AN INTRODUCTION TO D-MODULES
WITH APPLICATIONS TO LOCAL COHOMOLOGY



Motivations

Craig Huneke, in a Research Notes in Mathematics of 1992, raised
the following question:

R commutative noetherian ring, I C R an ideal. If M is a finitely
generated (f.g.) R-module, is Ass(H;(M)) a finite set for all i?



Motivations

The point of the question above is that H/(I\/I) may be not finitely
generated. In some cases however the answer is clearly positive:

(i) M f.g. = HY(M) f.g.; in particular, Ass(H?(M)) is finite.
(i) If I = m is maximal, then Ass(H. (M)) C {m} for all i.



Motivations

A bit of history of the problem...

(i) Huneke-Sharp, Trans. Amer. Math. Soc. 1993: If R is regular
and char(R) > 0, then then for any ideal | Ass(H;(R))| < oc.

(i) Lyubeznik, Invent. Math. 1993 If R is a regular local ring
containing Q, then for any ideal | Ass(Hj(R))| < oc.

(i) Lyubeznik, Comm. Algebra 2000: If R is an unramified
regular local ring of mixed characteristic, then for any ideal
| Ass(Hi(R))| < 0.

(iv) Bhatt-Blickle-Lyubeznik-Singh-Zhang, 2012: If
R =Z[x1,...,xs], then for any ideal | Ass(H](R))| < oc.




Motivations

(iv) Brodmann-Lashgari, Proc. Amer. Math. Soc. 2000: If g is
grade(/, M), then Ass(H}(M)) and Ass(Hf(M)) are finite.

Zlu,v,w,x,y, 2|

(ux + vy + wz)

I = (x,y,z) C R, then H}(R) has p-torsion elements for

infinitely many primes. Consequently Ass(H3(R)) is infinite.

(vi) Katzman, J. Algebra 2002: For any field K, if R is the ring
Kls, t,u,v,x,y]
— , then | Ass(H? \(R))| = .
(su?x2 + (s + t)uvxy + tv2y?) en [ Ass(H( ) (R))] = o0
(vii) Takagi-Takahashi, Math. Res. Lett. 2007: If R has positive
characteristic, is Gorenstein and has F-finite representation
type, then for any ideal | Ass(H](R))| < oco.

(v) Singh, Math. Res. Lett. 2000: If R = and




Motivations

In the proof of Huneke-Sharp (R regular of positive characteristic),
it is crucial that the iterated Frobenius maps F€: R — R, sending
r to rP°, are flat and that {Fé(/)R}een is cofinal with {/%}en.

A family of ring homomorphisms with these two properties does
not exist for R = Q[[x1, ..., Xs]]. In these lectures we will explore
the machinery used by Lyubeznik to prove his first theorem:

If R is a regular local ring containing Q and / C R is an ideal, then
Ass(Hj(R)) is finite for every i.
To this aim, we need to introduce the theory of D-modules.

In these seminars I'll follow some lectures given by Anurag Singh at
the Local Cohomology Workshop held in Mumbai (India) in 2011.



Some almost commutative algebra

Let A be a (possibly noncommutative) ring. A left A-module M is
noetherian if one of the following equivalent conditions holds:

(i) All submodules are finitely generated.
(i) ACC holds on submodules.
(iii) ACC holds on f.g. submodules.

EXAMPLE: The free K-algebra A = K(x,y) on x and y is not
noetherian: In fact the left ideal ) Axy' is not f.g..



Some almost commutative algebra

Let K be a field in the center of A.

A filtration on A'is a family F = {F;};>_1 such that:
(i) F;i are finite-dimensional K-vector spaces;

(i) F—1 ={0} and 1 € Fy;

(i) FF1CFCFC...CAand Upn_, Fi = A.
(iv) Fi-Fj C Figj-

From now on we will fix the filtration F and assume that
gr” A= @~y Fi/Fi-1 is a commutative noetherian ring.

Such rings are called almost commutative.



Some almost commutative algebra

Let M be a left A-module.

A filtration on M is a family G = {G;}i>m, m € Z, such that:
(i) G; are finite Fp-modules;

(i) Gm = {O};

(i) Gm € Gm+1 CGmi2 € ... C Mand ;5 ,, Gi = M.

(iv) Fi-Gj C Giyj.

We will denote by gr¢ M the gr” A-module @~ .1 Gi/Gi-1. G is
called a good filtration if gr9 M is finitely generated over gr” A.

REMARK: If M is finitely generated as a left A-module by
mi, ..., Mg, then Gs = Zf-;l Fsm;j is a good filtration on M.



