Commutative algebra of Stanley-Reisner rings

Matteo Varbaro (University of Genoa, Italy)

January 2016, Borel seminar SM'ART, Les Diablerets, Switzerland

Let $d<n$ be positive integers. Consider the moment curve

$$
\left\{\left(t, t^{2}, \ldots, t^{d}\right): t \in \mathbb{R}\right\} \subseteq \mathbb{R}^{d}
$$

take n distinct points on it and let P be the convex hull of them.
It is not difficult to show that the combinatorial type of the polytope P does not depend on the chosen points, so we denote P by $C(n, d)$ and call it a cyclic polytope.

Recall that the number of i-dimensional faces of a polytope P is denoted by $f_{i}(P)$. One can check that:

$$
f_{i}(C(n, d))=\binom{n}{i+1} \quad \forall 0 \leq i \leq\lfloor d / 2\rfloor-1 .
$$

The Upper Bound Conjecture (UBC)

Upper Bound Conjecture (Motzkin, 1957)

For any d-polytope P on n vertices we have

$$
f_{i}(P) \leq f_{i}(C(n, d)) \quad \forall i=0, \ldots, d
$$

Clearly $f_{i}(P) \leq\binom{ n}{i+1}$ for any polytope on n vertices and $i \in \mathbb{N}$, so:

$$
f_{i}(P) \leq f_{i}(C(n, d)) \quad \forall i=0, \ldots,\lfloor d / 2\rfloor-1 .
$$

It is easy to reduce the UBC to simplicial polytopes (btw, $C(n, d)$ is simplicial). In 1964, Klee conjectured that the UBC is valid more generally for any triangulation Δ on n vertices of a ($d-1$)-sphere.

The Upper Bound Conjecture (UBC)

It is easy to see that the UBC for a $(d-1)$-sphere would follow by the inequalities:

$$
h_{i} \leq\binom{ n-d+i-1}{i} \quad \forall i=0, \ldots, d
$$

where $h_{i}=\sum_{j=0}^{i}(-1)^{i-j}\binom{d-j}{d-i} f_{i-1}$. By the Stanley-Reisner correspondence, we can exploit tools from commutative algebra and infer the inequality above by the simple fact that the degree i monomials in $n-d$ variables are $\binom{n-d+i-1}{i} \ldots .$.

Let n be a positive integer and $[n]:=\{1, \ldots, n\}$.
A simplicial complex Δ on $[n]$ is a subset of $2^{[n]}$ such that:

$$
\sigma \in \Delta, \tau \subseteq \sigma \quad \Longrightarrow \quad \tau \in \Delta
$$

For simplicity, when $i \in[n]$, we write $i \in \Delta$ if $\{i\} \in \Delta$ and refer to i as a vertex of Δ.

Any element of Δ is called face, and a face maximal by inclusion is called facet. The set of facets is denoted by $\mathcal{F}(\Delta)$.

EXAMPLE: A matroid is a simplicial complex on its ground set: faces correspond to independent sets, and facets to bases.

Given a subset $A \subseteq 2^{[n]},\langle A\rangle$ denotes the smallest simplicial complex containing A. In particular, notice that

$$
\Delta=\langle\mathcal{F}(\Delta)\rangle
$$

The dimension of a face σ is $\operatorname{dim} \sigma:=|\sigma|-1$, and the dimension of a simplicial complex Δ is

$$
\operatorname{dim} \Delta:=\sup \{\operatorname{dim} \sigma: \sigma \in \Delta\}
$$

The f-vector of a $(d-1)$-dimensional simplicial complex Δ is the vector $f(\Delta)=\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$ where

$$
f_{i}:=|\{\sigma \in \Delta: \operatorname{dim} \sigma=i\}| .
$$

Examples

- $\Delta=\langle\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}\rangle$.
- $\operatorname{dim} \Delta=2$.
- $f(\Delta)=(1,4,6,4)$.

Any simplicial complex Δ has a geometric realization $\|\Delta\| \subseteq \mathbb{R}^{N}$:
A k-simplex $\sigma \subseteq \mathbb{R}^{N}$ is the convex hull of $k+1$ affinely independent points; a face τ of σ is the convex hull of any subset of the $k+1$ points above; to denote that τ is a face of σ we write $\tau \leq \sigma$.

