A SPECIAL FEATURE OF QUADRATIC MONOMIAL IDEALS

Matteo Varbaro

UNIVERSITÀ DI GENOVA

Joint with Giulio Caviglia and Alexandru Constantinescu

Motivations

Throughout the talk complex $=$ simplicial complex.
Conjecture A (Eckhoff, Kalai): The f-vector of a flag complex is the f-vector of a balanced complex.

The above conjecture has been verified by Frohmader.
Conjecture B (Kalai): The f-vector of a Cohen-Macaulay (CM) flag complex is the f-vector of a CM balanced complex.

Conjecture B is still open. The main consequence of the special feature of quadratic monomial ideals mentioned in the title is:

Theorem (Caviglia, Constantinescu, -): The h-vector of a CM flag complex is the h-vector of a CM balanced complex.

Terminology

Let Δ be a $(d-1)$-dimensional simplicial complex.

- $\Delta \mathrm{CM}$ means $\widetilde{H}_{i}(\mathrm{lk} F ; K)=0$ for all $F \in \Delta$ and $i<\operatorname{dim} \mathrm{lk} F$.
- Δ flag means every minimal non face of Δ has cardinality 2.
- Δ balanced means that the 1 -skeleton of Δ is d-colorable.

The f-vector of Δ is the vector $f(\Delta)=\left(f_{-1}, \ldots, f_{d-1}\right)$ where

$$
f_{i}=\mid\{i \text {-faces of } \Delta\} \mid
$$

The h-vector of Δ is the vector $h(\Delta)=\left(h_{0}, \ldots, h_{s}\right)$ where

$$
h_{j}=\sum_{i=0}^{j}(-1)^{j-i}\binom{d-i}{j-i} f_{i-1}
$$

Basics on the f - and h-vectors

First of all, we have the formula:

$$
f_{j-1}=\sum_{i=0}^{j}\binom{d-i}{j-i} h_{i}
$$

Therefore, if we know d, f - and h-vector determine each other. While $\operatorname{dim} \Delta$ can be read from the f-vector, it cannot be read from the h-vector, since s might be smaller than d.

EXAMPLE: Let Δ be the triangle $\langle\{1,2\},\{1,3\},\{2,3\}\rangle$. Then

$$
f(\Delta)=(1,3,3) \quad \text { and } \quad h(\Delta)=(1,1,1) .
$$

Let Γ be the cone over $\Delta\langle\{1,2,4\},\{1,3,4\},\{2,3,4\}\rangle$. Then

$$
f(\Gamma)=(1,4,6,3) \quad \text { and } \quad h(\Gamma)=(1,1,1)
$$

Basics on the f - and h-vectors

Without having information on $\operatorname{dim} \Delta$, if you like you can say that f - and h-vector determine each other "up to cones".

The entries of the h-vector may be negative. This is not the case if Δ is CM. A precise numerical characterization of the vectors which are h-vectors of CM complexes is due to Macaulay.

A numerical characterization of the vectors that can be obtained as f-vector of some complex has been provided by Kruskal-Katona.

As one can easily see:

$$
\{f \text {-vectors of complexes }\} \subsetneq\{h \text {-vectors of CM complexes }\}
$$

(for example, $(1,3,2,1)$ cannot be the f-vector of any simplicial complex but is the h-vector of a CM complex).

The algebraic point of view

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field $K, I \subseteq S$ a homogeneous ideal and $A=S / I$ the quotient ring.

The Hilbert function of A is the map $\operatorname{HF}_{A}: \mathbb{N} \rightarrow \mathbb{N}$ defined as:

$$
\operatorname{HF}_{A}(m)=\operatorname{dim}_{K}\left(A_{m}\right)
$$

The Hilbert series of A is $\mathrm{HS}_{A}=\sum_{m \geq 0} \mathrm{HF}_{A}(m) t^{m} \in \mathbb{Z}[[t]]$.
If $\operatorname{dim} A=d$, it turns out that there is a polynomial $h(t) \in \mathbb{Z}[t]$, with $h(1) \neq 0$, such that:

$$
\operatorname{HS}_{A}(t)=\frac{h(t)}{(1-t)^{d}}
$$

The polynomial $h_{A}(t)=h(t)$ is referred as the h-polynomial of A.

The algebraic point of view

If Δ is on n vertices, we can consider its Stanley-Reisner (SR) ideal $I_{\Delta} \subseteq S$ and its $S R$ ring $K[\Delta]=S / I_{\Delta}$. Notice that Δ is flag iff I_{Δ} is generated by quadratic monomials. A theorem of Reisner states that Δ is CM over K iff $K[\Delta]$ is a CM ring. Let us introduce also the ideal $J_{\Delta}=I_{\Delta}+\left(x_{1}^{2}, \ldots, x_{n}^{2}\right) \subseteq S$ and the ring $A_{\Delta}=S / J_{\Delta}$.