Some almost commutative algebra

LEMMA: Let M be a left A-module, and G and H filtrations on it.
(i) G is good if and only if there is a jo € Z such that:

Fi-Gi=GirjViz=0,j=jo

(i) If G is good, then M is finitely generated over A.
(i) If G is good, then there exists r € Z such that:

gtgHt+th€Z.
If also H is good, then there exists s € Z such that:

Ht—s C Q’t g%t+5 YVteZ.



Some almost commutative algebra

Proof: (i). Put Fj = @,;; Fi/Fi-1 and G; = @, Gi/Gi—1. If G
is good, then there exists jo € Z such that

Fi G =G Vi=0,j>j

This means that, for every i > 0, j > jo, Fi-G; + Giyj—1 = Gitj.
By inducting on i we can assume G;1j_1 = Fi—1-G; (1€ Fo).
This yields F; - G; = G, since F;_1 C F;. The converse is trivial.
(ii) follows immediately from (i).

(iii) Let jo € Z be as in (i). Since G and H are filtrations, there
exists r € Z such that G;; C H,. So

Gt C Gerjp=Ft-Gjp © Fr - Hr C Her O



Some almost commutative algebra

Assume that Fy = K and gr’ A is generated in degree 1 over K. If
G is a good filtration on a left A-module M, then dimgk G;/G;_1 is
a polynomial in i for i >> 0. This implies that dimk G; is also a
polynomial in i for i > 0. Let us call such a polynomial Pg.

The polynomial Pg is not an invariant of M, depending on the
good filtration G. However, given two good filtrations G and H on
M, the degrees and the leading coefficients of Pg and of Py are
the same! This follows immediately from point (iii) of the lemma.

DEFINITION: Let M be a finitely generated left A-module. By
considering a good filtration G on it, we define:

» dim(M) = degree of Pg.
» e(M) = dim(M)!-(leading coefficient of Pg).



Some almost commutative algebra

LEMMA: Let M be a left A-module with a good filtration G.
Given a short exact sequence of left A-modules

0—-M M- M -0,
set ' =GN M and G’ =Im(G). Then
05 g9 M 5 g9M— a9 M =0

is an exact sequence of gr’ A-modules, G’ and G” are good
filtrations and:

» dim(M) = max{dim(M’), dim(M")}.

> If dim(M’) = dim(M"), then e(M) = e(M’) + e(M").

In particular, if M is a f.g. left A-module, then it is noetherian.



The Weyl algebra

Let K be a field of characteristic 0 and D be the Weil algebra,
namely the free K-algebra K(xi,...,Xpn,01,...,0,) mod out by

[xi, xj] = xixj — xjxi = 0
[0, 0] = ;0 — 9;0; = 0
[0i, %] = Dixj — xi0; = &

Given two vectors @ = (a1, ...,a,) and 8 = (B1,...,[6,) in N,
we write x292 for Xyt ~x,?‘”8§1 B AR T easy to see that:

{x202 : 0, € N"}

is a K-basis of D, known as the Poincaré-Birkhoff-Witt basis.



The Weyl algebra

The Bernstein filtration F on D is defined as F_1; = 0 and
Fo={(x205: || +|8] <s) ¥VseN.

Since the only nonzero bracket decreases the “degrees’, gr’ D is
commutative. More precisely:

gl D= Klx1, ... Xn, 01, .,0n]

In particular, dim(D) = 2n and e(D) = 1.



The Weyl algebra

An astonishing property
THEOREM (Bernstein) Let M # 0 be a finitely generated left
D-module. Then n < dim(M) < 2n.

Proof. Let G be a good filtration on M. We want to show that

Fs — HomK(957g2s)

mapping f to m — fm is injective for all s € N. If s =0 it is OK.

Suppose t is the least positive integer such that exists 0 #£ f € F;
with f - G = 0. For sure there exists j such that either x; or 0;
occurs in f. If O; occurs in f, then [x;, f] is a nonzero element of
Fi—1. Then there is m € G;—1 C G; such that [x;, f] - m # 0.
However [x;, f]-m = x;fm — txim € x;(f -G¢) — -G =0. If x;
occurs in f... So the maps above are injective. In particular:

pol. of degree 2n ~ dlmK(]:s) < (dlmK(gs)) . (dlmK(g25))~ pol. of degree 2dim(M).

g



Holonomic D-modules

A finitely generated left D-module M is called holonomic if either
M =0 or dim(M) = n.

EXAMPLES: (i) S = K|z, ..., z,] is a left D-module by putting:

_of

= _— f .
oz VfeS

X,'-f:Z,'f, 8,7‘

Obviously Gs = (f € S : deg(f) < s) defines a good filtration on
S. So S is holonomic.