A geometric simplicial complex \mathcal{K} is a collection of simplices of \mathbb{R}^{N} such that whenever $\sigma, \sigma^{\prime} \in \mathcal{K}$:
(i) $\tau \leq \sigma \Longrightarrow \tau \in \mathcal{K}$;
(ii) $\sigma \cap \sigma^{\prime}$ is a face both of σ and of σ^{\prime}.

Clearly to any geometric simplicial complex \mathcal{K} can be associated an abstract simplicial complex Δ on the set of 0 -simplices of \mathcal{K}, sending a simplex $\sigma \in \mathcal{K}$ to the set of 0 -simplices of \mathcal{K} contained in σ (note that they are forced to be faces of σ).

If \mathcal{K} and \mathcal{K}^{\prime} are associated to the same Δ, then the topological spaces $\bigcup_{\sigma \in \mathcal{K}} \sigma$ and $\bigcup_{\sigma \in \mathcal{K}^{\prime}} \sigma$ are homeomorphic. Such a topological space is called the geometric realization of Δ, and denoted by $\|\Delta\|$. It is not difficult to show that the image of the above function contains all the abstract simplicial complexes Δ such that $2 \operatorname{dim} \Delta+1 \leq N$. In particular every simplicial complex admits a geometric realization, just choose N large enough.

Let K be a field and $S:=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring supplied with the standard grading $\operatorname{deg}\left(x_{i}\right)=1 \quad \forall i=1, \ldots, n$.

Given a homogeneous ideal $I \subseteq S$, consider the K-algebra $R=S / I$. The K-algebras arising this way are called standard graded K-algebras.

By definition the (Krull) dimension of R is n minus the minimum height of a minimal prime ideal of I. If K is algebraically closed, the dimension of R agrees with the dimension of

$$
\mathcal{Z}(I):=\left\{P \in \mathbb{A}^{n}: f(P)=0 \quad \forall f \in I\right\} \subseteq \mathbb{A}^{n},
$$

i.e. the maximum dimension of an irreducible component of $\mathcal{Z}(I)$.

There are other various ways to define the dimension of a standard graded K-algebra $R=S / I$: if $\mathfrak{m}:=\left(x_{1}, \ldots, x_{n}\right) \subseteq S$,

$$
\operatorname{dim} R=\min \left\{d: \exists \theta_{1}, \ldots, \theta_{d} \in \mathfrak{m} \text { such that } \frac{R}{\left(\overline{\theta_{1}}, \ldots, \overline{\theta_{d}}\right)}=\right.
$$

$$
\left.\frac{S}{I+\left(\theta_{1}, \ldots, \theta_{d}\right)} \text { is a finite dimensional } K \text {-vector space }\right\}
$$

Elements $\theta_{1}, \ldots, \theta_{d}$ attaining the minimum above are called a system of parameters (s.o.p.) for R. If K is infinite, then $\theta_{1}, \ldots, \theta_{d}$ can be chosen to be linear forms, and in this case they are called a linear system of parameters (l.s.o.p.) for R.

The subindex $\cdot k$ means the degree k piece of the object • we are considering. For example, S_{k} denotes the set of homogeneous polynomials of S of degree k. Notice that S_{k} is a K-vector space of dimension $\binom{n+k-1}{k}$, so the numerical function:

$$
k \mapsto \operatorname{dim}_{K} S_{k}=\frac{(k+n-1)(k+n-2) \cdots(k+1)}{(n-1)!}
$$

is a polynomial of degree $n-1$. Let us consider the formal series

$$
H_{n}(t)=\sum_{k \in \mathbb{N}} \operatorname{dim}_{K} S_{k} t^{k} \in \mathbb{Z}[[t]]
$$

It is easy to check that:
(i) $H_{1}(t)=\sum_{k \in \mathbb{N}} t^{k}=1 /(1-t)$;
(ii) $H_{n}(t)=H_{1}(t)^{n}=1 /(1-t)^{n}$.

