F-thresholds of determinantal objects

INdAM meeting
Homological and Computational Methods in Commutative Algebra
A conference dedicated to Winfried Bruns on the occasion of his 70th birthday
Cortona, May 30 - June 3, 2016

Matteo Varbaro
Università degli Studi di Genova

- $\mathbb{k} F$-finite field of characteristic $p>0$;
- S a standard graded polynomial ring over \mathbb{k};
- $R=S / J$ an F-pure ring where $J \subseteq S$ is a homogeneous ideal;
- $\mathfrak{m} \subseteq S$ the unique homogeneous maximal ideal of S.

Given a homogeneous ideal $\mathfrak{a} \subseteq R$, choose a homogeneous ideal $I \subseteq S$ containing J such that $\mathfrak{a}=I / J$. For any $e \in \mathbb{N}$ set:

$$
\nu_{e}(\mathfrak{a})=\max \left\{r \in \mathbb{N}: I^{r}\left(J^{[q]}: J\right) \nsubseteq \mathfrak{m}^{[q]}\right\}, \quad q=p^{e} .
$$

The F-pure threshold of \mathfrak{a} is the real number

$$
\operatorname{fpt}(\mathfrak{a})=\lim _{e \rightarrow \infty} \frac{\nu_{e}(\mathfrak{a})}{p^{e}}
$$

Rem. If $J=(0)$ (so that $R=S$ and $\mathfrak{a}=I$), we have

$$
\nu_{e}(I)=\max \left\{r \in \mathbb{N}: I^{r} \nsubseteq \mathfrak{m}^{[q]}\right\}, \quad q=p^{e}
$$

Let X be an $m \times n$ matrix of indeterminates over \mathbb{k}, and $S=\mathbb{k}[X]$.

Miller-Singh-_ (2014) (I)

If $J=(0)$ and I is the ideal generated by the t-minors of X, then

$$
\operatorname{fpt}(I)=\min \left\{\frac{(m-k+1)(n-k+1)}{t-k+1}: k=1, \ldots, t\right\} .
$$

Singh-Takagi-_ (2016) (II)

If J is the ideal generated by the t-minors of X and $\mathfrak{a}=\mathfrak{m} / J$, then

$$
\operatorname{fpt}(\mathfrak{a})=\min \{m, n\}(t-1) .
$$

A crucial ingredient for proving (II) is the description given by Bruns of the canonical class in the divisor class group of a determinantal ring.

Concerning (I), let us denote by I_{t} the ideal generated by the t-minors of X for any $t=1, \ldots, \min \{m, n\}$. A main tool for the proof has been:

Bruns (1991)

For all $t=1, \ldots, \min \{m, n\}$ and $s \in \mathbb{N}$ we have

$$
\overline{I_{t}^{s}}=\bigcap_{k=1}^{t} I_{k}^{(s(t-k+1))}
$$

From now on $J=(0)$, i.e. $R=S$ and $\mathfrak{a}=I$. If $q=p^{e}$, the q th root of I, denoted by $I^{[1 / q]}$ is the smallest ideal $H \subseteq S$ such that

$$
I \subseteq H^{[q]}
$$

If λ is a positive real number, it is readily seen that

$$
\left(I^{\left[\lambda p^{e}\right\rceil}\right)^{\left[1 / p^{e}\right]} \subseteq\left(I^{\left\lceil\lambda p^{e+1}\right\rceil}\right)^{\left[1 / p^{e+1}\right]} \forall e \in \mathbb{N} .
$$

The generalized test ideal of I with coefficient λ is

$$
\tau(\lambda \cdot I) \underset{e \gg 0}{\overline{=}}\left(I^{\left[\lambda p^{e}\right\rceil}\right)^{\left[1 / p^{e}\right]} .
$$

Note that $\tau(\lambda \cdot I) \supseteq \tau(\mu \cdot I)$ whenever $\lambda \leq \mu$.

