F-thresholds of determinantal objects

INdAM meeting

Homological and Computational Methods in Commutative Algebra

A conference dedicated to Winfried Bruns on the occasion of his 70th birthday

Cortona, May 30 - June 3, 2016

Matteo Varbaro

Università degli Studi di Genova

F-pure threshold

- \Bbbk *F*-finite field of characteristic p > 0;
- S a standard graded polynomial ring over k;
- R = S/J an *F*-pure ring where $J \subseteq S$ is a homogeneous ideal;
- $\mathfrak{m} \subseteq S$ the unique homogeneous maximal ideal of S.

Given a homogeneous ideal $\mathfrak{a} \subseteq R$, choose a homogeneous ideal $I \subseteq S$ containing J such that $\mathfrak{a} = I/J$. For any $e \in \mathbb{N}$ set:

$$u_e(\mathfrak{a}) = \max\{r \in \mathbb{N} : I^r(J^{[q]}: J) \not\subseteq \mathfrak{m}^{[q]}\}, \quad q = p^e.$$

The *F*-pure threshold of \mathfrak{a} is the real number

$$\operatorname{fpt}(\mathfrak{a}) = \lim_{e \to \infty} \frac{\nu_e(\mathfrak{a})}{p^e}$$

Rem. If J = (0) (so that R = S and a = I), we have

 $u_e(I) = \max\{r \in \mathbb{N} : I^r \not\subseteq \mathfrak{m}^{[q]}\}, \quad q = p^e.$

Let X be an $m \times n$ matrix of indeterminates over \Bbbk , and $S = \Bbbk[X]$.

$$\mathsf{Miller}\operatorname{-Singh}_{-}(2014)(\mathsf{I})$$

If J = (0) and I is the ideal generated by the *t*-minors of X, then

fpt(I) = min
$$\left\{ \frac{(m-k+1)(n-k+1)}{t-k+1} : k = 1, ..., t \right\}$$
.

Singh-Takagi-_ (2016) (II)

If J is the ideal generated by the t-minors of X and $\mathfrak{a} = \mathfrak{m}/J$, then

 $\operatorname{fpt}(\mathfrak{a}) = \min\{m, n\}(t-1).$

A crucial ingredient for proving (II) is the description given by Bruns of the canonical class in the divisor class group of a determinantal ring.

Concerning (I), let us denote by I_t the ideal generated by the *t*-minors of X for any $t = 1, ..., min\{m, n\}$. A main tool for the proof has been:

Bruns (1991)

For all $t = 1, ..., \min\{m, n\}$ and $s \in \mathbb{N}$ we have

$$\overline{I_t^s} = \bigcap_{k=1}^t I_k^{(s(t-k+1))}.$$

From now on J = (0), i.e. R = S and a = I. If $q = p^e$, the qth root of I, denoted by $I^{[1/q]}$ is the smallest ideal $H \subseteq S$ such that

$$I \subseteq H^{[q]}.$$

If λ is a positive real number, it is readily seen that

$$\left(I^{\lceil \lambda p^e \rceil}\right)^{\left[1/p^e\right]} \subseteq \left(I^{\lceil \lambda p^{e+1} \rceil}\right)^{\left[1/p^{e+1}\right]} \quad \forall \ e \in \mathbb{N}.$$

The generalized test ideal of I with coefficient λ is

$$au(\lambda \cdot I) = \left(I^{\lceil \lambda p^e \rceil}\right)^{\lceil 1/p^e \rceil}$$

Note that $\tau(\lambda \cdot I) \supseteq \tau(\mu \cdot I)$ whenever $\lambda \leq \mu$.

One can also show that, $\forall \ \lambda \in \mathbb{R}_{>0}$, $\exists \ \varepsilon \in \mathbb{R}_{>0}$ such that

 $\tau(\lambda \cdot I) = \tau(\mu \cdot I) \quad \forall \ \mu \in [\lambda, \lambda + \varepsilon).$

A $\lambda \in \mathbb{R}_{>0}$ is called an *F*-jumping number for *I* if

 $au((\lambda - \varepsilon) \cdot I) \supsetneq au(\lambda \cdot I) \quad \forall \ \varepsilon \in \mathbb{R}_{>0}.$

The λ_i above are the *F*-jumping numbers. Note that $\lambda_1 = \text{fpt}(I)$.

Sums of products of determinantal ideals

Let $X = (x_{ij})$ be an $m \times n$ -generic matrix (assume $m \le n$) and $S = \Bbbk[X]$. For k = 1, ..., m, the ideal of S generated by the *k*-minors of X will be denoted by I_k .

