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Generic and special constructions of pure O-sequences
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Abstract

It is shown that the h-vectors of Stanley–Reisner rings of three classes of matroids are
pure O-sequences. The classes are (a) matroids that are truncations of matroids, or more
generally of Cohen–Macaulay complexes, (b) matroids whose dual is (rank + 2)-partite, and
(c) matroids of Cohen–Macaulay type at most 5. Consequences for the computational search for
a counterexample to a conjecture of Stanley are discussed.

Introduction

The f -vector and h-vector are fundamental invariants of a simplicial complex, encoding the
number of faces that the complex has in each dimension. What can be said in general about
these vectors? Starting from Euler’s polyhedron formula in the middle of the 18th century,
different conditions and eventually characterizations have been found. It seems natural to
ask for a description of the set of f - or equivalently h-vectors of all simplicial complexes
or all pure simplicial complexes in a given dimension. The situations for these two classes
are quite different. There is a precise characterization of the set of f -vectors of all simplicial
complexes due to Schützenberger, Kruskal, and Katona [40, Theorem II.2.1]. The opposite
is the case for pure simplicial complexes, a characterization is believed to be intractable. As
Ziegler points out, it would solve all basic problems in design theory [43, Exercise 8.16].
The celebrated g-theorem characterizes h-vectors of simplicial polytopes [4, 5, 39] and it is
conjectured that this characterization also applies to simplicial spheres (of which there are
many more than boundaries of simplicial polytopes [28]). This indicates that subclasses of
pure complexes, like Gorenstein, Cohen–Macaulay, or matroid complexes, may be feasible. It
is known for a long time, essentially due to Macaulay, that the sets of vectors that arise as
h-vectors of Cohen–Macaulay complexes consist exactly of O-sequences, Hilbert functions of
Artinian algebras [30]. Although necessary conditions are known, characterizations for matroid
or Gorenstein complexes are open and may be out of reach.

In this paper, we focus on matroids. They were originally introduced by Whitney as a
way to study the concept of independence [42]. Subsequently, they appeared in a wide range of
mathematical areas from linear algebra, (real) algebraic geometry, and combinatorial geometry
to graph theory, optimization, and approximation theory. The new edition of Oxley’s book [37]
provides an excellent guide to the theory. Interest in algebraic properties of matroids is still
growing as witnessed by recent work of DeConcini and Procesi [14], Holtz and Ron [25],
Lenz [29], Moci [35], and Huh [26, 27].

What properties should the h-vector of a matroid have? Since matroids are Cohen–Macaulay,
their h-vectors must be O-sequences. In [38], Stanley shows that they are also Hilbert functions
of Artinian algebras whose socle is concentrated in one degree. He conjectured that for any
matroid one can even find a monomial algebra with this property. In this case, its Hilbert
function is called a pure O-sequence.
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Conjecture [38, p. 59]. The h-vector of a matroid complex is a pure O-sequence.

For an abstract simplicial complex Δ on [n] := {1, . . . , n}, let fi(Δ) be the number of faces
of size i. Let d = max{i : fi �= 0} be the rank of Δ. The vector f = (f0, . . . , fd) is the f -vector
of Δ. It encodes the same information as the h-vector h(Δ) = (h0, . . . , hs) whose component hi

is the coefficient of xd−i in the polynomial
∑d

i=0 fi(x − 1)d−i. A central tool for the study of the
h-vector is the Stanley–Reisner ring k[Δ] := k[x1, . . . , xn]/IΔ, where IΔ = (

∏
i∈G xi : G /∈ Δ)

is the Stanley–Reisner ideal. In this setting, the h-vector appears as the coefficient vector of
the numerator polynomial of the Hilbert series of k[Δ] (see [40]). The field k in this definition
is arbitrary, and homological properties of k[Δ] may depend on the characteristic. However,
Stanley’s conjecture is field independent.

The problem raised by Stanley is extremely difficult and the authors are not strong believers
in the validity of the conjecture. The complications are in part due to the strange properties of
pure O-sequences. For instance, they need not be unimodal, and it is likely that they cannot
be characterized well [6]. On the positive side, it is known that both pure O-sequences and
h-vectors of matroid complexes satisfy a common set of inequalities [10, 24]:

h0 � h1 � . . . � h�s/2�, hi � hs−i for 0 � i �
⌊s

2

⌋
.

In contrast, the Brown–Colbourn inequalities

for any b � 1 (−1)j

j∑
i=0

(−b)ihi � 0, 0 � j � s

hold for h-vectors of matroids, but not pure O-sequences [7]. Other than this our understanding
is poor. Positive answers to Stanley’s conjecture are known for short h-vectors [15, 21], and
for special classes of matroids [32, 33, 36]. In the present paper, we prove that Stanley’s
conjecture holds for matroids that are truncations of other matroids and for matroids whose
h-vector (1, h1, . . . , hs) satisfies hs � 5 (with no restriction on s). We employ two completely
different methods of proof, both of which have potential for generalizations. As a consequence
of our results, the search for counterexamples is pushed closer to today’s computational limits.

Generic pure O-sequences

The Stanley–Reisner ring k[Δ] of a matroid Δ is level. To produce a pure O-sequence
which equals the h-vector of Δ it would suffice to pass to a monomial Artinian reduction.
Unfortunately, a monomial ideal rarely has one. In this context, the generic initial ideal may
come to mind. It has the same h-vector as the original ideal and (in characteristic zero)
is strongly stable. Therefore, it possesses a regular sequence of variables and a monomial
Artinian reduction. However, this does not prove Stanley’s conjecture as typically the quotient
modulo the generic initial ideal is not level. We envision an approach to Stanley’s conjecture in
which one interpolates between these two objectives with a less drastic version of the generic
initial ideal (Remark 1.5). In Section 1, we study this genericity of matroids and show that
a generalization of Stanley’s conjecture holds for all simplicial complexes that are truncations
(skeletons) of matroids (Theorem 1.10).

Special pure O-sequences

In matroid theory, duality is central. If Δ is a matroid, then the complex Δc whose facets are
the complements of facets of Δ is the dual matroid. Directly from the definitions, its Stanley–
Reisner ideal IΔc equals the cover ideal J(Δ) of Δ. In this paper, hΔ is the h-vector of (the
quotient by) IΔ and hΔ that of (the quotient by) J(Δ). By matroid duality, it suffices to prove
Stanley’s conjecture for either of the classes. Several known results on matroid complexes are
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stated in terms of the dual matroid [15, 32, 36], which may be taken as an indication that the
cover ideal is a natural object. This perspective permeates the work of the first and third authors
and also our Section 2, where we aim at a generalization of the construction of pure O-sequences
in [13]. This construction is recursive and relies on finding pure O-sequences for links and
deletions in the matroid. When trying to generalize the construction, we require a compatibility
condition (Lemma 2.1 and Definition 2.6) the checking of which remains an obstacle. Carefully
keeping track of the contributions in the recursion allows us to prove Stanley’s conjecture
for duals of matroids with at most rank + 2 parallel classes (Theorem 2.18). Exploiting the
constraints on the h-vectors of matroids whose dual has a fixed number of parallel classes,
proved in [13], we can show Stanley’s conjecture when the type is at most 5 (Theorem 3.3).