Standard graded algebras I

The facts that we saw for S hold more in general: for a standard graded K-algebra $R=S / I$, the numerical function $H F_{R}: \mathbb{N} \rightarrow \mathbb{N}$:

$$
k \mapsto \operatorname{dim}_{K} R_{k}
$$

is called the Hilbert function of R. The formal series $\mathrm{HS}_{R}(t)=$ $\sum_{k \in \mathbb{N}} \mathrm{HF}_{R}(k) t^{k} \in \mathbb{Z}[[t]]$ is the Hilbert series of R.

Theorem (Hilbert)

There exists $\mathrm{HP}_{R} \in \mathbb{Q}[x]$ of degree $\operatorname{dim} R-1$ such that $\mathrm{HF}_{R}(k)=$ $\mathrm{HP}_{R}(k)$ for all $k \gg 0 . \mathrm{HP}_{R}$ is called the Hilbert polynomial of R. There also exists $h(t)=h_{0}+h_{1} t+\ldots+h_{s} t^{s} \in \mathbb{Z}[t]$ such that $h(1) \neq 0$ and

$$
\mathrm{HS}_{R}(t)=\frac{h(t)}{(1-t)^{\operatorname{dim} R}} .
$$

h is called the h-polynomial of R, and ($h_{0}, h_{1}, \ldots, h_{s}$) the h-vector of R.

Let K be a field and $S:=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring.
To a simplicial complex Δ on $[n]$ we associate the ideal of S :

$$
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \subseteq S
$$

I_{Δ} is a square-free monomial ideal, and conversely to any such ideal $I \subseteq S$ we associate the simplicial complex on $[n]$:

$$
\Delta(I):=\left\{\left\{i_{1}, \ldots, i_{k}\right\}: x_{i_{1}} \cdots x_{i_{k}} \notin I\right\} \subseteq 2^{[n]}
$$

It is straightforward to check that the operations above yield a 1-1 correspondence:
$\{$ simplicial complexes on $[n]\} \leftrightarrow\{$ square-free monomial ideals of $S\}$

Stanley-Reisner correspondence I

For a simplicial complex Δ on $[n]$:
(i) $I_{\Delta} \subseteq S$ is called the Stanley-Reisner ideal of Δ;
(ii) $K[\Delta]:=S / I_{\Delta}$ is called the Stanley-Reisner ring of Δ.

Lemma

$I_{\Delta}=\bigcap_{\sigma \in \Delta}\left(x_{i}: i \in[n] \backslash \sigma\right)$. In particular $\operatorname{dim} K[\Delta]=\operatorname{dim} \Delta+1$.
Proof: For any $\sigma \subseteq[n]$, the ideal $\left(x_{i}: i \in \sigma\right)$ contains I_{Δ} if and only if $[n] \backslash \sigma \in \Delta$. Being I_{Δ} a monomial ideal, its minimal primes are monomial prime ideals, i.e. ideals generated by variables. So $\sqrt{I_{\Delta}}=\bigcap_{\sigma \in \Delta}\left(x_{i}: i \in[n] \backslash \sigma\right)$, and being I_{Δ} radical we conclude. \square

Stanley-Reisner correspondence I

Given a linear form $\ell=\sum_{i=1}^{n} \lambda_{i} x_{i} \in S$, for any subset $\sigma \subseteq[n]$ by $\ell_{\mid \sigma}$ we mean the linear form $\sum_{i \in \sigma} \lambda_{i} x_{i}$.

Lemma

Given linear forms $\ell_{1}, \ldots, \ell_{d} \in S$, the following are equivalent:
(i) $\ell_{1}, \ldots, \ell_{d}$ are a l.s.o.p. for $K[\Delta]$.
(ii) Δ has dimension $d-1$ and the K-vector space generated by $\left(\ell_{1}\right)_{\mid \sigma}, \ldots,\left(\ell_{d}\right)_{\mid \sigma}$ has dimension $|\sigma|$ for all $\sigma \in \mathcal{F}(\Delta)$.

Given a $(d-1)$-dimensional simplicial complex Δ, its f-vector and the h-polynomial of $K[\Delta]$ are related by a simple formula

Stanley-Reisner correspondence I

Let Δ be a $(d-1)$-dimensional simplicial complex, $\left(f_{-1}, \ldots, f_{d-1}\right)$ its f-vector and $h(t)=h_{0}+\ldots+h_{s} t^{s}$ the h-polynomial of $K[\Delta]$.