For $\sigma = (\sigma_1, \ldots, \sigma_m) \in \mathbb{N}^m$, we denote by I^σ the ideal of S

 $I_1^{\sigma_1}I_2^{\sigma_2}\cdots I_m^{\sigma_m}.$

More generally, if $\Sigma \subseteq \mathbb{N}^m$, we set

$$I(\Sigma) = \sum_{\sigma \in \Sigma} I^{\sigma} \subseteq S$$

Sums of products of determinantal ideals

Fix $\sigma = (\sigma_1, \ldots, \sigma_m) \in \mathbb{N}^m$ and $\Sigma \subseteq \mathbb{N}^m$.

• By $\Delta \in S$ being a product of minors of shape σ , we mean that $\Delta = \delta_1 \cdots \delta_s$ where

$$\sigma_i = |\{j = 1, \dots, s : \delta_j \text{ is an } i \text{-minor of } X\}|.$$

For k = 1,..., m, set γ_k(σ) = Σ^m_{i=k} σ_i(i - k + 1).
By C_Σ ⊆ Q^m we denote the convex hull of the set ⋃_{σ∈Σ} ((γ₁(σ), γ₂(σ),..., γ_m(σ)) + Q^m_{≥0}) ⊆ Q^m.

Henriques-_ (2016)

For $\lambda \in \mathbb{R}_{>0}$, the ideal $\tau(\lambda \cdot I(\Sigma))$ is generated by the product of minors of shape σ such that there is $(v_1, \ldots, v_m) \in C_{\Sigma}$ for which

$$\gamma_k(\sigma) \geq \lfloor \lambda v_k
floor + 1 - (m-k+1)(n-k+1) \quad orall \ k = 1, \dots, m$$

From now on the goal will be to explain a general method to infer the previous theorem. First of all recall the following result:

De Concini-Eisenbud-Procesi (1980)

If $t \in \{1, ..., m\}$ and $s \in \mathbb{N}$, the symbolic power $I_t^{(s)}$ is generated by the products of minors of shape σ where $\gamma_t(\sigma) \ge s$

Therefore one can see that the previous formula is equivalent to

$$\tau(\lambda \cdot I(\Sigma)) = \sum_{(v_1, ..., v_m) \in C_{\Sigma}} \left(\bigcap_{k=1}^m I_k^{(\lfloor \lambda v_k \rfloor + 1 - (m-k+1)(n-k+1)\operatorname{ht}(I_k))} \right)$$

Where does the previous formula come from?

Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ be homogeneous prime ideals of S. For example: (i) $\mathfrak{p}_k = I_k$ and $S = \Bbbk[X]$; (ii) $\mathfrak{p}_k = (x_k)$ and $S = \Bbbk[x_1, \ldots, x_m]$. For $\sigma = (\sigma_1, \ldots, \sigma_m) \in \mathbb{N}^m$ let $J^{\sigma} = \mathfrak{p}_1^{\sigma_1} \cdots \mathfrak{p}_m^{\sigma_m}$. Also, for all k in $\{1, \ldots, m\}$, let $e_k(\sigma)$ be the maximum natural number ℓ such that

$$J^{\sigma} \subseteq \mathfrak{p}_k^{(\ell)}.$$

Of course we have

$$J^{\sigma}\overline{J^{\sigma}}\subseteq igcap_{k=1}^m \mathfrak{p}_k^{(e_k(\sigma))}.$$

We say that $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ satisfy A if

$$\overline{J^{\sigma}} = \bigcap_{k=1}^{m} \mathfrak{p}_{k}^{(e_{k}(\sigma))} \quad \forall \ \sigma \in \mathbb{N}^{m}.$$

For example, the ideals in (ii) obviously satisfy A, where

$$e_k(\sigma) = \sigma_k.$$

Bruns proved that also the ideals in (i) satisfy A, where

$$e_k(\sigma) = \gamma_k(\sigma).$$

If I and J are two ideals of S, of course

$$\overline{I^2+J^2}\supseteq I^2+IJ+J^2,$$

(since $(IJ)^2 \subseteq (I^2 + J^2)^2$). This generalizes as follows: if $\Sigma \subseteq \mathbb{N}^m$ and $J(\Sigma) = \sum_{\sigma \in \Sigma} J^{\sigma}$:

$$\overline{J(\Sigma)} \supseteq J(\overline{\Sigma}),$$

where $\overline{\Sigma}$ denotes the set of integral vectors of the convex hull of

$$\bigcup_{\sigma\in\Sigma}\left(\sigma+\mathbb{Q}_{\geq0}^{m}\right)\subseteq\mathbb{Q}^{m}.$$