The search for a counterexample

Matroids on nine or fewer elements have been enumerated by Mayhew and Royle [31] and
Stanley’s conjecture has been confirmed for all of them in [15]. Beyond nine vertices, mostly
due to the lack of a good list of candidates, only sporadic experiments have been carried
out. Our results have implications for the search for a counterexample. By Theorem 3.3, any
candidate counterexample must be of Cohen–Macaulay type at least 6. To confirm such a
counterexample in silico would include enumeration of all

(
N
6

)
socles where N is a binomial

coefficient (see Example 4.1). The methods of Section 2, in particular Lemma 2.1, imply faster
searches for pure O-sequences realizing the h-vector of the cover ideal of a given matroid. In
Section 4, we discuss our computational efforts. As part of this project, we developed a small
C++-library which can be used to enumerate pure O-sequences The source code is available
at https://github.com/tom111/GraphBinomials and is licensed under the GNU general public
license. We also made intensive use of CoCoA [11], Macaulay2 [20], and Sage [41].

1. Linear resolutions and the generic initial ideal

Let S = k[x1, . . . , xn] be a polynomial ring over a field k. For any ideal I ⊆ S, we denote gin(I)
the generic initial ideal with respect to the graded reverse lexicographic term order. Any graded
S-module M has a minimal graded free resolution:

0 −→ Fp
δp−→ Fp−1 −→ · · · −→ F1

δ1−→ F0
δ0−→ M −→ 0,

in which Fi =
⊕

j∈Z
S(−j)βi,j(M). Let Zi(M) = ker δi be the ith syzygy module of M . The

module M has a k-linear resolution if βi,j(M) = 0 whenever j �= i + k. It is componentwise
linear if M〈k〉 has k-linear resolution for all k ∈ Z, where M〈k〉 is the submodule of M generated
by all homogeneous elements of degree k. It is not difficult to show that, if M has a linear
resolution, then it is componentwise linear, for example, using [12, Corollary 2.5]. Linearity of
the free resolution is a genericity condition. This intuition is justified by the following theorem.

Theorem 1.1 [1, Theorem 1.1]. Let char(k) = 0. An ideal I ⊂ S is componentwise linear
if and only if βi,j(S/I) = βi,j(S/ gin(I)) for all i, j.

Since I = Z0(S/I), one may ask which conclusions are implied if Zi(S/I) is componentwise
linear. The following result gives one direction.

Proposition 1.2 [9, Theorem 5.7]. Let I ⊂ S be a graded ideal such that βi,j(S/I) =
βi,j(S/ gin(I)) for all i > s + 1 and j ∈ Z. Then Zs(S/I) is componentwise linear.

https://github.com/tom111/GraphBinomials
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In general, the other implication in Proposition 1.2 does not hold (Example 1.4). In fact, it
would imply Stanley’s conjecture for cover ideals of simple matroids. To see this, let I ⊂ S be
an ideal such that S/ gin(I) is level. In characteristic zero, the generic initial ideal is strongly
stable and thus xn, xn−1, . . . , xd+1 is a regular sequence in S/ gin(I). The Artinian reduction
S/(gin(I) + (xn, xn−1, . . . , xd+1)) is an Artinian level monomial algebra with the same h-vector
as S/I. In fact, having a binomial regular sequence would suffice to ensure monomiality of the
quotient (see Remark 1.5). Consequently, the h-vector of S/I is a pure O-sequence. If the
converse of Proposition 1.2 were true, then the h-vector of any level algebra whose second to
last syzygy module is componentwise linear would be a pure O-sequence. This is the case for
cover ideals of simple matroids, that is, matroids without parallel elements.

Proposition 1.3. Let Δ be a rank d simple matroid on n vertices. Then βd−1,j(S/J(Δ)) �=
0 only for j = n − 1. In particular, Zd−2(S/J(Δ)) is componentwise linear.

Proof. Let Γ = Δc. Hochster’s formula implies:

βd−1,j(S/J(Δ)) = βd−1,j(S/IΓ) =
∑

W⊂[n]
|W |=j

dimk H̃j−d(ΓW , k),

where ΓW denotes the restriction of Γ to the vertex subset W . If j > n − 1, then the only
summand that could occur is dimk H̃n−d(Γ, k) = 0 in the case j = n. If j < n − 1, then we
can find two distinct vertices outside of W . Since Δ is simple, they must be contained in a
facet F of Δ. Therefore, G := [n] \ F is a facet of Γ, and |G ∩ ([n] \ W )| � n − j − 2. Thus,
dim(ΓW ) � j − d + 1. By Reisner’s criterion, H̃j−d(ΓW , k) = 0 since ΓW is a matroid and can
thus have only top-dimensional homology.

Example 1.4. Let Δ be the rank 3 simple matroid on {1, . . . , 7} with the following facets:

123, 124, 125, 127, 135, 136, 137, 145, 146, 147, 156, 167, 234, 235,

236, 246, 247, 256, 257, 267, 345, 346, 347, 357, 367, 456, 457, 567,

commonly known as the Fano matroid. A quick computation with Macaulay2 shows that
the cover ideal is level of Cohen–Macaulay type 8 while its generic initial ideal is not
level (β3(S/ gin(J(Δ)) = 10). Since Δ is simple, Proposition 1.3 shows that Z1(S/J(Δ)) is
componentwise linear.

Remark 1.5. Propositions 1.2 and 1.3 inspired the search for a less generic initial ideal in
which the coordinate transform has block structure. The hope was to find a construction that
balances between preserving the last Betti number, yielding a level quotient, and maintaining
the existence of a binomial regular sequence, needed to have a monomial quotient. However,
we did not find a definition that realizes just the right balance.

If the generic initial ideal of IΔ is level, then hΔ is a pure O-sequence since it equals the
Hilbert function of the Artinian reduction of gin(IΔ) by variables. To implement this strategy,
we employ the following two general lemmas. Following [22], let I<k denote the subideal of a
homogeneous ideal I generated by the homogeneous elements of I of degree less than k.

Lemma 1.6. Let I ⊂ S be a homogeneous ideal of projective dimension p and regularity k.
If pd(I<k) < p and char(k) = 0, then βp(I) = βp,p+k(I) = βp,p+k(gin(I)) = βp(gin(I)).
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Proof. Let J1 = gin(I)<k and J2 = gin(I<k)<k. It is easy to see that J1 = J2. In character-
istic zero, the generic initial ideal is strongly stable and [3, Theorem 2.4(a)] shows pd(J2) < p.
Using the Eliahou–Kervaire resolution [18, Theorem 2.1], we get that no monomial xp+1u with
u ∈ k[x1, . . . , xp+1] is a minimal generator of J2 = J1. Therefore, any minimal generator of
gin(I) of the form xp+1u with u ∈ k[x1, . . . , xp+1] must be of degree at least k. Since, by [3,
Theorem 2.4(b)], we have reg(I) = reg(gin(I)) it must be of degree exactly k.

The Eliahou–Kervaire formula [23, Corollary 7.2.3] gives one of the equations: βp(gin(I)) =
βp,p+k(gin(I)). Since βp,p+k(I) is an extremal Betti number, we have βp,p+k(gin(I)) = βp,p+k(I)
by [2, Corollary 1.3]. Finally, it is a general fact (see, for example, [34, Theorem 8.29])
that βp,p+j(I) � βp,p+j(gin(I)) for any j, so actually βp(I) = βp,p+k(I) = βp,p+k(gin(I)) =
βp(gin(I)).

Lemma 1.7. Let Δ be a Cohen–Macaulay complex of dimension d, and F be a minimal
non-face of cardinality d + 1. Then Δ ∪ F is Cohen–Macaulay.

Proof. Let 〈F 〉 denote the complex on [n] with one facet F . By construction, 〈F 〉 ∩ Δ is the
boundary of a d-simplex. In particular, k[〈F 〉 ∩ Δ] is a d-dimensional Cohen–Macaulay ring.
So the statement follows at once from the exact sequence

0 −→ k[Δ ∪ F ] −→ k[Δ] ⊕ k[〈F 〉] −→ k[〈F 〉 ∩ Δ] −→ 0,

and the depth inequalities.