(ii) Let m = (z1,...,2zm) € S. HZ(S) is a left D-module by:

ok, L _ (—1)kk!

; )
21 Zn oz Ziflz,'k+lzi+1 < Xn

1
Clearly Gs = < : u monomial of S,deg(u) < s ) defines
Zl .. Zn . u

a good filtration on HJ(S). In particular H2(S) is holonomic.



Holonomic D-modules

Let S = K[z, ..., z,] be the polynomial ring in n variables over K.
Clearly there is a K-algebra homomorphism (indeed an inclusion):

s 4 D
Zi > X

From this, we can (and will) view any left D-module M as an
S-module via restriction by ¢. In particular, we are allowed to
define the set of associated primes over S of any D-module M:

Asss(M) = {p € Spec(S) : p=0:s m for some 0 # m e M}
The first goal of today is to show the following:

THEOREM: If M is holonomic, then | Asss(M)| < e(M) < co.



Let f € S and keep on denoting f its image «(f) € D. By using
the definition of the multiplication in the Weyl algebra:

of .
f'ai—ai'f—afZi Vied{l,...,n}.

Doing an induction on s, we get

oo =0 — st 0
82,‘

This shows the following:

REMARK: Let M be a left D-module and / an ideal of S. By
considering M as an S-module, we can form the S-module

HY(M) ={m & M : Im = 0 for some s € N}.

Then HY(M) is a D-submodule of M. [J



Holonomic D-modules
Given a shot exact sequence of left D-modules

0O->M MM =0

we have that:
(i) M is holonomic if and only if M" and M” are holonomic.
(it) If (i) holds, then e(M) = e(M') + e(M").

PROPOSITION: If M is holonomic, then lengthp(M) < e(M).
Proof. Take a chain of D-modules:
0=MyC M, C...C M= M.

From the exact sequences 0 — M;_; — M; — M;/M;_1 — 0, we
infer that M; and M;/M;_; are nonzero holonomic D-modules for
all i=1,...,¢ and that

0<e(M) <e(M)<...<e(M)=e(M).
g



Holonomic D-modules

We are now ready to show the following for left D-modules M:

THEOREM: If M is holonomic, then | Asss(M)| < e(M) < .

Proof: We want to induct on ¢ = lengthp(M) (< e(M)). If £ =1,
take p € Asss(M). Then HS(M) is a nonzero D-submodule of M.
Because ¢ = 1, then we have H)(M) = M. If q € Asss(M) =
Asss(Hg(M)) one has p C q, so by symmetry we deduce q = p.

If £ > 1, take a (nonzero) simple D-submodule N C M. Of course
lengths(M/N) < £, and by the short exact sequence of D-modules

O—-N—->M-—-M/N—0

we get that N and M/N are holonomic D-modules. However that
above is also an exact sequence of S-modules, therefore we have:

Asss(M) C Asss(N) U Asss(M/N)

0



Local cohomology modules

Let I = (f,...,fx) be an ideal of S = K|[z1,...,2,], and M an
S-module. The ith local cohomology module Hj(/M) is the
(k — i)th homology of the Chec complex:

0—>M—>@Mfi—>@Mﬁ.fj—>...—>l\/lﬁ...fk—>0,
i i<j

where the maps are the natural ones multiplied by a suitable sign.
If each module of the above complex were a holonomic D-module,
then also the cohomology would be holonomic, since holonomicity
is closed under short exact sequences. So, in this case, Hi(M)
would have a finite number of associated primes.

Our goal now is to show that S¢ is a holonomic D-module V f € S.



Holonomic D-modules

Recall that, if G is a good filtration on a left D-module, then for
any other filtration H on M, there is r € Z such that, for all t € Z,
Gt € Heyr. In particular, Ve > 0 3 tg such that:

. e(M) — ¢ dim(M)

LEMMA: Let M be a left D-module with a filtration G. If there is
¢ € Ryg such that dimk(G;) < ct” for t > 0, then M is
holonomic. In particular, it is finitely generated!

Proof. Let My be a finitely generated D-submodule of M and set
G, =G: N My ¥V t € Z, which defines a filtration on Mp. Then
dim(Mp) < n and e(Mp) < nlc by (*). Therefore M has ACC for
finitely generated submodules. So it is finitely generated, and
holonomic again by (*). O



Holonomic D-modules

THEOREM: Let M be a holonomic D-module and f € S. Then
Mg is holonomic.