Condition A+

If $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ satisfy A, then

$$\overline{J(\Sigma)} \supseteq \sum_{\sigma \in \overline{\Sigma}} \left(\bigcap_{k=1}^m \mathfrak{p}_k^{(\mathbf{e}_k(\sigma))} \right).$$

One can show that this is equivalent to the fact that

$$\overline{J(\Sigma)} \supseteq \sum_{(v_1,...,v_m) \in \mathbb{Z}^m \cap K_{\Sigma}} \left(\bigcap_{k=1}^m \mathfrak{p}_k^{(v_k)} \right),$$

where $\mathcal{K}_{\Sigma} \in \mathbb{Q}^m$ is the convex hull of $\bigcup_{\sigma \in \Sigma} \left((e_1(\sigma), e_2(\sigma), \dots, e_m(\sigma)) + \mathbb{Q}^m_{\geq 0} \right) \subseteq \mathbb{Q}^m.$

We say that $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ satisfy A+ if

$$\overline{J(\Sigma)} = \sum_{(v_1,...,v_m) \in \mathbb{Z}^m \cap K_{\Sigma}} \left(\bigcap_{k=1}^m \mathfrak{p}_k^{(v_k)} \right) \quad \forall \ \Sigma \subseteq \mathbb{N}^m.$$

Condition A+ is satisfied by

• the ideals in (i): in this case, by mixing arguments of Bruns and De Concini-Eisenbud-Procesi one has that

$$\overline{I(\Sigma)} = \sum_{(v_1,...,v_m) \in \mathbb{Z}^m \cap C_{\Sigma}} \left(\bigcap_{k=1}^m I_k^{(v_k)} \right) \quad \forall \ \Sigma \subseteq \mathbb{N}^m.$$

 the ideals in (ii): in this case, if P_Σ is the Newton polyhedron of the ideal J(Σ) = (x₁^{σ₁}····x_m^{σ_m}: (σ₁,...,σ_m) ∈ Σ), work of Teissier implies:

$$\overline{J(\Sigma)} = (x_1^{v_1} \cdots x_m^{v_m} : (v_1, \dots, v_m) \in \mathbb{Z}^m \cap P_{\Sigma}) \quad \forall \ \Sigma \subseteq \mathbb{N}^m.$$

We say that $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ satisfy **B** if there exists $f \in S$ such that:

in_≺(f) is squarefree for some monomial order ≺;
f ∈ p_k^{(ht(p_k))} for all k = 1,..., m.

The ideals in (ii) obviously satisfy B: indeed

$$f = x_1 \cdots x_m \in (x_k) = \mathfrak{p}_k^{(\operatorname{ht}(\mathfrak{p}_k))} \quad \forall \ k = 1, \dots, m.$$

Also the ideals in (i) satisfy B:

Let f be the product of the diagonal minors, and \prec the lex with

$$x_{11} > x_{12} > \ldots > x_{1n} > x_{21} > x_{22} > \ldots > x_{2n} > \ldots > x_{mn}$$

Then $in_{\prec}(f) = \prod_{(i,j)} x_{ij}$. By looking at the shape of f, using the mentioned result of De Concini-Eisenbud-Procesi one checks that

$$f \in I_k^{((m-k+1)(n-k+1))} = \mathfrak{p}_k^{(\operatorname{ht}(\mathfrak{p}_k))} \ \, orall \ \, k = 1, \dots, m$$

The general result

Henriques-_ (2016)

If $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ satisfy A and B, then $\forall \sigma \in \mathbb{N}^m$,

$$au(\lambda \cdot J^{\sigma}) = igcap_{k=1}^m \mathfrak{p}_k^{(\lfloor \lambda e_k(\sigma)
floor + 1 - \operatorname{ht}(\mathfrak{p}_k))} \quad orall \; \lambda \in \mathbb{R}_{>0}.$$

If $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ satisfy A+ and B, then $\forall \Sigma \subseteq \mathbb{N}^m$,

$$\tau(\lambda \cdot J(\Sigma)) = \sum_{(v_1, ..., v_m) \in K_{\Sigma}} \left(\bigcap_{k=1}^m \mathfrak{p}_k^{(\lfloor \lambda v_k \rfloor + 1 - \operatorname{ht}(\mathfrak{p}_k))} \right) \quad \forall \ \lambda \in \mathbb{R}_{>0}.$$

Problem

Find a natural class of finite sets of prime ideals satisfying A+ and B containing both determinantal ideals and principal ideals generated by variables.

THANKS FOR YOUR ATTENTION