** of R is:

depth $R = \max\{s : \exists R$ -regular sequence of length $s\}$

Notice that depth $R \leq \dim R$.

Definition

A standard graded K-algebra R is Cohen-Macaulay if

depth $R = \dim R$.

Theorem

For a standard graded K-algebra R the following are equivalent:

- (i) R is Cohen-Macaulay.
- (ii) Every s.o.p. of *R* is an *R*-regular sequence.

If K is infinite, then the above facts are equivalent to:

(iii) for any l.s.o.p.
$$\theta_1, \ldots, \theta_d$$
 of R we have $h_R = h_{R/(\overline{\theta_1}, \ldots, \overline{\theta_d})}$.

(iv) there exists one l.s.o.p. $\theta_1, \ldots, \theta_d$ of R s.t. $h_R = h_{R/(\overline{\theta_1}, \ldots, \overline{\theta_d})}$.

Standard graded algebras II

From the theorem above one sees that, if R is Cohen-Macaulay and (h_0, h_1, \ldots, h_s) its *h*-vector, then

$$h_i = \dim_{\mathcal{K}}(R/(\overline{\theta_1}, \ldots, \overline{\theta_d})) \ge 0 \quad \forall \ i.$$

Definition

A standard graded K-algebra R is **Gorenstein** if it is Cohen-Macaulay and for some (equivalently any) s.o.p. f_1, \ldots, f_d , the algebra $A = R/(\overline{f_1}, \ldots, \overline{f_d})$ has the property that

$$\operatorname{soc} A = \{a \in A : \mathfrak{m} \cdot a = 0\}$$

is a 1-dimensional K-vector space.

With the above notation, if $s = \max\{i : A_i \neq 0\}$, then $A_s \subseteq \operatorname{soc} A$. This implies that if R is Gorenstein and (h_0, h_1, \ldots, h_s) its *h*-vector (with $h_s \neq 0$), then $h_s = 1 (= h_0)$.

Theorem

If *R* is Gorenstein, then its *h*-vector is symmetric $(h_i = h_{s-i} \forall i)$.

Simple examples of Gorenstein rings are R = S/I where I is generated by $n - \dim R$ polynomials. Such rings are called *complete intersections*.

For which simplicial complexes is the Stanly-Reisner ring Cohen-Macaulay? And Gorenstein?

For example, one can show that if Δ is a matroid, then $K[\Delta]$ is Cohen-Macaulay. Furthermore, if Δ is a matroid then $K[\Delta]$ is Gorenstein \iff it is a complete intersection. However matroids are a very special case of Cohen-Macaulay simplicial complexes:

Theorem (_ 2011, Minh-Trung 2011)

A simplicial complex Δ on [n] is a matroid if and only if $S/I_{\Delta}^{(k)}$ is Cohen-Macaulay for any $k \ge 1$, where $I_{\Delta}^{(k)} = \bigcap_{\sigma \in \mathcal{F}(\Delta)} (x_i : i \notin \sigma)^k$. Let $\sigma \subseteq [n]$, $v \in \sigma$ and $q = |\{i \in \sigma : i < v\}|$. We set

$$\operatorname{sign}(v,\sigma) := (-1)^q.$$

Let Δ be a (d-1)-simplicial complex on [n], and R a ring with a unit. For any $i = -1, 0, \ldots, d-1$, let

$$C_i(\Delta; R) := \bigoplus_{\substack{\sigma \in \Delta \\ \dim \sigma = i}} R$$

be the free *R*-module with basis $\{e_{\sigma} : \sigma \text{ i-dimensional face of } \Delta\}$.