Lemma

$h(t)=\sum_{i=0}^{d} f_{i-1} t^{i}(1-t)^{d-i}$. Therefore

$$
h_{j}=\sum_{i=0}^{j}(-1)^{j-i}\binom{d-i}{j-i} f_{i-1} \quad \text { and } \quad f_{j-1}=\sum_{i=0}^{j}\binom{d-i}{j-i} h_{i} .
$$

Proof: Let $\mathcal{M}(S)$ denote the set of monomials of S and $\mathcal{M}_{k}(S)=$ $\mathcal{M}(S) \cap S_{k}$. The support of $u \in \mathcal{M}(S)$ is supp $u:=\left\{i \in[n]: x_{i} \mid u\right\}$. The class of u is nonzero in $K[\Delta]$ if and only if supp u is a face of Δ. So $\mathrm{HS}_{K[\Delta]}(t)=\sum_{k \in \mathbb{N}}\left|\left\{u \in \mathcal{M}_{k}(S): \operatorname{supp} u \in \Delta\right\}\right| \cdot t^{k}$. To conclude, use that for a fixed face $\sigma \in \Delta$, we have the equality $\sum_{k \in \mathbb{N}}\left|\left\{u \in \mathcal{M}_{k}(S): \operatorname{supp} u=\sigma\right\}\right| \cdot t^{k}=t^{|\sigma|} /(1-t)^{|\sigma|} . \square$

Example

Octahedron

- $\Delta=\langle\{1,2,3\},\{1,3,4\},\{1,4,5\},\{1,2,5\},\{2,3,6\},\{3,4,6\},\{4,5,6\},\{2,5,6\}\rangle$.
- $\operatorname{dim} \Delta=2$.
- $f(\Delta)=(1,6,12,8)$.
- $h(\Delta)=(1,3,3,1)$

Let $R=S / I$ be a standard graded K-algebra. A homogeneous polynomial $f \in \mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$ is R-regular if, for all $r \in R$:

$$
f r=0 \Longrightarrow r=0
$$

Homogeneous polynomials $f_{1}, \ldots, f_{m} \in \mathfrak{m}$ are called an R-regular sequence if:

$$
f_{i+1} \text { is } R /\left(\overline{f_{1}}, \ldots, \bar{f}_{i}\right) \text {-regular for all } i=0, \ldots, m-1
$$

It is easy to show that, if $f \in S$ is R-regular, then

$$
\operatorname{dim} R /(\bar{f})=\operatorname{dim} R-1
$$

Standard graded algebras II

Let h_{R} be the h-polynomial of a standard graded K-algebra R.

Lemma

Let ℓ be a linear form of S such that $\bar{\ell} \neq 0$ in R. Then ℓ is R-regular if and only if $h_{R /(\bar{\ell})}=h_{R}$.

Proof: If $\operatorname{dim} R /(\bar{\ell})=\operatorname{dim} R$, then $h_{R /(\bar{\ell})} \neq h_{R}$ because $\mathrm{HS}_{R /(\bar{\ell})} \neq \mathrm{HS}_{R}$.
So assume $\operatorname{dim} R /(\bar{\ell})=\operatorname{dim} R-1$. Then
$h_{R /(\bar{l})}=h_{R} \Longleftrightarrow \mathrm{HS}_{R /(\bar{l})}(t)=(1-t) \mathrm{HS}_{R}(t)=\sum_{k \in \mathbb{N}}\left(\mathrm{HF}_{R}(k)-\mathrm{HF}_{R}(k-1)\right) t^{k}$.
So $h_{R /(\bar{\ell})}=h_{R} \Longleftrightarrow \operatorname{dim}_{K}(R /(\bar{\ell}))_{k}=\operatorname{dim}_{K} R_{k}-\operatorname{dim}_{K} R_{k-1} \forall k \in \mathbb{N}$.