The following theorem is the main result of this section. We state it for Stanley–Reisner
ideals.

Theorem 1.8. Let Δ be the (d − 1)-skeleton of a d-dimensional Cohen–Macaulay complex.
Then hΔ is a pure O-sequence. Furthermore, if char(k) = 0, then k[Δ] is level.

Proof. By Hochster’s formula, reg(k[Δ]) � d and since IΔ has a generator of degree d + 1,
reg(k[Δ]) = d. Write J = (IΔ)<d+1 and let Γ be the corresponding simplicial complex. The
result follows from Lemma 1.6 once we show depth(k[Γ]) > d, which, in turn, is equivalent to
the d-skeleton of Γ being Cohen–Macaulay. The d-skeleton of Γ is the complex Γd that arises
from Δ by turning all non-faces of size d + 1 into facets. Now, Δ is the (d − 1)-skeleton of a
d-dimensional Cohen–Macaulay complex Ω. There are two kinds of facets of Γd: those that
are facets of Ω and those that are not. Those that are not are minimal non-faces in Ω. By
Lemma 1.7, Γd is Cohen–Macaulay. The statement about the h-vector is characteristic-free
because the h-vector of a simplicial complex does not depend on the coefficient field.

It is equivalent to say that a vector is the Hilbert function of an Artinian monomial algebra
and that it is the f -vector of an order ideal of monomials, also known as a multicomplex. In
this language, pure O-sequences are f -vectors of pure multicomplexes. Similar to simplicial
complexes, there are theories of shellability of multicomplexes (such as M-shellability) and the
work of Chari suggests that a characterization of f -vectors of shellable multicomplexes may
be possible [10]. He also conjectures that the h-vector of any coloop-free matroid is a shellable
O-sequence [10, Conjecture 3] which would imply Stanley’s conjecture.

Remark 1.9. Let I ⊂ S = k[x1, . . . , xr] be a strongly stable ideal such that S/I is an
Artinian level ring. In this case, the h-vector of S/I is the f -vector of an M-shellable
multicomplex.
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Proof. By the Eliahou–Kervaire resolution, the variable xr appears only in the minimal
generators of I of maximal degree. Let k be this maximal degree, and let u1, . . . , ut be the
degree k minimal generators of I divisible by xr. Write ui = vixr for all i = 1, . . . , t. One easily
checks that v1, . . . , vt generate the order ideal of S/I. Let ≺ be the graded revlex order induced
by xr > . . . > x1. We can assume v1 ≺ . . . ≺ vt. Now write vi = v′

ix
ei
r , where ei is the maximum

power of xr dividing vi, and let Vi = {v′
ix

j
r : j = 0, . . . , ei}. We claim that Vt, . . . , V1 is a shelling

of the multicomplex S/I. It remains to show that, if u is a monomial of degree e dividing vi,
then there exists j � i such that vj = uxk−e−1

r . Let m be the monomial of degree k − e − 1
such that vi = um. If no such j existed, then uxk−e−1

r would be in I, so there would exist a
minimal generator u′ of I, say of degree a, such that u = u′u′′ for some u′′. Then u′xe−a

r would
be in I as well. Since I is strongly stable, u = u′xe−a

r /xe−a
r · u′′ ∈ I. This is a contradiction to

ui being a minimal generator.

In matroid theory, passing from a matroid of rank d to its k-skeleton for k < d − 1 is called
a truncation. The rank function of the truncation is A 
→ min{rk(A), k + 1}. The shift of one
arises because the k-skeleton is of dimension k which means rank k + 1. All together, we have
the following theorem.

Theorem 1.10. Any truncation of a matroid satisfies Chari’s conjecture and consequently
also Stanley’s conjecture.

Proof. If I ⊂ S is a strongly stable ideal such that S/I is level, then the h-vector of S/I is
the f -vector of an M-shellable multicomplex by Remark 1.9. By Theorem 1.8, the h-vectors of
truncated matroids satisfy Chari’s and consequently also Stanley’s conjecture.

Evidently the next question is: Which matroids are truncations? Certainly not all of them.

Example 1.11. Any complete bipartite graph is a rank 2 matroid that is not the truncation
of a matroid. More generally, any matroid that becomes a simplex after identifying parallel
elements is not a truncation.

Remark 1.12. If a rank d matroid Γ is a truncation, then it is a truncation of a rank d + 1
matroid Δ. In this case, any facet of Δ is a spanning circuit of Γ, that is, a minimal non-face of
size d + 1. In particular, the facets of Δ are contained in the spanning circuits of Γ. Moreover,
if Γ has no spanning circuit, then it is not the truncation of a matroid.

Example 1.13. The dual of the Fano matroid from Example 1.4 has no spanning circuit.

Remark 1.14. Let Δ be a matroid which has a spanning circuit. In [8], Brylawski gives
an algorithm that decides if there exists a matroid Γ such that Δ is the truncation of Γ, and
constructs the freest such matroid whenever possible.

In the remainder of the section, we discuss Schubert matroids (also known as shifted
matroids, PI-matroids, and generalized Catalan matroids [19]). They play an important role
in the study of Hopf algebras of (poly)matroids [16].

Definition 1.15. Let 1 � s1 < s2 < . . . < sd � n be a sequence of strictly ascending
integers. The Schubert matroid SMn(s1, . . . , sd) is the rank d matroid on [n] with facets:

{{i1, . . . , id} : ij � sj}. (1)
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Remark 1.16. For any simplicial complex Δ, the ideal (IΔ)〈k〉, generated by the degree k
part of IΔ, is generated by all monomials corresponding to non-faces of size k.

Lemma 1.17. If Δ = SMn(s1, . . . , sd) is a Schubert matroid of rank d and s1 � 2, then for
any k < d + 1, (IΔ)〈k〉 is the ideal generated by the degree k part of the Stanley–Reisner ideal
of SMn(s1 − 1, s1, . . . , sd).

Proof. If {j1, . . . , jd+1} is a facet of SMn(s1 − 1, s1, . . . , sd), then it is a minimal non-face of
SMn(s1, . . . , sd) since any {j1, . . . , ĵl, . . . , jd+1} satisfies (1). On the other hand, if {j1, . . . , jd+1}
is a non-face of SMn(s1 − 1, s1, . . . , sd), then {j2, . . . , jd+1} is a non-face of SMn(s1, . . . , sd),
assuming without loss of generality that j1 < j2 < . . . < jd+1. By Remark 1.16, the statement
holds for any k < d + 1.

Theorem 1.18. Schubert matroids have componentwise linear Stanley–Reisner ideals and
in particular satisfy Chari’s (and thus Stanley’s) conjecture.

Proof. If s1 = 1, then SMn(s1, . . . , sd) ∼= SMn−1(s1 − 1, . . . , sd − 1) ∗ {v}. The Stanley–
Reisner ideal of SMn−1(s1 − 1, . . . , sd − 1) ∗ {v} does not use the variable of v and is
componentwise linear if and only if the Stanley–Reisner ideal of SMn(s1, . . . , sd) is compo-
nentwise linear. If sd < n, then SMn(s1, . . . , sd) ∼= SMsd

(s1, . . . , sd). The Stanley–Reisner ideal
of SMsd

(s1, . . . , sd) equals that of SMn(s1, . . . , sd) plus variables. One is componentwise linear
if and only if the other is. Consequently, assume 1 < s1 < s2 < . . . < sd = n. We proceed by
induction on the corank n − d. The base case is n − d = 1 in which IΔ is principal. To check
that I is componentwise linear, it suffices to check I〈k〉 for any k in which I has minimal
generators [22], and IΔ has minimal generators in degrees at most d + 1. Since reg(IΔ) = d + 1,
the ideal (IΔ)〈d+1〉 has a linear resolution [17, Proposition 1.1]. By Lemma 1.17 and the
induction hypothesis, we conclude.