The **reduced simplicial homology** with coefficients in R of Δ is the homology of the complex of free R-modules $(C_i(\Delta; R), \partial_i)$:

$$egin{array}{rcl} \partial_i : & \mathcal{C}_i(\Delta; R) o & \mathcal{C}_{i-1}(\Delta; R) \ & e_\sigma \mapsto & \sum_{v \in \sigma} \operatorname{sign}(v, \sigma) \cdot e_{\sigma \setminus \{v\}} \end{array}$$

We denote such an *i*th reduced simplicial homology by $\widetilde{H_i}(\Delta; R)$. It is a classical fact that simplicial and singular homology agree:

 $\widetilde{H_i}(\Delta; R) \cong \widetilde{H_i}(\|\Delta\|; R).$

The **link** of a face $\sigma \in \Delta$ is the simplicial complex:

$$\mathsf{lk}_{\Delta} \sigma := \{ \tau \subseteq [n] : \tau \cup \sigma \in \Delta \text{ and } \tau \cap \sigma = \emptyset \}.$$

Notice that $\Delta = \mathsf{lk}_{\Delta} \emptyset$.

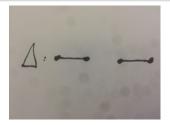
Theorem (Reisner, 1976)

For a simplicial complex Δ on [n] the following are equivalent:

- *K*[Δ] is Cohen-Macaulay.
- $\widetilde{H}_i(\mathsf{lk}_\Delta \sigma; K) = 0$ for all $\sigma \in \Delta$ and $i < \dim \mathsf{lk}_\Delta \sigma$.
- If $X = ||\Delta||$, $\widetilde{H}_i(X; K) = \widetilde{H}_i(X, X \setminus P; K) = 0$ for all $P \in X$ and $i < \dim X$.

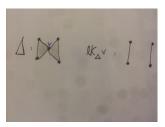
In particular, the Cohen-Macaulay property of $K[\Delta]$ is topological !

Examples



$$\begin{array}{l} \dim \Delta = 1, \\ \text{but } \widetilde{H_0}(\Delta; K) = K. \\ \text{HS}_{K[\Delta]} = \frac{1+2t-t^2}{(1-t)^2} \end{array}$$

 $K[\Delta]$ not CM

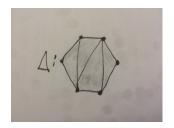


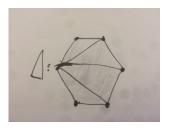
 $K[\Delta]$ not CM

$$\begin{split} & \dim \Delta = 2 \text{ and} \\ & \widetilde{H_0}(\Delta; \mathcal{K}) = \widetilde{H_1}(\Delta; \mathcal{K}) = 0, \\ & \text{but } \dim \mathsf{lk}_\Delta \, v = 1 \text{ and} \\ & \widetilde{H_0}(\mathsf{lk}_\Delta \, v; \mathcal{K}) = 0 \\ & \mathsf{HS}_{\mathcal{K}[\Delta]} = \frac{1 + 2t - t^2}{(1 - t)^2} \end{split}$$

Examples

2-ball

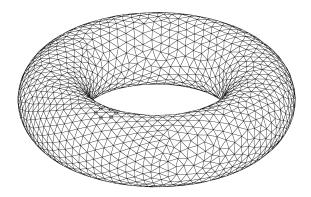




 $K[\Delta]$ CM

 $K[\Delta]$ CM

Matteo Varbaro (University of Genoa, Italy) Commutative algebra of Stanley-Reisner rings



 $\mathcal{K}[\Delta]$ not CM: dim $\Delta = 2$ but $\widetilde{H_1}(\Delta; \mathcal{K}) = \mathcal{K}^2$

We saw that the Cohen-Macaulay property of $K[\Delta]$ is topological, what about the Gorenstein property? Unfortunately ...

Gorenstein

not Gorenstein

However, being Gorenstein is almost a topological property...

Simplicial complexes II

Definition

A simplicial complex Δ is a **homology sphere** if one of the following two equivalent conditions holds:

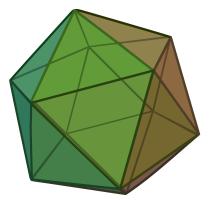
- For all $\sigma \in \Delta$, one has $\widetilde{H_i}(lk_{\Delta}\sigma; K) = 0$ for all $i < \dim lk_{\Delta}\sigma$ and $\widetilde{H_{\dim lk_{\Delta}\sigma}}(lk_{\Delta}\sigma; K) \cong K$.
- If $X = ||\Delta||$, for all $P \in X$ one has $\widetilde{H_i}(X; K) = \widetilde{H_i}(X, X \setminus P; K) = 0$ for all $i < \dim X$ and $\widetilde{H_{\dim X}}(X; K) \cong \widetilde{H_{\dim X}}(X, X \setminus P; K) \cong K$.