From the definitions, if $f(\Delta)=\left(f_{-1}, \ldots\right)$ and $h(\Delta)=\left(h_{0}, \ldots\right)$:

- $h_{K[\Delta]}(t)=\sum_{i} h_{i} t^{i}$,
- $h_{A_{\Delta}}(t)=\sum_{i} f_{i} t^{i}$.

Polarizing the ideal J_{Δ}, we get a square-free monomial ideal whose associated simplicial complex is an $(n-1)$-dimensional balanced CM complex, so f-vectors are h-vectors of CM balanced complex.

Actually, it is not difficult to show that:
$\{f$-vectors of complexes $\}=\{h$-vectors of CM balanced complexes $\}$

Looking for special S-regular sequences inside I_{Δ}

Therefore our purpose is equivalent to show that the h-vector of a CM flag complex Δ is the f-vector of some simplicial complex Γ.

It follows from the general ring theory that I_{Δ} contains $n-d$ quadratic polynomials F_{1}, \ldots, F_{n-d} forming an S-regular sequence. If the F_{i} could be chosen monomials, then the red-statement could be easily deduced (in this case Γ can even be chosen flag).

EXAMPLE: $I_{\Delta}=(x y, x z, y z) \subseteq K[x, y, z]$ is the SR ideal of the 0 -dimensional complex supported on 3 points. Obviously a regular sequence of length $n-d=3-1=2$ consisting of degree 2 monomials cannot exist in $I_{\Delta} \subseteq K[x, y, z]$.

Actually, a result of Constantinescu,- implies that, provided Δ has no cone points, the green-statement is equivalent to $n \leq 2 d$.

Looking for special S-regular sequences inside I_{Δ}

The main lemma of the present talk is the following:
LEMMA (Caviglia, Constantinescu, -): If K is infinite, any monomial ideal $I \subseteq S$ generated in degree 2 contains an S-regular sequence F_{1}, \ldots, F_{c}, where $c=\operatorname{ht}(I)$, such that each F_{i} is a product of 2 linear forms, namely $F_{i}=\ell_{1, i} \ell_{2, i}$.

EXAMPLE: The ideal $I=(x y, x z, y z) \subseteq K[x, y, z]$ of the previous slide contains the regular sequence $x y, z(x+y)$.

The analog of the lemma is false in higher degree: It is easy to check that $I=\left(x^{2} y, y^{2} z, x z^{2}\right) \subseteq K[x, y, z]$ does not contain any regular sequence of type $\ell_{1,1} \ell_{2,1} \ell_{3,1}, \quad \ell_{1,2} \ell_{2,2} \ell_{3,2}$.

The Eisenbud-Green-Harris conjecture

Before sketching the proof of the lemma, let us explain how it implies the h-vector version of the Kalai's conjecture (h-Kalai).

Conjecture (Eisenbud-Green-Harris): Let $I \subseteq S=K\left[x_{1}, \ldots, x_{n}\right]$ be a homogeneous ideal containing a regular sequence F_{1}, \ldots, F_{n} of degrees $d_{1} \leq \ldots \leq d_{n}$. Then there is a homogeneous ideal $J \subseteq S$ containing $\left(x_{1}^{d_{1}}, \ldots, x_{n}^{d_{n}}\right)$ such that $\mathrm{HF}_{S / I}=\mathrm{HF}_{S / J}$.

Let Δ be a $(d-1)$-dimensional CM flag complex on n vertices. Pick a l.s.o.p. $\ell_{1}, \ldots, \ell_{d}$ for $K[\Delta]$ and go modulo by them. We have that $K[\Delta] /\left(\ell_{1}, \ldots, \ell_{d}\right) \cong K\left[y_{1}, \ldots, y_{n-d}\right] / I$ where I is a quadratic ideal, in particular I contains a regular sequence of quadrics F_{1}, \ldots, F_{n-d}. If the EGH conjecture was true, then $h(\Delta)$ would be the Hilbert function of $K\left[y_{1}, \ldots, y_{n-d}\right] / J$ where $J \supseteq$ $\left(y_{1}^{2}, \ldots, y_{n-d}^{2}\right)$, therefore the f-vector of some simplicial complex.

The Eisenbud-Green-Harris conjecture

Unfortunately, the EGH conjecture is widely open. But..........
Theorem (Abedelfatah): With the notation of the above slide, if the regular sequence F_{1}, \ldots, F_{n} in I consists of products of linear forms (i. e. $F_{i}=\ell_{1, i} \cdots \ell_{d_{i}, i}$), then the EGH conjecture holds for I.

Since the property of containing a regular sequence of products of linear forms is preserved going modulo regular linear forms, the above theorem and the lemma yield at once h-Kalai.

By exploiting ideas of Caviglia-Maclagan and Caviglia-Sbarra, we are able to prove a stronger statement than h-Kalai, however for this talk we'll be satisfied with the hereby version.