2. Matroids with d + 2 parallel classes

In the remainder of the paper, we focus on duals of matroids, or equivalently, h-vectors of cover
ideals. If Δ is a matroid, then hΔ = hΔc is the h-vector of S/J(Δ), the quotient by the cover
ideal of Δ. The one-dimensional skeleton of a matroid is a complete p-partite graph whose
groups of vertices correspond to the partition of the vertex set of the matroid set into parallel
classes [13, Corollary 2.3]. The main result of this section (Theorem 2.18) says that Stanley’s
conjecture holds for cover ideals of matroids whose number of parallel classes is at most 2 more
than the rank. Due to the technical nature of the proof, we divide it into several smaller results,
give various examples along the way, and state the general theorem at the very end.

Our notation follows closely that of [13]. Let Δ be a matroid of rank d, with parallel classes
A1, . . . , Ap, of cardinalities a1, . . . , ap. Such matroids are p-partite. The simplification siΔ of Δ
is the matroid that arises from Δ by replacing each parallel class by a single vertex. We begin
with a technical condition to be used in many inductive constructions.

Lemma 2.1. Let Γ′ = 〈N1, . . . , Nu〉 be a pure order ideal in variables y1, . . . , yd, and let
Γ′′ = 〈M1, . . . ,Mv〉 be a pure order ideal in the variables y1, . . . , ŷr, . . . , yd, that is, not using
yr. Assume that hΔ\Ap = f(Γ′) and that hlinkΔAp = f(Γ′′). Suppose that ∀i ∈ [u], ∃j ∈ [v] such
that

Ni

yni
r

| Mj where ni = max{m : ym
r | Ni}. (2)
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Then hΔ equals the f -vector of the pure order ideal

Γ = 〈yap
r N1, . . . , y

ap
r Nu, yap−1

r M1, . . . , y
ap−1
r Mv〉.

Proof. By [13], we have for any i � 0 that

hΔ
i = h

Δ\Ap

i−ap
+

ap−1∑
j=0

h
linkΔAp

i−j .

It suffices to show the corresponding formula for Γ:

fi(Γ) = fi−ap
(Γ′) +

ap−1∑
j=0

fi−j(Γ′′).

Fix an index i and write Γi = {M ∈ Γ : deg M = i}. We write Γi as the disjoint union
G�ap

� Gap−1 � . . . � G0, where Gj = {M ∈ Γi : yj
r | M but yj+1

r � M}, and G�ap
= {M ∈ Γi :

y
ap
r | M}. If a generator of Γ is divisible by y

ap
r , then it cannot come from generators of Γ′′.

Hence, fi−ap
(Γ′) = |G�ap

|, and it suffices to check that fi−j(Γ′′) = |Gap−j−1|. The inequality
fi−j(Γ′′) � |Gap−j−1| follows from the definition of Γ. To obtain equality, we confirm that each
monomial in Gap−j−1 divides some generator y

ap−1
r Ml. Assume that there exists a monomial

M = y
ap−j−1
r M ′ ∈ Γ (with yr � M ′), such that M | y

ap
r Nk, for some k. By (2), there exists l

such that
Nk

ynk
r

| Ml.

This implies that M ′ | Ml, and as ap − j − 1 � ap − 1 we conclude.

In our inductive proofs, the matroids Γ′ are special simplicial complexes for which Stanley’s
conjecture is known by [13]. They are defined as follows.

Definition 2.2. Let a = (a1, . . . , ap) be a vector of positive integers. Fix integers 2 � d � p
and 0 � t � d − 2. Let A1, . . . , Ap be disjoint sets of vertices with |Ai| = ai for any i. The
matroid Δt(d, p,a) is the rank d matroid on

∑
i ai vertices with facets

Ai1 · · ·Aid−t
Ap−t+1 · · ·Ap where 1 � i1 < . . . < id−t � p − t.

Here Aj1 · · ·Ajk
stands for all sets {vj1 , . . . , vjk

} such that vji
∈ Aji

. The matroid Δ0(d, p,a)
is the complete matroid of rank d with p parallel classes of sizes a1, . . . , ap.

The simplification of Δt(d, p,a) is isomorphic to Δt(d, p,1), which in turn equals the
simplicial join of the uniform matroid Ud−t,p−t of rank d − t on p − t vertices, with a simplex
on t vertices. The matroids Δt appear in [13] with a different numbering of the parallel classes,
but here we find this convention more natural. The h-vector of the cover ideal of Δt(d, p,a)
is a pure O-sequence by [13, Theorem 3.7] and we give its order ideal in Example 2.4, after
setting up a useful notation.

Notation 2.3. Fix positive integers (a1, . . . , ap). For any set partition P = P1 � . . . � Pd

of [p], denote by [P] = [P1|P2| · · · |Pd] the monomial in d variables:

y
−1+

∑
j∈P1

aj

1 · · · y−1+
∑

j∈Pd
aj

d .

When no confusion may arise, we will use this notation for the corresponding partition as well.
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Example 2.4. Fix integers t, d, p such that 0 � t � d − 2 � p − 2, and an integer vector
a = (a1, . . . , ap). For any ascending sequence 1 = l0 < l1 < . . . < ld = p + 1 of integers, let
P(l0, . . . , ld) be the d-partition into sets Pi = {li−1, . . . , li − 1}. We define the following pure
order ideal:

Γt(d, p,a) := 〈[P(l0, . . . , ld−t)|p − t + 1| · · · |p] : for all 1 = l0 < l1 < . . . < ld−t = p − t + 1〉.
In particular, when t = 0 we have

Γ0(d, p,a) := 〈[P(l0, . . . , ld)] : for all 1 = l0 < l1 < . . . < ld = p + 1〉.
By [13, Theorem 3.7], the vector hΔt(d,p,a) equals the f -vector of Γt(d, p,a). This equality is
not easy to check in general. One may prove it by induction for complete matroids, then note
that

Δt(d, p, (a1, . . . , ap)) = Δ0(d − t, p − t, (a1, . . . , ad−t)) ∗ Δ0(t, t, (ap−t+1, . . . , ap)),

check that a similar equality holds for the pure order ideals (viewed as multicomplexes), and
finally use the behavior of h-vectors and f -vectors over star products. In this section, we are
mainly interested in the case p = d + 1, where Γt(d, d + 1,a) is generated by

[ 1 | 2 | · · · | d − t + 1 | d − t, d − t + 1 | d − t + 2 | · · · | d + 1 ]
[ 1 | 2 | · · · | d − t + 1, d − t | d − t + 1 | d − t + 2 | · · · | d + 1 ]

...
[ 1 | 2, 3 | · · · | d − t | d − t + 1 | d − t + 2 | · · · | d + 1 ]
[ 1, 2 | 3 | · · · | d − t | d − t + 1 | d − t + 2 | · · · | d + 1 ].

In particular, for t = 1, d = 3, p = 4 and some a we obtain:

Γ1(3, 4,a) = 〈[P(l0, l1, l2)|4] : for all 1 = l0 < l1 < l2 = 4〉

= 〈[P(1, 2, 4)|4], [P(1, 3, 4)|4]〉

= 〈[1|2, 3|4], [1, 2|3|4]〉

= 〈ya1−1
1 ya2+a3−1

2 ya4−1
3 , ya1+a2−1

1 ya3−1
2 ya4−1

3 〉.