Standard graded algebras II

Consider the exact sequence of S-modules $R \xrightarrow{\ell} R \rightarrow R /(\bar{\ell}) \rightarrow 0$. For all $k \geq 1$, it yields the exact sequence of K-vector spaces

$$
R_{k-1} \xrightarrow{\ell} R_{k} \rightarrow(R /(\bar{\ell}))_{k} \rightarrow 0 .
$$

So $\operatorname{dim}_{K}(R /(\bar{\ell}))_{k} \geq \operatorname{dim}_{K} R_{k}-\operatorname{dim}_{K} R_{k-1}$, with equality if and only if the map $R_{k-1} \xrightarrow{\bullet \ell} R_{k}$ is injective. Finally, such a map is injective for any $k \geq 1$ if and only if ℓ is R-regular. \square

Definition

Let R be a standard graded K-algebra. Then the depth of R is:

$$
\text { depth } R=\max \{s: \exists R \text {-regular sequence of length } s\}
$$

Notice that \quad depth $R \leq \operatorname{dim} R$.

Standard graded algebras II

Definition

A standard graded K-algebra R is Cohen-Macaulay if depth $R=\operatorname{dim} R$.

Theorem

For a standard graded K-algebra R the following are equivalent:
(i) R is Cohen-Macaulay.
(ii) Every s.o.p. of R is an R-regular sequence.

If K is infinite, then the above facts are equivalent to:
(iii) for any I.s.o.p. $\theta_{1}, \ldots, \theta_{d}$ of R we have $h_{R}=h_{R /\left(\overline{\theta_{1}}, \ldots, \overline{\theta_{d}}\right)}$.
(iv) there exists one I.s.o.p. $\theta_{1}, \ldots, \theta_{d}$ of R s.t. $h_{R}=h_{R /\left(\overline{\theta_{1}}, \ldots, \overline{\theta_{d}}\right)}$.

Standard graded algebras II

From the theorem above one sees that, if R is Cohen-Macaulay and $\left(h_{0}, h_{1}, \ldots, h_{s}\right)$ its h-vector, then

$$
h_{i}=\operatorname{dim}_{K}\left(R /\left(\overline{\theta_{1}}, \ldots, \overline{\theta_{d}}\right)\right) \geq 0 \quad \forall i .
$$

Definition

A standard graded K-algebra R is Gorenstein if it is CohenMacaulay and for some (equivalently any) s.o.p. f_{1}, \ldots, f_{d}, the algebra $A=R /\left(\overline{f_{1}}, \ldots, \overline{f_{d}}\right)$ has the property that

$$
\operatorname{soc} A=\{a \in A: \mathfrak{m} \cdot a=0\}
$$

is a 1 -dimensional K-vector space.

Standard graded algebras II

With the above notation, if $s=\max \left\{i: A_{i} \neq 0\right\}$, then $A_{s} \subseteq \operatorname{soc} A$. This implies that if R is Gorenstein and ($h_{0}, h_{1}, \ldots, h_{s}$) its h-vector (with $h_{s} \neq 0$), then $h_{s}=1\left(=h_{0}\right)$.

Theorem

If R is Gorenstein, then its h-vector is symmetric $\left(h_{i}=h_{s-i} \forall i\right)$.

Simple examples of Gorenstein rings are $R=S / I$ where I is generated by $n-\operatorname{dim} R$ polynomials. Such rings are called complete intersections.

Stanley-Reisner correspondence II

For which simplicial complexes is the Stanly-Reisner ring Cohen-Macaulay? And Gorenstein?

For example, one can show that if Δ is a matroid, then $K[\Delta]$ is Cohen-Macaulay. Furthermore, if Δ is a matroid then $K[\Delta]$ is Gorenstein \Longleftrightarrow it is a complete intersection. However matroids are a very special case of Cohen-Macaulay simplicial complexes:

Theorem (2011, Minh-Trung 2011)

A simplicial complex Δ on $[n]$ is a matroid if and only if $S / l_{\Delta}^{(k)}$ is Cohen-Macaulay for any $k \geq 1$, where $I_{\Delta}^{(k)}=\bigcap_{\sigma \in \mathcal{F}(\Delta)}\left(x_{i}: i \notin \sigma\right)^{k}$.

Let $\sigma \subseteq[n], v \in \sigma$ and $q=|\{i \in \sigma: i<v\}|$. We set

$$
\operatorname{sign}(v, \sigma):=(-1)^{q} .
$$

Let Δ be a $(d-1)$-simplicial complex on $[n]$, and R a ring with a unit. For any $i=-1,0, \ldots, d-1$, let

$$
C_{i}(\Delta ; R):=\bigoplus_{\substack{\sigma \in \Delta \\ \operatorname{dim} \sigma=i}} R
$$

be the free R-module with basis $\left\{e_{\sigma}: \sigma i\right.$-dimensional face of $\left.\Delta\right\}$.