Proof: Let G be a good filtration on M, and é the maximum degree
of a monomial in the support of f. Define H = {#;}: on My as:

m
He = <F me Qt(5+1)>.

That UsH; = Mr and H; C Hyyq is easy. If m/ft € H,, then
obviously x; - m/ft € Hyy1. Furthermore:

m  ft(0-m)—tfFrOf )0z - m  f-(8i-m)—tdf Dz -m
O - i for = Fel € Hera-

So H is a filtration of M¢ such that:

dimk (He) < dimk(Geivs)) ~ Wtﬂ

By the previous lemma M; is holonomic. [



Finiteness properties of Hj(S)

We saw last week that S has a structure of holonomic D-module.
So by the above theorem S¢ is holonomic for all f € S. If [ is an
ideal of S generated by fi, ..., fi then, by meaning of the Cech

complex, the local cohomology module Hi(S) is a subquotient of:

@ Sffl”'ffi'

1<i1<..<l;<k
In particular Hj(S) is a holonomic D-module. As a consequence:

THEOREM: For any ideal / C S the set Assg(H](S)) is finite.
More generally, Asss(Hi(M)) is finite ¥ holonomic D-modules M.



Finiteness properties of Hj(S)
THEOREM: Let m = (z1,...,2,) €S = K|[z1,...,z,].

(i) Then HZ(S) =2 D/Dwm as left D-modules. In particular, D/Dwm is
isomorphic to the injective hull Es(K) of K = S§/m.

(i) If M is an m-torsion D-module, then M = B, ., D/Dm as left
D-modules. In particular M is an injective S-module.

Proof. (i) The map of D-modules D — HJ(S) sending 1 to [1/z; - - - z,]
is surjective, and one can check that its kernel is Dm.
(i) Consider soc(M) C M and a K-basis {my}a of soc(M). This gives
rise to the following diagram of S-modules:

P, D/P —— M

| [
@Ae/\K = soc(M)

The inclusion on the left is essential, so f is injective. Therefore
M =D, cAD/Dm C. Since soc(C) = 0, we infer that C =0. [J



Finiteness properties of Hj(S)

The above result implies that, if H;(S) is m-torsion, then 3 s € N:
Hj(S) = Es(K)®.

There are several interesting situations in which H;(S) is m-torsion,
for example if i > ht(/) and [ defines a smooth projective scheme.
So s is an interesting number. Quite surprisingly, it is an invariant
of S/1, we will soon discuss this aspect in more generality. First,
let me say that, with not much more effort, we could prove:

THEOREM: injdim(H;(S)) < dim(Supp(H;(S)) (< i).



Finiteness properties of Hj(S)

Recall that the Bass numbers of an S-module M are defined as:

wi(p, M) = dimn(p)(Ethp(’{(p)’ MP))7

where p is a prime ideal of S. Another way to think at them is the
following: Every S-module M admits a minimal injective resolution

0> M—E° > E' - E?. ..
Then E' 2 @, gpee(s) Es(S/p)i:M).

THEOREM: A holonomic D-module has finite Bass numbers. In
particular, pi(p, H/(S)) is a finite number for all triples p, i, j.



The Lyubeznik numbers of a local ring containing a field

All the results stated for S hold true for any regular local ring R
containing K. The point is that R = K[[x,...,xy]]. The algebra
of differentials D(K[[x]], K) of R is left-Noetherian and well
described, so one can play a similar game to the previous one
replacing D by D(K[[x]], K). Finally one can descend everything
to R, essentially because K|[[x]] is a faithfully flat R-algebra.
Besides all the previous beautiful results, Lyubeznik supplied us
new invariants to play with:

DEFINITION-THEOREM: Let A be a local ring containing K. By
Cohen-structure theorem we have a surjection K[[x1, ..., xn]] = A.
Denoting by / = Ker(m) and m the maximal ideal of K[[x]], the
finite numbers 1,(m, H7~'(K[[x]]) depend only on A, p and i.
These invariants of A are usually denoted by A, ;(A) and called the
Lyubeznik's numbers of A.



Open problems

(i) The conjecture of Lyubeznik is still unsolved: Assg(H;(R)) are
finite sets for any regular ring R.

(ii) A question of Lyubeznik: If A is a standard graded K-algebra
with maximal ideal m, are A\, j(Aw) invariants of Proj(A)? (Zhang,
Adv. Math. 2011: Yes in positive characteristic).

(iii) One can show that A\, ; =0 if /i > d =dim(A), p > i, or
p>i—1and i< depth(A). Is Ai_2;(A) =0 for all i < depth(A)?

(iv) Compute the entire table A\, j(An) for determinantal rings A.