Sketch of the proof of the lemma

Take $\mathfrak{p}=\left(x_{1}, \ldots, x_{c}\right)$ a minimal prime of I of height c and write the degree 2 part of I as:

$$
I_{2}=x_{1} V_{1} \oplus \ldots \oplus x_{c} V_{c}
$$

where $V_{i}=\left\langle x_{j}: x_{i} x_{j} \in I\right.$ and $\left.j \geq i\right\rangle$. For $\ell_{i} \in V_{i}$, it is easy to see that $x_{1} \ell_{1}, \ldots, x_{c} \ell_{c}$ form a regular sequence iff $\forall A \in\{1, \ldots, c\}$,

$$
\operatorname{dim}_{K}\left(\left\langle\ell_{i}: i \in A\right\rangle \oplus\left\langle x_{j}: j \notin A\right\rangle\right)=c
$$

To choose such ℓ_{i} consider, for each $A \in\{1, \ldots, c\}$, the bipartite graph G_{A} on vertices $\{1, \ldots, c\} \cup\left\{x_{1}, \ldots, x_{n}\right\}$ and edges $\left\{i, x_{j}\right\}$ where $i \in A$ and $j \in V_{i}$ or $i \notin A$ and $j=i$.

Sketch of the proof of the lemma

One shows that, since $h t(I)=c$, the graph G_{A} satisfies the hypotheses of the Marriage Theorem, thus we can choose a perfect matching $\left\{1, j_{1}^{A}\right\}, \ldots,\left\{c, j_{c}^{A}\right\}$. This implies that

$$
\operatorname{dim}_{K}\left\langle x_{j_{1}^{A}}, \ldots, x_{j_{c}^{A}}\right\rangle=c
$$

We conclude by setting as ℓ_{i} a general linear combination of $x_{j_{i}}$ where A runs over the subsets of $\{1, \ldots, c\}$ containing $i . \square$

A more precise conjecture

Two years ago, Constantinescu,- formulated the following more precise conjecture on the h-vectors of CM flag complexes:
$\{h$-vectors of CM flag complexes $\}=\{f$-vectors of flag complexes $\}$

By using Frohmader's solution of Eckhoff-Kalai's Conjecture 1 and a result of Björner, Frankl and Stanley, one will see that the above conjecture would yield Conjecture 2 of Kalai. To see that the right hand side is contained in the left one is a standard trick and the evidence for the reverse inclusion consist in SR ideals I_{Δ} of CM flag complexes on n vertices (without cone points) in the below list:

- $h(\Delta)=\left(h_{0}, h_{1}, h_{2}\right)$.
- $2 \cdot \mathrm{ht}\left(I_{\Delta}\right) \leq n\left(\right.$ e. g. I_{Δ} is the edge ideal of a bipartite graph).
- Lots of other instances (Constantinescu,-).

Effects on the dual graph of a flag complex

Given a pure simplicial complex Δ, its dual graph $G(\Delta)$ is the simple graph whose vertices are the facets of Δ, and two facets are adjacent if and only if they have a codimension 1 face in common.

Hirsch Conjecture: If Δ is the boundary of a d-dimensional polytope on n-vertices, then $\operatorname{diam}(G(\Delta)) \leq n-d$.

Santos gave a counterexample to the above conjecture, however:
Theorem (Adiprasito-Benedetti): If Δ is a $(d-1)$-dimensional CM flag complex on n-vertices, then $\operatorname{diam}(G(\Delta)) \leq n-d$.

Effects on the dual graph of a flag complex

Let Δ be a pure ($d-1$)-dimensional flag complex on n vertices. The lemma in the talk implies that $G(\Delta)$ is an induced subgraph of the minimal primes-graph of a complete intersection of type:

$$
\left(x_{1} \ell_{1}, \ldots, x_{n-d} \ell_{n-d}\right)
$$

Such graph is quite simple: It is obtained by contracting some edges (which ones depends on the geometry of the matroid given by $\left.x_{1}, \ell_{1}, \ldots, x_{n-d}, \ell_{n-d}\right)$ of the graph \mathbb{G} such that:

- $V(\mathbb{G})=2^{\{1, \ldots, n-d\}}$.
- $\{A, B\} \in E(\mathbb{G})$ iff $|A \cup B|-|A \cap B|=1$.

Effects on the dual graph of a flag complex

The fact described in the above slide puts some nontrivial restrictions for the dual graph of a pure $(d-1)$-dimensional flag complex on n vertices. For example, one can see that the graph

cannot be the dual graph of any pure ($d-1$)-dimensional flag complex on $d+3$ vertices.

By adding the CM hypothesis, we can get further rigidity by using Adiprasito-Benedetti theorem. With Benedetti we are working to find a general rigidity statement, also in the wilder setting of quadratic ideals (possibly not monomials), where we are studying the analog of the (flag) Hirsch Conjecture \qquad