The reduced simplicial homology with coefficients in R of Δ is the homology of the complex of free R-modules $\left(C_{i}(\Delta ; R), \partial_{i}\right)$:

$$
\begin{aligned}
\partial_{i}: \quad C_{i}(\Delta ; R) & \rightarrow C_{i-1}(\Delta ; R) \\
e_{\sigma} \mapsto & \sum_{v \in \sigma} \operatorname{sign}(v, \sigma) \cdot e_{\sigma \backslash\{v\}}
\end{aligned}
$$

We denote such an ith reduced simplicial homology by $\widetilde{H}_{i}(\Delta ; R)$. It is a classical fact that simplicial and singular homology agree:

$$
\widetilde{H}_{i}(\Delta ; R) \cong \widetilde{H}_{i}(\|\Delta\| ; R) .
$$

The link of a face $\sigma \in \Delta$ is the simplicial complex:

$$
\mathrm{Ik}_{\Delta} \sigma:=\{\tau \subseteq[n]: \tau \cup \sigma \in \Delta \text { and } \tau \cap \sigma=\emptyset\} .
$$

Notice that $\Delta=\mathrm{lk}_{\Delta} \emptyset$.

Theorem (Reisner, 1976)

For a simplicial complex Δ on $[n$] the following are equivalent:

- $K[\Delta]$ is Cohen-Macaulay.
- $\widetilde{H}_{i}\left(\mathrm{Ik}_{\Delta} \sigma ; K\right)=0$ for all $\sigma \in \Delta$ and $i<\operatorname{dim} \mathrm{Ik}_{\Delta} \sigma$.
- If $X=\|\Delta\|, \widetilde{H}_{i}(X ; K)=\widetilde{H}_{i}(X, X \backslash P ; K)=0$ for all $P \in X$ and $i<\operatorname{dim} X$.

In particular, the Cohen-Macaulay property of $K[\Delta]$ is topological!

Examples

$\operatorname{dim} \Delta=1$,
but $H_{0}(\Delta ; K)=K$.
$\mathrm{HS}_{K[\Delta]}=\frac{1+2 t-t^{2}}{(1-t)^{2}}$

$K[\Delta]$ not CM

$\operatorname{dim} \Delta=2$ and
$\widetilde{H}(\Delta ; K)=\widetilde{H_{1}}(\Delta ; K)=0$,
but $\operatorname{dim}_{\mathrm{lk}}^{\Delta} \operatorname{v}=1$ and
$\widetilde{H}_{0}\left(\mathrm{lk}_{\Delta} v ; K\right)=0$
$\mathrm{HS}_{K[\Delta]}=\frac{1+2 t-t^{2}}{(1-t)^{2}}$

$K[\Delta]$ not CM

Examples

2-ball

$K[\Delta] \mathrm{CM}$

$K[\Delta] \mathrm{CM}$

Examples

$K[\Delta] \operatorname{not} \mathrm{CM}: \operatorname{dim} \Delta=2$ but $\widetilde{H_{1}}(\Delta ; K)=K^{2}$

We saw that the Cohen-Macaulay property of $K[\Delta]$ is topological, what about the Gorenstein property? Unfortunately ...

Gorenstein

not Gorenstein

However, being Gorenstein is almost a topological property...

Simplicial complexes II

Definition

A simplicial complex Δ is a homology sphere if one of the following two equivalent conditions holds:

- For all $\sigma \in \Delta$, one has $\widetilde{H}_{i}\left(\mathrm{lk}_{\Delta} \sigma ; K\right)=0$ for all $i<\operatorname{dim} \mathrm{lk}_{\Delta} \sigma$ and $H_{\text {dim } \mathrm{k}_{\Delta} \sigma}\left(\mathrm{lk}_{\Delta} \sigma ; K\right) \cong K$.
- If $X=\|\Delta\|$, for all $P \in X$ one has $\widetilde{H}_{i}(X ; K)=\widetilde{H}_{i}(X, X \backslash P ; K)=0$ for all $i<\operatorname{dim} X$ and $\widetilde{H_{\operatorname{dim} X}}(X ; K) \cong \widetilde{H_{\operatorname{dim}} X}(X, X \backslash P ; K) \cong K$.