Theorem (Stanley, 1977)

For a simplicial complex Δ , set $U = \bigcap_{\sigma \in \mathcal{F}(\Delta)} \sigma$. Then the following two conditions are equivalent:

- *K*[Δ] is Gorenstein.
- The simplicial complex ⟨σ \ U : σ ∈ 𝓕(Δ)⟩ is a homology sphere.

Example



 $\mathcal{K}[\Delta]$ is Gorenstein, since all the links of Δ are spheres

Proof of UBC

Let Δ be a (d-1)-sphere on [n]. It is harmless to assume that K is infinite, so let $\theta_1, \ldots, \theta_d \in S$ be a l.s.o.p. of $K[\Delta]$. Let

$$A := K[\Delta]/(\overline{\theta_1},\ldots,\overline{\theta_d}) \cong S'/\overline{I_\Delta},$$

where $S' = S/(\theta_1, \ldots, \theta_d)$ is a polynomial ring in n - d variables over K. Therefore

$$\dim_{\mathcal{K}} A_i \leq \dim_{\mathcal{K}} S'_i = \binom{n-d+i-1}{i}.$$

Since $K[\Delta]$ is Cohen-Macaulay (indeed even Gorenstein) the *h*-vector (h_1, \ldots, h_d) of Δ satisfies

$$h_i = \dim_{\mathcal{K}} A_i$$

The g-conjecture

Definition

A vector $h = (h_0, \ldots, h_d)$ is an *M*-vector if there is a 0-dimensional standard graded algebra *R* such that $HF_R(i) = h_i$. The *g*-vector of *h* is $(h_0, h_1 - h_0, h_2 - h_1, \ldots, h_{\lfloor d/2 \rfloor} - h_{\lfloor d/2 \rfloor - 1})$.

For example, we saw that an h-vector of a Cohen-Macaulay simplicial complex is an M-vector.

Let Δ be the boundary of a simplicial *d*-polytope. Then $\|\Delta\|$ is a (d-1)-sphere, so the *h*-vector of Δ (i.e. of $K[\Delta]$) satisfies $h_i = h_{d-i}$.

The *g*-conjecture for polytopes (McMullen, 1971)

A vector $h = (h_0, ..., h_d)$ is the *h*-vector of the boundary of a simplicial *d*-polytope if and only if $h_i = h_{d-i}$ and its *g*-vector is an *M*-vector.

In particular, the *h*-vector of the boundary of a d-polytope would be unimodal, that is:

$$h_0 \leq h_1 \leq \ldots \leq h_{\lfloor d/2 \rfloor} = h_{\lceil d/2 \rceil} \geq \ldots \geq h_d.$$

The g-conjecture

Definition

A 0-dimensional standard graded algebra R satisfies the **hard** Lefschetz theorem if there is a linear form $\ell \in R$ such that

 $\times \ell^{d-2i} : R_i \longrightarrow R_{d-i}, \text{ where } d = \max\{j : R_j \neq 0\}$

is an isomorphism for all $i \leq \lfloor d/2 \rfloor$.

Lemma

Let *R* be a 0-dimensional standard graded algebra satisfying the hard Lefschetz theorem, with *h*-vector $h = (h_0, \ldots, h_d)$. Then the *g*-vector of *h* is an *M*-vector.

Proof: If $i < \lfloor d/2 \rfloor$, notice that the isomorphism $\times \ell^{d-2i} : R_i \to R_{d-i}$ is

$$R_i \xrightarrow{\times \ell} R_{i+1} \xrightarrow{\times \ell^{d-2i-1}} R_{d-i},$$

so $\times \ell : R_i \to R_{i+1}$ is *injective* for all $i < \lfloor d/2 \rfloor$.