Plugging in various values for a one can directly check hΔ1(3,4,a) = fΓ1(3,4,a).

Definition 2.5. Let [P1| · · · |Pd], [Q1| · · · |Qd] be d-partitions of subsets of [p]. For every
vector of positive integers a = (a1, . . . , ap), let �a be the partial order defined by

[P1| · · · |Pd] �a [Q1| · · · |Qd] ⇐⇒
∑
j∈Pi

aj �
∑
j∈Qi

aj for all i = 1, . . . , d.

For any (d − 1)-partition [Q′
1| · · · |Q′

d−1] of [p] and integer r ∈ [d], a partial order �r
a is defined

by
[P1| · · · |Pd] �r

a [Q′
1| · · · |Q′

d−1] ⇐⇒ [P1| · · · |P̂r| · · · |Pd] �a [Q′
1| · · · |Q′

d−1].

The compatibility condition (2) in Lemma 2.1 can be rewritten using the new notation.

Definition 2.6. Let P = {P1, . . . ,Ps} be a set of d-partitions of [p], Q = {Q1, . . . ,Qr}
be a set of (d − 1)-partitions of [p]. For every r ∈ [d], we say that the sets P,Q satisfy the
r-compatibility condition if for each P ∈ P there exists a Q ∈ Q such that P �r

a Q.
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Example 2.7. The sets of partitions P = {[1|2|3, 4], [1|2, 3|4], [1, 2|3|4]} and Q =
{[1, 2|3, 4]} are 3-compatible if and only if a2 � a4, while the collections P′ =
{[1|2, 3|4, 5], [1, 2|3|4, 5]} and Q′ = {[1|2, 3, 4, 5], [1, 2|3, 4, 5], [1, 2, 3|4, 5], [1, 2, 3, 4|5]} are i-
compatible for any a and any i = 1, 2, 3.

In the new notation, the gluing in Lemma 2.1 takes two sets Γ′ and Γ′′ of partitions of [p − 1]
and produces a set of d-partitions of [p]. The procedure consists of

(i) adding the element p to each rth set of a partition in Γ′;
(ii) inserting the set {p} into each partition of Γ′′ as the rth set, shifting the index of the

last d − r sets by 1.

Here is an example of how Lemma 2.1 can be applied. It is one of the base cases in the proof
of Proposition 2.17.

Example 2.8. Let Δ be the rank 3 matroid with five parallel classes and facets:

A1A2A3, A1A2A4, A1A3A4, A2A3A4, A1A3A5, A1A4A5, A2A3A5, A2A4A5.

As Δ \ A5 = Δ0(3, 4, (a1, a2, a3, a4)), it holds that hΔ\A5 = f(Γ0(3, 4, (a1, a2, a3, a4))), corre-
sponding to

P = {[1|2|3, 4], [1|2, 3|, 4], [1, 2|3|4]}.
The rank 2 matroid linkΔA5 is the complete bipartite graph Δ0(2, 2, (a1 + a2, a3 + a4)), and
thus its h-vector is obtained from the order ideal generated by Q = {[1, 2|3, 4]}. Example 2.7
shows that P and Q are 3-compatible if and only if a2 � a4. Switching the pairs (A1, A2) and
(A3, A4) in Δ gives an isomorphic matroid, therefore we may assume without loss of generality
that a2 � a4, and obtain by Lemma 2.1 that hΔ = f(Γ) for

Γ = 〈[1|2|3, 4, 5], [1|2, 3|4, 5], [1, 2|3|4, 5], [1, 2|3, 4|5]〉.

A crucial property of (d + 2)-partite matroids is that they possess a dual graph, which
together with the vector (a1, . . . , ap) completely encodes their structure.

Definition 2.9. Let Δ be a matroid of rank d with d + 2 parallel classes and let siΔ be
its simplification. The graph GΔ is the rank 2 matroid (siΔ)c.

By construction, GΔ is a complete q-partite graph on [d + 2], for some q ∈ {2, . . . , d + 2}. If
GΔ is a complete graph on d + 2 vertices (that is, if q = d + 2), then its dual is the complete
(d + 2)-partite matroid, for which Stanley’s conjecture holds by [13, Theorem 3.5]. However,
not all complete q-partite graphs have simple matroids as their duals.

Remark 2.10. For every d � 2, the bipartite graph with partition {1, 2} ∪ {3, . . . , d + 2}
and the tripartite graph with partition {1} ∪ {2} ∪ {3, . . . , d + 2} have duals in which 1 and 2
are parallel and these are the only n-partite graphs with this property.

Proof. The set {1, 2} is a minimal non-face in the dual of a complete n-partite graph G if
and only if every edge of G has at least one of 1 and 2 as a vertex.
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Remark 2.11. The [(d − 1) + 2]-partite matroid linkΔAi of rank d − 1 corresponds to the
deletion of i in GΔ, that is, GlinkΔAi

= GΔ \ i. The (d + 1)-partite matroid Δ \ Ai of rank d
corresponds to linkGΔi viewed as a matroid on [d + 2] \ {i}. That is, if j is parallel to i in GΔ,
then it is a loop in the rank 1 matroid linkGΔi. If the parallel class in GΔ of d + 2 (the vertex
corresponding to the parallel class Ad+2 in Δ) has cardinality s, then

Δ \ Ad+2
∼= Δs−1(d, d + 1, (a1, . . . , ad+1)).

Similar isomorphisms hold for the deletions of the other parallel class Ai and each one is
determined by which vertices of GΔ are parallel to i.

Our proof of Theorem 2.18 is an induction on the number of vertices of GΔ. Remark 2.10
implies that there are three different bases of induction to consider, dividing the proof into
three cases:

(1) GΔ has at most one parallel class of cardinality at least 2;
(2) GΔ is bipartite;
(3) GΔ is r-partite for r � 3, and has at least two parallel classes of cardinality at least 2.

Proposition 2.12. If GΔ is complete n-partite on {1, . . . , r} ∪ {r + 1} ∪ . . . ∪ {d + 2}, for
some r � 1, then hΔ is a pure O-sequence.

Proof. The proof is by induction on the number d + 2 − r of singleton classes. By
Remark 2.10, the base case is d + 2 − r = 3, since for larger r the graph GΔ is not the
dual of a simple matroid. Decompose Δ into deletion and link at Ad+2. By Remark 2.11,
it holds that Δ \ Ad+2 = Δ0(d, d + 1, (a1, . . . , ad+1)), thus its h-vector is realized by Γ′ =
Γ0(d, d + 1, (a1, . . . , ad+1)), which is generated by

P = {[1|2| · · · |d − 1|d, d + 1], [1|2| · · · |d − 1, d|d + 1], . . . , [1, 2|3| · · · |d|d + 1]}.
By Remark 2.10, Ad and Ad+1 are parallel in linkΔAd+2, so by Remark 2.11 we have that
linkΔAd+2 is the matroid Δ0(d − 1, d, (a1, . . . , ad−1, ad + ad+1)). Thus, hlinkΔAd+2 = f(Γ′′),
with Γ′′ generated by

Q = {[1|2| · · · |d − 1, d, d + 1], [1|2| · · · |d, d + 1], . . . , [1, 2|3| · · · |d, d + 1]}.
It is easy to check that P and Q are d-compatible.