Theorem (Stanley, 1977)

For a simplicial complex Δ, set $U=\bigcap_{\sigma \in \mathcal{F}(\Delta)} \sigma$. Then the following two conditions are equivalent:

- $K[\Delta]$ is Gorenstein.
- The simplicial complex $\langle\sigma \backslash U: \sigma \in \mathcal{F}(\Delta)\rangle$ is a homology sphere.

Example

$K[\Delta]$ is Gorenstein, since all the links of Δ are spheres

Let Δ be a $(d-1)$-sphere on [n]. It is harmless to assume that K is infinite, so let $\theta_{1}, \ldots, \theta_{d} \in S$ be a l.s.o.p. of $K[\Delta]$. Let

$$
A:=K[\Delta] /\left(\overline{\theta_{1}}, \ldots, \overline{\theta_{d}}\right) \cong S^{\prime} / \overline{I_{\Delta}},
$$

where $S^{\prime}=S /\left(\theta_{1}, \ldots, \theta_{d}\right)$ is a polynomial ring in $n-d$ variables over K. Therefore

$$
\operatorname{dim}_{K} A_{i} \leq \operatorname{dim}_{K} S_{i}^{\prime}=\binom{n-d+i-1}{i}
$$

Since $K[\Delta]$ is Cohen-Macaulay (indeed even Gorenstein) the h-vector $\left(h_{1}, \ldots, h_{d}\right)$ of Δ satisfies

$$
h_{i}=\operatorname{dim}_{K} A_{i}
$$

The g-conjecture

Definition

A vector $h=\left(h_{0}, \ldots, h_{d}\right)$ is an M-vector if there is a 0 -dimensional standard graded algebra R such that $\mathrm{HF}_{R}(i)=h_{i}$. The g-vector of h is $\left(h_{0}, h_{1}-h_{0}, h_{2}-h_{1}, \ldots, h_{\lfloor d / 2\rfloor}-h_{\lfloor d / 2\rfloor-1}\right)$.

For example, we saw that an h-vector of a Cohen-Macaulay simplicial complex is an M-vector.

Let Δ be the boundary of a simplicial d-polytope. Then $\|\Delta\|$ is a ($d-1$)-sphere, so the h-vector of Δ (i.e. of $K[\Delta]$) satisfies $h_{i}=h_{d-i}$.

The g-conjecture for polytopes (McMullen, 1971)

A vector $h=\left(h_{0}, \ldots, h_{d}\right)$ is the h-vector of the boundary of a simplicial d-polytope if and only if $h_{i}=h_{d-i}$ and its g-vector is an M-vector.

In particular, the h-vector of the boundary of a d-polytope would be unimodal, that is:

$$
h_{0} \leq h_{1} \leq \ldots \leq h_{\lfloor d / 2\rfloor}=h_{\lceil d / 2\rceil} \geq \ldots \geq h_{d}
$$

The g-conjecture

Definition

A 0-dimensional standard graded algebra R satisfies the hard Lefschetz theorem if there is a linear form $\ell \in R$ such that

$$
\times \ell^{d-2 i}: R_{i} \longrightarrow R_{d-i}, \quad \text { where } d=\max \left\{j: R_{j} \neq 0\right\}
$$

is an isomorphism for all $i \leq\lfloor d / 2\rfloor$.

Lemma

Let R be a 0-dimensional standard graded algebra satisfying the hard Lefschetz theorem, with h-vector $h=\left(h_{0}, \ldots, h_{d}\right)$. Then the g-vector of h is an M-vector.

Proof: If $i<\lfloor d / 2\rfloor$, notice that the isomorphism $\times \ell^{d-2 i}: R_{i} \rightarrow R_{d-i}$ is

$$
R_{i} \xrightarrow{\times \ell} R_{i+1} \xrightarrow{\times \ell^{d-2 i-1}} R_{d-i},
$$

so $\times \ell: R_{i} \rightarrow R_{i+1}$ is injective for all $i<\lfloor d / 2\rfloor$.

