AN INTRODUCTION TO D-MODULES

WITH APPLICATIONS TO LOCAL COHOMOLOGY

Motivations

Craig Huneke, in a Research Notes in Mathematics of 1992, raised the following question:
R commutative noetherian ring, $I \subseteq R$ an ideal. If M is a finitely generated (f.g.) R-module, is $\operatorname{Ass}\left(H_{l}^{i}(M)\right)$ a finite set for all i ?

Motivations

The point of the question above is that $H_{l}^{i}(M)$ may be not finitely generated. In some cases however the answer is clearly positive:
(i) M f.g. $\Rightarrow H_{l}^{0}(M)$ f.g.; in particular, $\operatorname{Ass}\left(H_{l}^{0}(M)\right)$ is finite.
(ii) If $I=\mathfrak{m}$ is maximal, then $\operatorname{Ass}\left(H_{\mathfrak{m}}^{i}(M)\right) \subseteq\{\mathfrak{m}\}$ for all i.

Motivations

A bit of history of the problem...
(i) Huneke-Sharp, Trans. Amer. Math. Soc. 1993: If R is regular and $\operatorname{char}(R)>0$, then then for any ideal $\left|\operatorname{Ass}\left(H_{l}^{i}(R)\right)\right|<\infty$.
(ii) Lyubeznik, Invent. Math. 1993: If R is a regular local ring containing \mathbb{Q}, then for any ideal $\left|\operatorname{Ass}\left(H_{l}^{i}(R)\right)\right|<\infty$.
(iii) Lyubeznik, Comm. Algebra 2000: If R is an unramified regular local ring of mixed characteristic, then for any ideal $\left|\operatorname{Ass}\left(H_{l}^{i}(R)\right)\right|<\infty$.
(iv) Bhatt-Blickle-Lyubeznik-Singh-Zhang, 2012: If $R=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, then for any ideal $\left|\operatorname{Ass}\left(H_{l}^{i}(R)\right)\right|<\infty$.

Motivations

(iv) Brodmann-Lashgari, Proc. Amer. Math. Soc. 2000: If g is grade (I, M), then $\operatorname{Ass}\left(H_{l}^{1}(M)\right)$ and $\operatorname{Ass}\left(H_{l}^{g}(M)\right)$ are finite.
(v) Singh, Math. Res. Lett. 2000: If $R=\frac{\mathbb{Z}[u, v, w, x, y, z]}{(u x+v y+w z)}$ and $I=(x, y, z) \subseteq R$, then $H_{l}^{3}(R)$ has p-torsion elements for infinitely many primes. Consequently $\operatorname{Ass}\left(H_{l}^{3}(R)\right)$ is infinite.
(vi) Katzman, J. Algebra 2002: For any field K, if R is the ring $\frac{K[s, t, u, v, x, y]}{\left(s u^{2} x^{2}+(s+t) u v x y+t v^{2} y^{2}\right)}$, then $\left|\operatorname{Ass}\left(H_{(x, y)}^{2}(R)\right)\right|=\infty$.
(vii) Takagi-Takahashi, Math. Res. Lett. 2007: If R has positive characteristic, is Gorenstein and has F-finite representation type, then for any ideal $\left|\operatorname{Ass}\left(H_{l}^{i}(R)\right)\right|<\infty$.

Motivations

In the proof of Huneke-Sharp (R regular of positive characteristic), it is crucial that the iterated Frobenius maps $F^{e}: R \rightarrow R$, sending r to $r^{p^{e}}$, are flat and that $\left\{F^{e}(I) R\right\}_{e \in \mathbb{N}}$ is cofinal with $\left\{I^{k}\right\}_{k \in \mathbb{N}}$.

A family of ring homomorphisms with these two properties does not exist for $R=\mathbb{Q}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$. In these lectures we will explore the machinery used by Lyubeznik to prove his first theorem:

If R is a regular local ring containing \mathbb{Q} and $I \subseteq R$ is an ideal, then $\operatorname{Ass}\left(H_{l}^{i}(R)\right)$ is finite for every i.

To this aim, we need to introduce the theory of \mathcal{D}-modules.
In these seminars I'll follow some lectures given by Anurag Singh at the Local Cohomology Workshop held in Mumbai (India) in 2011.

Some almost commutative algebra

Let A be a (possibly noncommutative) ring. A left A-module M is noetherian if one of the following equivalent conditions holds:
(i) All submodules are finitely generated.
(ii) ACC holds on submodules.
(iii) ACC holds on f.g. submodules.

EXAMPLE: The free K-algebra $A=K\langle x, y\rangle$ on x and y is not noetherian: In fact the left ideal $\sum_{i \in \mathbb{N}} A x y^{i}$ is not f.g..