Consider the 0-dimensional standard graded algebra $A = R/(\ell)$, and note:

$$\dim_{\mathcal{K}} A_i = \dim_{\mathcal{K}} R_i - \dim_{\mathcal{K}} \ell R_{i-1} = h_i - h_{i-1} \quad \forall \ i \leq \lfloor d/2 \rfloor \quad \Box.$$

The *g*-conjecture for polytopes has been proven in 1980 by **Billera-Lee** (if - part) and **Stanley** (only if - part). In the next slides follows a description of the idea of the original Stanley's proof Given a *d*-dimensional projective variety $X \subseteq \mathbb{P}^n$ over \mathbb{C} , let

$$H^{2*}(X;\mathbb{C}):=\bigoplus_{i=0}^d H^{2i}(X;\mathbb{C})$$

be its **even cohomology ring**. The product is given by the *cup-product*, which makes of it a commutative ring.

To any subvariety $Y \subseteq X$ of codimension k can be associated a cohomology class $[Y] \in H^{2k}(X; \mathbb{C})$.

In particular, taking as Y a general hyperplane section of X, we get an element of $H^2(X; \mathbb{C})$. Such an element is known as the **fundamental class**, and usually denoted by $\omega \in H^2(X; \mathbb{C})$.

The classical hard Lefschetz theorem, first proved completely by **Hodge**, states that if X is nonsingular, then the multiplication map

$$imes \omega^{d-k}: H^k(X,\mathbb{C}) o H^{2d-k}(X;\mathbb{C})$$

is an isomorphism of $\mathbb C\text{-vector}$ spaces. .

Now, to any complete fan Σ (collection of cones with certain gluing properties), one can associate a scheme X_{Σ} . Given a d-polytope $P \subseteq \mathbb{Q}^d$ containing the origin in its interior, for any proper face $F \in P$ consider the cone σ_F consisting of the points belonging to some ray through the origin and F. As F varies, we get a complete fan Σ , the so-called *normal fan* of P, and the corresponding scheme X_{Σ} , that we denote by X(P). It turns out that X(P) is projective, i.e. it admits an embedding $X(P) \subseteq \mathbb{P}^n$.

Unfortunately X(P) may have singularities... However, if P is simplicial, then it has finite (Abelian) quotient singularities (this means that X(P) is not smooth but it is very close to!). By a result of **Steenbrink**, $H^{2*}(X, \mathbb{C})$ satisfies the hard Lefschetz theorem for any projective variety with finite quotient singularities. So $H^{2*}(X(P), \mathbb{C})$ satisfies the hard Lefschetz theorem.

If Δ is the boundary of P, then **Danilov** proved in 1978 that there exists a l.s.o.p. $\theta_1, \ldots, \theta_d$ of $\mathbb{C}[\Delta]$ such that there is a graded isomorphism

$$H^{2*}(X(P),\mathbb{C})\cong\mathbb{C}[\Delta]/(\overline{\theta_1},\ldots,\overline{\theta_d}),$$

where the degree *i* piece of $H^{2*}(X(P), \mathbb{C})$ is $H^{2i}(X(P), \mathbb{C})$.

The g-conjecture

Therefore $\mathbb{C}[\Delta]/(\overline{\theta_1}, \ldots, \overline{\theta_d})$ satisfies the hard Lefschetz theorem, so the *g*-vector of its *h*-vector is an *M*-vector. Since the *h*-vector of $\mathbb{C}[\Delta]$ agrees with that of $\mathbb{C}[\Delta]/(\overline{\theta_1}, \ldots, \overline{\theta_d})$ (because $K[\Delta]$ is CM) we conclude. \Box

The following is still open:

The *g*-conjecture for spheres

If a vector $h = (h_0, ..., h_d)$ is the *h*-vector of a (d - 1)-sphere, then $h_i = h_{d-i}$ and its *g*-vector is an *M*-vector.

Also, what about Gorenstein simplicial complexes ???

Note: Standard graded Gorenstein *K*-algebras in general have not unimodal *h*-vector (example of **Stanley** with *h*-vector (1, 13, 12, 13, 1)). So far it seems there are no examples among Stanley-Reisner rings ...