One can also show that, $\forall \lambda \in \mathbb{R}_{>0}, \exists \varepsilon \in \mathbb{R}_{>0}$ such that

$$
\tau(\lambda \cdot I)=\tau(\mu \cdot I) \quad \forall \mu \in[\lambda, \lambda+\varepsilon)
$$

A $\lambda \in \mathbb{R}_{>0}$ is called an F-jumping number for I if

$$
\tau((\lambda-\varepsilon) \cdot I) \supsetneq \tau(\lambda \cdot I) \quad \forall \varepsilon \in \mathbb{R}_{>0}
$$

$$
(1) \supsetneq \tau\left(\lambda_{1} \cdot I\right) \supsetneq \tau\left(\lambda_{2} \cdot I\right) \supsetneq \ldots \supsetneq \tau\left(\lambda_{n} \cdot I\right) \supsetneq \ldots
$$

The λ_{i} above are the F-jumping numbers. Note that $\lambda_{1}=\operatorname{fpt}(I)$.

Let $X=\left(x_{i j}\right)$ be an $m \times n$-generic matrix (assume $m \leq n$) and $S=\mathbb{k}[X]$. For $k=1, \ldots, m$, the ideal of S generated by the k-minors of X will be denoted by I_{k}.

For $\sigma=\left(\sigma_{1}, \ldots, \sigma_{m}\right) \in \mathbb{N}^{m}$, we denote by I^{σ} the ideal of S

$$
I_{1}^{\sigma_{1}} I_{2}^{\sigma_{2}} \ldots I_{m}^{\sigma_{m}}
$$

More generally, if $\Sigma \subseteq \mathbb{N}^{m}$, we set

$$
I(\Sigma)=\sum_{\sigma \in \Sigma} I^{\sigma} \subseteq S
$$

Fix $\sigma=\left(\sigma_{1}, \ldots, \sigma_{m}\right) \in \mathbb{N}^{m}$ and $\Sigma \subseteq \mathbb{N}^{m}$.

- By $\Delta \in S$ being a product of minors of shape σ, we mean that $\Delta=\delta_{1} \cdots \delta_{s}$ where

$$
\sigma_{i}=\mid\left\{j=1, \ldots, s: \delta_{j} \text { is an } i \text {-minor of } X\right\} \mid .
$$

- For $k=1, \ldots, m$, set $\gamma_{k}(\sigma)=\sum_{i=k}^{m} \sigma_{i}(i-k+1)$.
- By $C_{\Sigma} \subseteq \mathbb{Q}^{m}$ we denote the convex hull of the set

$$
\bigcup_{-\sigma}\left(\left(\gamma_{1}(\sigma), \gamma_{2}(\sigma), \ldots, \gamma_{m}(\sigma)\right)+\mathbb{Q}_{\geq 0}^{m}\right) \subseteq \mathbb{Q}^{m}
$$

Henriques-_ (2016)

For $\lambda \in \mathbb{R}_{>0}$, the ideal $\tau(\lambda \cdot I(\Sigma))$ is generated by the product of minors of shape σ such that there is $\left(v_{1}, \ldots, v_{m}\right) \in C_{\Sigma}$ for which

$$
\gamma_{k}(\sigma) \geq\left\lfloor\lambda v_{k}\right\rfloor+1-(m-k+1)(n-k+1) \quad \forall k=1, \ldots, m
$$

From now on the goal will be to explain a general method to infer the previous theorem. First of all recall the following result:

De Concini-Eisenbud-Procesi (1980)

If $t \in\{1, \ldots, m\}$ and $s \in \mathbb{N}$, the symbolic power $l_{t}^{(s)}$ is generated by the products of minors of shape σ where $\gamma_{t}(\sigma) \geq s$

Therefore one can see that the previous formula is equivalent to

$$
\tau(\lambda \cdot I(\Sigma))=\sum_{\left(v_{1}, \ldots, v_{m}\right) \in C_{\Sigma}}\left(\bigcap_{k=1}^{m} I_{k}^{\left(\left\lfloor\lambda v_{k}\right\rfloor+1-(m-k+1)(n-k+1) h t\left(I_{k}\right)\right)}\right)
$$

Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ be homogeneous prime ideals of S. For example:
(i) $\mathfrak{p}_{k}=I_{k}$ and $S=\mathbb{k}[X]$;
(ii) $\mathfrak{p}_{k}=\left(x_{k}\right)$ and $S=\mathbb{k}\left[x_{1}, \ldots, x_{m}\right]$.