In the induction step, Γ′ is as above and Γ′′ is given by the inductive hypothesis. That is to
say, we may assume that we applied Lemma 2.1 (d − r − 1) times already, and thus, from the
last application we have that

Γ′′ ⊇ 〈[1|2| · · · |d − 1, d, d + 1], [1|2| · · · |d, d + 1], . . . , [1, 2|3| · · · |d, d + 1]〉.
Compatibility is again straightforward and we conclude.

The second case, when GΔ is bipartite, follows from a general fact about the join of simplicial
complexes (or multicomplexes). Let Δ and Δ′ be two simplicial (multi)complexes on disjoint
vertex sets. Their join is the (multi)complex Δ ∗ Δ′ = {σ ∪ σ′ : σ ∈ Δ and σ′ ∈ Δ′}. The join
operation commutes with duals: (Δ ∗ Δ′)c = Δc ∗ Δ′c. The tensor product of the Stanley–
Reisner rings is the Stanley–Reisner ring of their join, and by duality, the same statement
holds for tensor product of the quotients by their cover ideals. In the following remark, the
simplicial join of two order ideals is computed by viewing them as multicomplexes.
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Remark 2.13. Let Δ and Δ′ be two matroids, and let Γ and Γ′ be two order ideals. If
hΔ = f(Γ) and hΔ′

= f(Γ′), then hΔ∗Δ′
= f(Γ ∗ Γ′).

In the next proposition, we allow also bipartite graphs with partitions of cardinality two
(that is, Δ is (d + 1) partite). This turns out useful in the third case.

Proposition 2.14. If GΔ is bipartite with partition {1, . . . , s} ∪ {s + 1, . . . , d + 2}, then
the h-vector of the cover ideal of Δ is a pure O-sequence.

Proof. From the bipartition of GΔ, we obtain

Δ = Δ0(s − 1, s,a′) ∗ Δ0(d + 1 − s, d + 2 − s,a′′),

where a′ = (a1, . . . , as) and a′′ = (as+1, . . . , ad+2). Thus, [13, Theorem 3.5] and Remark 2.13
show that Δ satisfies Stanley’s conjecture.

Example 2.15. If hΔ = f(Γ0(s − 1, s,a′) ∗ Γ0(d + 1 − s, d + 2 − s,a′′)), then an explicit
description of the order ideal generators follows from Example 2.4:

[ 1 | · · · | s − 2 | s − 1, s | s + 1 | · · · | d | d + 1, d + 2 ]
[ 1 | · · · | s − 2 | s − 1, s | s + 1 | · · · | d, d + 1 | d + 2 ]

...
[ 1 | · · · | s − 2 | s − 1, s | s + 1, s + 2 | · · · | d + 1 | d + 2 ]
[ 1 | · · · | s − 2, s − 1 | s | s + 1 | · · · | d | d + 1, d + 2 ]

...

...
[ 1, 2 | · · · | s − 1 | s | s + 1, s + 2 | · · · | d + 1 | d + 2 ].

Lemma 2.16. If GΔ is tripartite, with partition {1, . . . , s} ∪ {s + 1, . . . , d + 1} ∪ {d + 2},
where s � 2 and d � 4, then hΔ is a pure O-sequence. It equals f(Γ), where Γ is the pure order
ideal obtained by applying Lemma 2.1 to

Γ′ = Γ0(d, d + 1, (a1, . . . , ad+1))

and

Γ′′ = Γ0(s − 1, s, (a1, . . . , as)) ∗ Γ0(d + 1 − s, d + 2 − s, (as+1, . . . , ad+2)).

Proof. Without loss of generality, assume as � as+1 � . . . , ad+1. The matroid Δ \
Ad+2 equals Δ0(d, d + 1, (a1, . . . , ad+1)), so Γ′ = Γ0(d, d + 1, (a1, . . . , ad+1)). The matroid
linkΔ0Ad+2 corresponds to the bipartite graph from Proposition 2.14, thus Γ′′ can be chosen
as in the statement and Example 2.15. To apply Lemma 2.1, we check d-compatibility of the
generators of Γ′ and Γ′′. Let P = [1| · · · |i, i + 1| · · · |d|d + 1] be a generator of Γ′.

(i) If i � s − 1, then choose Q = [1| · · · |i, i + 1| · · · |s|s + 1| · · · |d, d + 1] and P �d
a Q for

any a.
(ii) If s � i � d, then choose Q = [1| · · · |s − 1, s|s + 1| · · · |i + 1, i + 2| · · · |d + 1]. For j < s,

the inequality of the jth entries is clear. For j � s, and j �= i the aj are again ordered, because
we assume that aj � aj+1 whenever j � s. Their ith entries correspond to {i, i + 1} and {i +
1, i + 2}, thus as also ai � ai+2 we conclude.
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(iii) If i = d + 1, then [1|2| · · · |d − 1|d̂, d + 1] �a [1|2| · · · |d − 1, d|d̂ + 1] for any a and we
conclude by the previous case.

Example 2.8 reproduced the above construction in the case d = s = 2. We are now ready to
prove the third and most complicated case.

Proposition 2.17. If GΔ is q-partite with q � 3 and has at least two parallel classes of
cardinality at least 2, then the h-vector hΔ is a pure O-sequence.

Proof. The proof is a repeated application of Lemma 2.1 with the tripartite graph of
Lemma 2.16 as the base case. This is possible because of the two parallel classes of cardinality
at least 2. Order the vertices of GΔ such that each parallel class contains consecutive vertices.
With this convention, there are only two cases to consider:

Case 1: d + 2 is parallel to d + 1 in GΔ.
Case 2: d + 2 is not parallel to any vertex is GΔ.

We use the notation of Lemma 2.1 for Γ′ and Γ′′.
Case 1. Let {r, . . . , d + 1, d + 2} be the parallel class of d + 1 in GΔ. By Remark 2.11, Δ \

Ad+2 = Δd+2−r(d, d + 1, (a1, . . . , ad+1)), we can choose Γ′ = Γd+2−r(d, d + 1, (a1, . . . , ad+1)).
The matroid linkΔAd+2 corresponds to GΔ \ {d + 2}, thus by the inductive hypothesis there
exists an order ideal Γ′′ such that hlinkΔAd+2 = f(Γ′′). We may also assume that Γ′′ was obtained
by a repeated application of Lemma 2.1, and thus among its generators has:

[1|2| · · · |r − 2, r − 1|r| · · · |d, d + 1], . . . , [1, 2|3| · · · |r − 1|r| · · · |d, d + 1].

These generators appear from generators of the Γ′ at the previous step because linkGΔ(d + 1)
is isomorphic to linkGΔ(d + 2). Compatibility is easy to confirm.

Case 2. Let {r, . . . , d + 1} be the parallel class of d + 1 in GΔ. Define a permutation σ of
the vertices of GΔ \ {d + 2}. In order to not complicate notation more than necessary, do
this inductively on the parallel classes. The first two parallel classes remain unchanged. For
every other parallel, reverse the order of its vertices. More precisely, assume for every i < r
that σ is already defined. For every j ∈ {r, . . . , d + 1}, set σ(j) = r + d + 1 − j. As d + 2 is
not parallel to any vertex in GΔ, Remark 2.11 implies that the deletion Δ \ Ad+2 is Δ0(d, d +
1, (a1, . . . , ad+1)). Now use [13, Theorem 3.5] with the vertices permuted by σ. That is, we
have hΔ\Ad+2 = f(Γ′), with Γ′ generated by

[ 1 | 2 | · · · | m | d + 1 | d | · · · | r + 1, r ]
...