The g-conjecture

Consider the 0 -dimensional standard graded algebra $A=R /(\ell)$, and note:

$$
\operatorname{dim}_{K} A_{i}=\operatorname{dim}_{K} R_{i}-\operatorname{dim}_{K} \ell R_{i-1}=h_{i}-h_{i-1} \quad \forall i \leq\lfloor d / 2\rfloor \quad \square .
$$

The g-conjecture for polytopes has been proven in 1980 by BilleraLee (if - part) and Stanley (only if - part). In the next slides follows a description of the idea of the original Stanley's proof

Given a d-dimensional projective variety $X \subseteq \mathbb{P}^{n}$ over \mathbb{C}, let

$$
H^{2 *}(X ; \mathbb{C}):=\bigoplus_{i=0}^{d} H^{2 i}(X ; \mathbb{C})
$$

be its even cohomology ring. The product is given by the cup-product, which makes of it a commutative ring.

To any subvariety $Y \subseteq X$ of codimension k can be associated a cohomology class $[Y] \in H^{2 k}(X ; \mathbb{C})$.

In particular, taking as Y a general hyperplane section of X, we get an element of $H^{2}(X ; \mathbb{C})$. Such an element is known as the fundamental class, and usually denoted by $\omega \in H^{2}(X ; \mathbb{C})$.

The classical hard Lefschetz theorem, first proved completely by Hodge, states that if X is nonsingular, then the multiplication map

$$
\times \omega^{d-k}: H^{k}(X, \mathbb{C}) \rightarrow H^{2 d-k}(X ; \mathbb{C})
$$

is an isomorphism of \mathbb{C}-vector spaces. .
Now, to any complete fan Σ (collection of cones with certain gluing properties), one can associate a scheme X_{Σ}. Given a d-polytope $P \subseteq \mathbb{Q}^{d}$ containing the origin in its interior, for any proper face $F \in P$ consider the cone σ_{F} consisting of the points belonging to some ray through the origin and F. As F varies, we get a complete fan Σ, the so-called normal fan of P, and the corresponding scheme X_{Σ}, that we denote by $X(P)$. It turns out that $X(P)$ is projective, i.e. it admits an embedding $X(P) \subseteq \mathbb{P}^{n}$.

Unfortunately $X(P)$ may have singularities... However, if P is simplicial, then it has finite (Abelian) quotient singularities (this means that $X(P)$ is not smooth but it is very close to!). By a result of Steenbrink, $H^{2 *}(X, \mathbb{C})$ satisfies the hard Lefschetz theorem for any projective variety with finite quotient singularities. So $H^{2 *}(X(P), \mathbb{C})$ satisfies the hard Lefschetz theorem.

If Δ is the boundary of P, then Danilov proved in 1978 that there exists a l.s.o.p. $\theta_{1}, \ldots, \theta_{d}$ of $\mathbb{C}[\Delta]$ such that there is a graded isomorphism

$$
H^{2 *}(X(P), \mathbb{C}) \cong \mathbb{C}[\Delta] /\left(\overline{\theta_{1}}, \ldots, \overline{\theta_{d}}\right)
$$

where the degree i piece of $H^{2 *}(X(P), \mathbb{C})$ is $H^{2 i}(X(P), \mathbb{C})$.

The g-conjecture

Therefore $\mathbb{C}[\Delta] /\left(\overline{\theta_{1}}, \ldots, \overline{\theta_{d}}\right)$ satisfies the hard Lefschetz theorem, so the g-vector of its h-vector is an M-vector. Since the h-vector of $\mathbb{C}[\Delta]$ agrees with that of $\mathbb{C}[\Delta] /\left(\overline{\theta_{1}}, \ldots, \overline{\theta_{d}}\right)$ (because $K[\Delta]$ is CM) we conclude. \square

The following is still open:

The g-conjecture for spheres

If a vector $h=\left(h_{0}, \ldots, h_{d}\right)$ is the h-vector of a $(d-1)$-sphere, then $h_{i}=h_{d-i}$ and its g-vector is an M-vector.

Also, what about Gorenstein simplicial complexes ???
Note: Standard graded Gorenstein K-algebras in general have not unimodal h-vector (example of Stanley with h-vector ($1,13,12,13,1$)). So far it seems there are no examples among Stanley-Reisner rings ...