For $\sigma=\left(\sigma_{1}, \ldots, \sigma_{m}\right) \in \mathbb{N}^{m}$ let $J^{\sigma}=\mathfrak{p}_{1}^{\sigma_{1}} \cdots \mathfrak{p}_{m}^{\sigma_{m}}$. Also, for all k in $\{1, \ldots, m\}$, let $e_{k}(\sigma)$ be the maximum natural number ℓ such that

$$
J^{\sigma} \subseteq \mathfrak{p}_{k}^{(\ell)}
$$

Of course we have

$$
J^{\sigma} \overline{J^{\sigma}} \subseteq \bigcap_{k=1}^{m} \mathfrak{p}_{k}^{\left(e_{k}(\sigma)\right)}
$$

We say that $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ satisfy A if

$$
\overline{J^{\sigma}}=\bigcap_{k=1}^{m} \mathfrak{p}_{k}^{\left(e_{k}(\sigma)\right)} \quad \forall \sigma \in \mathbb{N}^{m} .
$$

For example, the ideals in (ii) obviously satisfy A, where

$$
e_{k}(\sigma)=\sigma_{k}
$$

Bruns proved that also the ideals in (i) satisfy A, where

$$
e_{k}(\sigma)=\gamma_{k}(\sigma)
$$

If I and J are two ideals of S, of course

$$
\overline{I^{2}+J^{2}} \supseteq I^{2}+I J+J^{2}
$$

(since $(I J)^{2} \subseteq\left(I^{2}+J^{2}\right)^{2}$). This generalizes as follows: if $\Sigma \subseteq \mathbb{N}^{m}$ and $J(\Sigma)=\sum_{\sigma \in \Sigma} J^{\sigma}$:

$$
\overline{J(\Sigma)} \supseteq J(\bar{\Sigma})
$$

where $\bar{\Sigma}$ denotes the set of integral vectors of the convex hull of

$$
\bigcup_{\sigma \in \Sigma}\left(\sigma+\mathbb{Q}_{\geq 0}^{m}\right) \subseteq \mathbb{Q}^{m}
$$

If $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ satisfy A, then

$$
\overline{J(\Sigma)} \supseteq \sum_{\sigma \in \bar{\Sigma}}\left(\bigcap_{k=1}^{m} \mathfrak{p}_{k}^{\left(e_{k}(\sigma)\right)}\right)
$$

One can show that this is equivalent to the fact that

$$
\overline{J(\Sigma)} \supseteq \sum_{\left(v_{1}, \ldots, v_{m}\right) \in \mathbb{Z}^{m} \cap K_{\Sigma}}\left(\bigcap_{k=1}^{m} \mathfrak{p}_{k}^{\left(v_{k}\right)}\right)
$$

where $K_{\Sigma} \in \mathbb{Q}^{m}$ is the convex hull of

$$
\bigcup_{\sigma \in \Sigma}\left(\left(e_{1}(\sigma), e_{2}(\sigma), \ldots, e_{m}(\sigma)\right)+\mathbb{Q}_{\geq 0}^{m}\right) \subseteq \mathbb{Q}^{m}
$$

We say that $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ satisfy $A+$ if

$$
\overline{J(\Sigma)}=\sum_{\left(v_{1}, \ldots, v_{m}\right) \in \mathbb{Z}^{m} \cap K_{\Sigma}}\left(\bigcap_{k=1}^{m} \mathfrak{p}_{k}^{\left(v_{k}\right)}\right) \quad \forall \Sigma \subseteq \mathbb{N}^{m}
$$