[ 1 | 2 | · · · | m | d + 1, d | d − 1 | · · · | r ]
[ 1 | 2 | · · · | m, d + 1 | d | d − 1 | · · · | r ]

...
[ 1, 2 | 3 | · · · | d + 1 | d | d − 1 | · · · | r ],

for some m which plays no role in the proof. Inductively construct Γ′′ such that hlinkΔAd+2 =
f(Γ′′). Assume that Γ′′ was constructed using the same strategy of permuting and applying
Lemma 2.1 just with (r − 1)-compatibility. For each j = r + 1, . . . , d + 1, there are r − 1
generators of Γ′′ which have been added at the jth step. This is due to the fact that the
simplification of Δ|A1,...,Aj−1 is dual to the discrete matroid on j − 1 vertices with j − r loops,
thus its h-vector is obtained from Γj−r(j − 1, j, (aσ(1), . . . , aσ(j))). After applying the gluing
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from Lemma 2.1, the generators are

[ 1 | 2 | · · · | m′,m | d + 1 | · · · | j, j − 1 | · · · | r ]
...

[ 1, 2 | 3 | · · · | m | d + 1 | · · · | j, j − 1 | · · · | r ],

where m and m′ depend on the cardinality of the parallel class of r − 1 in GΔ. Their precise
description is not needed, as they take the same values for both Γ′′ and Γ′.

To check (r − 1)-compatibility, let P = [1|2| · · · |σ(i), σ(i + 1)| · · · |r] be a generator of Γ′. If
i < r − 1, then choose Q among the generators added at the (d + 1)th step, namely

Q = [1|2| · · · |σ(i), σ(i + 1)| · · · |m|d + 1, d| · · · |r].
If i > r − 1, then choose Q among the generators added at the σ(i)th step, namely

Q = [1|2| · · · |m′,m|d + 1| · · · |σ(i), σ(i + 1)| · · · |r].
It is easy to see that in both cases P �r−1

a Q for any vector a. Finally, the proof of Case 1
works identically also if σ is applied to the inductive hypothesis.

Propositions 2.12, 2.14, and 2.17, together with the (d + 1)-partite case [13, Corollary 3.9],
imply the main theorem of this section.

Theorem 2.18. If Δ is a rank d matroid with at most d + 2 parallel classes, then the
h-vector of the quotient by its cover ideal is a pure O-sequence.

3. Small type

If hΔ = hΔc is the h-vector of the cover ideal of a matroid Δ, then its last entry is the Cohen–
Macaulay type of k[Δc]. If it is small, then the parallel classes of the matroid must be few thanks
to [13, Remark 4.4]: Precisely, if a matroid is of rank d and has p parallel classes, then its type
is at least p − d + 1. Theorem 3.3 exploits this fact to prove that hΔ is a pure O-sequence
whenever the type is at most 5. We start with a proposition that shows that among the simple
matroids there is only one of rank d with p parallel classes and whose type is p − d + 1.

Proposition 3.1. Let Δ be a p-partite matroid of rank d. Then type(S/J(Δ)) = p − d + 1
if and only if siΔ = Δd−2(d, p,1).

Proof. By [13, Proposition 2.8], we can assume that Δ is simple. Constantinescu and
Varbaro [13, Remark 4.4] show that type(S/J(Δ)) � p − d + 1, and equality holds if Δ =
Δd−2(d, p,1). Assume that Δ satisfies type(S/J(Δ)) = p − d + 1. The proof is by induction on
p − d. The base case is when d = p in which case siΔ is a simplex. Now assume that p − d is
positive. Without loss of generality, assume that the vertex p is not a cone point (otherwise
relabel the vertices). By [13, Remark 1.7], we have

hΔ
k = h

Δ\p
k−1 + hlinkΔp

k ∀ k ∈ Z.

Again by [13, Remark 4.4] and since type(S/J(Δ)) = p − d + 1, we get type(S/J(Δ \ p)) =
p − d and type(S/J(linkΔp)) = 1. The matroid linkΔp is (d − 1)-partite and, by the induction
hypothesis, Δ \ p = Δd−2(d, p − 1,1). After potentially relabeling the vertices, {1, 2, . . . , d −
2, i, j} is a face of Δ for all i, j ∈ {d − 1, . . . , p − 1}. If {1, 2, . . . , d − 2, p} was not a face of Δ,
then there is some k ∈ {1, . . . , d − 2} such that {1, . . . , k̂, . . . , d − 2, i, j, p} is a face of Δ for all i
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and j in {d − 1, . . . , p − 1}. This would imply that {i, j} ∈ linkΔp for all i, j ∈ {1, . . . , p − 1} \
{k} and linkΔp would be (p − 2)-partite, a contradiction. Therefore, {1, 2, . . . , d − 2, p} is a face
of Δ. We now show that, for fixed i ∈ {d − 1, . . . , p − 1}, the set {i, k} is a face of linkΔp for all
k ∈ {1, . . . , d − 2}. If not, then {1, . . . , d − 2, j, p} is a facet of Δ for all j ∈ {d − 1, . . . , p − 1} \
{i}. Pick r, s ∈ {d − 1, . . . , p − 1} \ {i}. Certainly, B = {1, . . . , d − 2, r, s} is a facet of Δ. Since
i is parallel to some k ∈ {1, . . . , d − 2} (in linkΔp), also B′ = ({1, . . . , d − 2, r, p} \ {k}) ∪ {i}
is a facet of Δ. Removing k from B, the only way to satisfy basis exchange among B and
B′ is that {r, s, p} is a face of Δ. In this case, however, linkΔp would be d-partite, since the
restriction of its 1-skeleton to the vertices {1, . . . , d − 2, r, s} would be a complete graph.

Remark 3.2. Theorem 4.3 in [13] says that hΔd−2(d,p,1) is a componentwise lower bound
for all simple matroids of rank d on p vertices.

Theorem 3.3. Let Δ be a matroid and hΔ = (1, h1, . . . , hs) be its h-vector. If hs � 5, then
hΔ is a pure O-sequence.

Remark 3.4. By duality, Theorem 3.3 also holds for Stanley–Reisner ideals.

Proof of Theorem 3.3. By [13, Remark 4.4], type(S/J(Δ)) � p − d + 1 which in our case
implies p � d + 4. The cases p = d and p = d + 1 are trivial, and p = d + 2 is the content of
Theorem 2.18. By Proposition 3.1, if p = d + 4, then siΔ = Δd−2(d, p,1) and the result follows
from [13, Theorem 3.7]. It remains to check the case p = d + 3, however, there are no simple
matroids with cover ideal of type 5 such that p = d + 3. To see this, assume that Δ is such a
matroid and consider its dual Δc. The simplification siΔ has the same type, so we can assume
that Δ is simple and consequently Δc is of rank 3. Let G be the complete q-partite graph which
is the 1-skeleton of Δc. Since Δc is of rank 3, q � 3. Let b1 � . . . � bq be the sizes of the parallel
classes in G which we can assume ordered non-increasingly. Let hΔc

= (1, h1, h2, 5) be the h-
vector. By the Brown–Colbourn inequalities [7, Theorem 3.1], 1 − h1 + h2 � 5. If n � d + 3 is
the number of vertices of G and e the number of edges, then h1 = n − 3 and h2 = 3 − 2n + e.
It follows that e � 3n − 2. Now, if q = 3, then bi � 3 for i = 1, . . . , q and e > 3n − 2. If q = 4,
then bi � 2 for i = 1, . . . , q, except for one graph in which b4 = 1 and b2 = b3 = b4 = 2. If q = 5,
there are five possible graphs. If q = 6, then K6 the complete graph is the only possible graph.
When the graph is fixed, the h-vector of Δc is fixed. Table 1 summarizes the possible graphs
and their h-vectors.