Condition A+ is satisfied by

- the ideals in (i): in this case, by mixing arguments of Bruns and De Concini-Eisenbud-Procesi one has that

$$
\overline{I(\Sigma)}=\sum_{\left(v_{1}, \ldots, v_{m}\right) \in \mathbb{Z}^{m} \cap C_{\Sigma}}\left(\bigcap_{k=1}^{m} I_{k}^{\left(v_{k}\right)}\right) \forall \Sigma \subseteq \mathbb{N}^{m}
$$

- the ideals in (ii): in this case, if P_{Σ} is the Newton polyhedron of the ideal $J(\Sigma)=\left(x_{1}^{\sigma_{1}} \cdots x_{m}^{\sigma_{m}}:\left(\sigma_{1}, \ldots, \sigma_{m}\right) \in \Sigma\right)$, work of Teissier implies:

$$
\overline{J(\Sigma)}=\left(x_{1}^{v_{1}} \cdots x_{m}^{v_{m}}:\left(v_{1}, \ldots, v_{m}\right) \in \mathbb{Z}^{m} \cap P_{\Sigma}\right) \quad \forall \Sigma \subseteq \mathbb{N}^{m}
$$

We say that $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ satisfy B if there exists $f \in S$ such that:

- $\operatorname{in}_{\prec}(f)$ is squarefree for some monomial order \prec;
- $f \in \mathfrak{p}_{k}^{\left(h t\left(p_{k}\right)\right)}$ for all $k=1, \ldots, m$.

The ideals in (ii) obviously satisfy B: indeed

$$
f=x_{1} \cdots x_{m} \in\left(x_{k}\right)=\mathfrak{p}_{k}^{\left(h t\left(p_{k}\right)\right)} \forall k=1, \ldots, m
$$

Also the ideals in (i) satisfy B:

$$
X=\left(\begin{array}{llllllll}
* & * & * & * & * & * & * & * \\
* & * & * & * & * & * & * & * \\
* & * & * & * & * & * & * & * \\
* & * & * & * & * & * & * & * \\
* & * & * & * & * & * & * & *
\end{array}\right)
$$

Let f be the product of the diagonal minors, and \prec the lex with

$$
x_{11}>x_{12}>\ldots>x_{1 n}>x_{21}>x_{22}>\ldots>x_{2 n}>\ldots>x_{m n}
$$

Then $\operatorname{in}_{\prec}(f)=\prod_{(i, j)} x_{i j}$. By looking at the shape of f, using the mentioned result of De Concini-Eisenbud-Procesi one checks that

$$
f \in I_{k}^{((m-k+1)(n-k+1))}=\mathfrak{p}_{k}^{\left(h t\left(p_{k}\right)\right)} \forall k=1, \ldots, m .
$$

Henriques-_ (2016)

If $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ satisfy A and B, then $\forall \sigma \in \mathbb{N}^{m}$,

$$
\tau\left(\lambda \cdot J^{\sigma}\right)=\bigcap_{k=1}^{m} \mathfrak{p}_{k}^{\left(\left\lfloor\lambda e_{k}(\sigma)\right\rfloor+1-\mathrm{ht}\left(\mathfrak{p}_{k}\right)\right)} \quad \forall \lambda \in \mathbb{R}_{>0}
$$

If $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ satisfy $A+$ and B, then $\forall \Sigma \subseteq \mathbb{N}^{m}$,

$$
\tau(\lambda \cdot J(\Sigma))=\sum_{\left(v_{1}, \ldots, v_{m}\right) \in K_{\Sigma}}\left(\bigcap_{k=1}^{m} \mathfrak{p}_{k}^{\left(\left\lfloor\lambda v_{k}\right\rfloor+1-h t\left(\mathfrak{p}_{k}\right)\right)}\right) \quad \forall \lambda \in \mathbb{R}_{>0}
$$

Problem

Find a natural class of finite sets of prime ideals satisfying $A+$ and B containing both determinantal ideals and principal ideals generated by variables.

THANKS FOR YOUR ATTENTION