Using the database of Mayhew and Royle [31], a simple for-loop in Sage enumerates all
matroids of rank 3, filters those with the given h-vectors, computes their duals, and confirms
that none is simple.

Table 1. Possible q-partite graphs in the proof of Theorem 3.3.

q (b1, . . . , bq) hΔ

4 (2, 2, 2, 1) (1, 4, 7, 5)
5 (1, 1, 1, 1, 1) (1, 2, 3, 5)
5 (2, 1, 1, 1, 1) (1, 3, 5, 5)
5 (2, 2, 1, 1, 1) (1, 4, 8, 5)
5 (3, 1, 1, 1, 1) (1, 4, 7, 5)
5 (4, 1, 1, 1, 1) (1, 5, 9, 5)
6 (1, 1, 1, 1, 1, 1) (1, 3, 6, 5)
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Remark 3.5. The matroid Δd−2(d, p,1) is the only matroid of type t which satisfies p =
d + t − 1 and in the proof of Theorem 3.3 we showed that, if t = 5, then there is no matroid of
type 5 such that p = d + 3. It would be interesting to understand for which t there is a such a
gap in the allowable number of parallelism classes.

4. The search for counterexamples

As soon as the number of variables d, the socle degree s, and the type t are fixed, one can
enumerate all pure O-sequences with these characteristics. A pure order ideal with these data
is generated by t monomials of degree s. Let Nd,s =

(
s+(d−1)

d−1

)
be the number of monomials of

degree s in d variables. A priori, there are
(
Nd,s

t

)
generating sets of order ideals to consider

and our program loops over these, computing their f -vectors. Naturally, many of those socles
will be equivalent after relabeling the variables, or have the same f -vector even if they are not
equivalent. One may hope to reduce the number of combinations by exploiting this symmetry.
However, it is not clear how to do so. Checking if, after permuting the variables, two socles are
equivalent is computationally more expensive than just computing the f -vectors of the order
ideals they generate. One shortcut that is easy to implement is to require the lexicographically
first monomial in each socle to have weakly increasing exponent vector. This can be achieved
by a permutation of the variables and is quick to check. Further improvements are possible if
one is not interested in all pure O-sequences, but just wants to check a particular example.
The computation of the face numbers of an order ideal descends degree by degree. In each
step, the program searches for monomials that divide the given monomials in the previous
degree. If a candidate h-vector is given, then one can stop the degree descent as soon as there
is disagreement between the candidate vector and the number of monomials in the current
degree. Our software implements all of these shortcuts.

Example 4.1. By Theorem 3.3 and [15], any candidate counterexample for Stanley’s
conjecture must be on at least ten vertices and of Cohen–Macaulay type 6. Assume that
Δ is of rank 4. For h-vectors of cover ideals, checking an example with these data amounts
to enumerating order ideals generated by six monomials of degree 6 in four variables. Our
implementation handles approximately 30 000 order ideals per second on a standard laptop.
Checking all

(
84
6

)
= 406 481 544 potential socles would take approximately 4 h. However, this

number grows quickly. If a counterexample exists and was of rank 5 on twelve vertices and
type 7, then a back-of-the-envelope calculation estimates the computational time as around
173 CPU years.

Lemma 2.1 inspires a method to search for pure order ideals.

Method 4.2. Let Δ be a p-partite matroid of rank d with parallel classes A1, . . . , Ap which
we may choose ordered such that A1 · · ·Ad ∈ Δ, that is, {v1, . . . , vd} is a facet whenever vi ∈ Ai

for all i = 1, . . . , d. To find a pure order ideal whose f -vector equals hΔ, instead of enumeration,
one may proceed as follows.

(1) For each i ∈ {d, . . . , p}, let Gi be the set of generators of Γ0(d − 1, i − 1, (a1, . . . , ai−1)).
(2) Compute ci, the last entry of the h-vector of linkΔ|A1∪...∪Ai−1

Ai.
(3) For every i ∈ {d, . . . , p}, choose a ci-subset Hi of Gi.
(4) Define Γ = 〈H̄d ∪ . . . ∪ H̄p〉, where the collection of partitions H̄j is obtained by adding

the set {j, . . . , p} to every (d − 1)-partition of [j − 1] contained in Hj .
(5) Check if hΔ = f(Γ).
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The gist of this method is, instead of searching all socles, to search only order ideal generators
among the monomials that could potentially arise from a repeated application of Lemma 2.1.
The method starts at the complete matroid Δ|A1∪...∪Ad

and reconstructs Δ by gluing the
remaining parallel classes. In this process, it mimics the construction of Lemma 2.1 in many
different ways. The compatibility condition is never checked. It is faster to just confront the
f -vector of the final result with hΔ.

The choice of ordering of the Ai fixes the order in which Lemma 2.1 would be applied (and
one may try different orderings). Step (1) creates lists of candidates for the generators of Γ′′ (in
the notation of the lemma). Steps (2) and (3) enumerate the sets of order ideal generators that
may result from the choices. Finally, Step (4) implements the gluing in Lemma 2.1. Evidently,
if the procedure does not find an order ideal whose f -vector is hΔ, then we have not found a
counterexample.

Example 4.3. In specific examples, the number of orderings of the parallel classes can
be reduced using symmetries of the matroid. For instance, in Example 2.8 the pairs (A1, A2)
and (A3, A4), and also the classes in each pair, could be exchanged. Given that A1A2A5 and
A3A4A5 are not in Δ, the only orderings to check in this case are A1, A2, A3, A4, A5 and
A1, A3, A5, A2, A4.

Example 4.4. Let Δ be the simple rank 4 matroid on eight vertices with the following
facets:

1235, 1236, 1237, 1238, 1245, 1246, 1247, 1248, 1256, 1257, 1268, 1278, 1345, 1346, 1347,
1348, 1357, 1358, 1367, 1368, 1456, 1458, 1467, 1478, 1567, 1568, 1578, 1678, 2356, 2357,
2358, 2456, 2457, 2458, 2568, 2578, 3456, 3457, 3458, 3567, 3568, 4567, 4578, 5678.

Precisely, Δ is a series-extension (15 is a cocircuit) of the Fano matroid. The largest example
that we tried our method on is the rank 4 matroid Δa on 20 vertices whose simplification is Δ
and whose parallel classes have sizes (1, 2, 3, 4, 1, 3, 4, 2). We have

hΔa = (1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 112, 116, 111, 96, 70, 40, 14),

which means that enumeration of order ideals is entirely pointless. However, using Method 4.2
we found that this vector is a pure O-sequence. It equals the f -vector of the order ideal

Γ = 〈bc2d13, bc6d9, b4c3d9, bc10d5, b8c3d5, bc12d3, b4c9d3,

a9b3c4, a5b9c2, bc15, a5b3c8, b14c2, a2b12c2, a2b10c4〉.
The Artinian monomial level algebra with k-basis Γ is k[a, b, c, d]/I where

I = (a10, a6b4, a3b10, ab13, b15, a3b4c3, b11c3, a6c5, ab4c5, b5c5, ac9, b2c10,

c16, ad, b9d, b5c4d, c13d, b2c4d4, c11d4, b5d6, c7d6, b2d10, c3d10, d14).

Remark 4.5. The number of different h-vectors of coloop-free matroids is equal to the
number of different f -vectors of coloop-free matroids. Since matroids are very particular pure
multicomplexes, the number of their f -vectors is smaller than the number of pure O-sequences
(which are f -vectors of pure multicomplexes). Therefore, it seems plausible that the probability
of finding a pure O-sequence equal to the h-vector of a matroid tends to zero as the parameters
grow. This limits the usefulness of random search for order ideals in larger examples.
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