Some almost commutative algebra

Let K be a field in the center of A.
A filtration on A is a family $\mathcal{F}=\left\{\mathcal{F}_{i}\right\}_{i \geq-1}$ such that:
(i) \mathcal{F}_{i} are finite-dimensional K-vector spaces;
(ii) $\mathcal{F}_{-1}=\{0\}$ and $1 \in \mathcal{F}_{0}$;
(iii) $\mathcal{F}_{-1} \subseteq \mathcal{F}_{0} \subseteq \mathcal{F}_{1} \subseteq \ldots \subseteq A$ and $\bigcup_{i \geq-1} \mathcal{F}_{i}=A$.
(iv) $\mathcal{F}_{i} \cdot \mathcal{F}_{j} \subseteq \mathcal{F}_{i+j}$.

From now on we will fix the filtration \mathcal{F} and assume that $\operatorname{gr}^{\mathcal{F}} A=\bigoplus_{i \geq 0} \mathcal{F}_{i} / \mathcal{F}_{i-1}$ is a commutative noetherian ring.

Such rings are called almost commutative.

Some almost commutative algebra

Let M be a left A-module.
A filtration on M is a family $\mathcal{G}=\left\{\mathcal{G}_{i}\right\}_{i \geq m}, m \in \mathbb{Z}$, such that:
(i) \mathcal{G}_{i} are finite \mathcal{F}_{0}-modules;
(ii) $\mathcal{G}_{m}=\{0\}$;
(iii) $\mathcal{G}_{m} \subseteq \mathcal{G}_{m+1} \subseteq \mathcal{G}_{m+2} \subseteq \ldots \subseteq M$ and $\bigcup_{i \geq m} \mathcal{G}_{i}=M$.
(iv) $\mathcal{F}_{i} \cdot \mathcal{G}_{j} \subseteq \mathcal{G}_{i+j}$.

We will denote by $\mathrm{gr}^{\mathcal{G}} M$ the $\mathrm{gr}^{\mathcal{F}} A$-module $\bigoplus_{i \geq m+1} \mathcal{G}_{i} / \mathcal{G}_{i-1} . \mathcal{G}$ is called a good filtration if $\mathrm{gr}^{\mathcal{G}} M$ is finitely generated over $\mathrm{gr}^{\mathcal{F}} A$.

REMARK: If M is finitely generated as a left A-module by m_{1}, \ldots, m_{k}, then $\mathcal{G}_{s}=\sum_{i=1}^{k} \mathcal{F}_{s} m_{i}$ is a good filtration on M.

Some almost commutative algebra

LEMMA: Let M be a left A-module, and \mathcal{G} and \mathcal{H} filtrations on it.
(i) \mathcal{G} is good if and only if there is a $j_{0} \in \mathbb{Z}$ such that:

$$
\mathcal{F}_{i} \cdot \mathcal{G}_{j}=\mathcal{G}_{i+j} \forall i \geq 0, j \geq j_{0}
$$

(ii) If \mathcal{G} is good, then M is finitely generated over A.
(iii) If \mathcal{G} is good, then there exists $r \in \mathbb{Z}$ such that:

$$
\mathcal{G}_{t} \subseteq \mathcal{H}_{t+r} \forall t \in \mathbb{Z}
$$

If also \mathcal{H} is good, then there exists $s \in \mathbb{Z}$ such that:

$$
\mathcal{H}_{t-s} \subseteq \mathcal{G}_{t} \subseteq \mathcal{H}_{t+s} \forall t \in \mathbb{Z}
$$

Some almost commutative algebra

Proof: (i). Put $\widetilde{\mathcal{F}}_{j}=\bigoplus_{i \leq j} \mathcal{F}_{i} / \mathcal{F}_{i-1}$ and $\widetilde{\mathcal{G}}_{j}=\bigoplus_{i \leq j} \mathcal{G}_{i} / \mathcal{G}_{i-1}$. If \mathcal{G} is good, then there exists $j_{0} \in \mathbb{Z}$ such that

$$
\widetilde{\mathcal{F}_{i}} \cdot \widetilde{\mathcal{G}_{j}}=\widetilde{\mathcal{G}_{i+j}} \forall i \geq 0, j \geq j_{0}
$$

This means that, for every $i \geq 0, j \geq j_{0}, \mathcal{F}_{i} \cdot \mathcal{G}_{j}+\mathcal{G}_{i+j-1}=\mathcal{G}_{i+j}$. By inducting on i we can assume $\mathcal{G}_{i+j-1}=\mathcal{F}_{i-1} \cdot \mathcal{G}_{j} \quad\left(1 \in \mathcal{F}_{0}\right)$. This yields $\mathcal{F}_{i} \cdot \mathcal{G}_{j}=\mathcal{G}_{i+j}$ since $\mathcal{F}_{i-1} \subseteq \mathcal{F}_{i}$. The converse is trivial.
(ii) follows immediately from (i).
(iii) Let $j_{0} \in \mathbb{Z}$ be as in (i). Since \mathcal{G} and \mathcal{H} are filtrations, there exists $r \in \mathbb{Z}$ such that $\mathcal{G}_{j 0} \subseteq \mathcal{H}_{r}$. So

$$
\mathcal{G}_{t} \subseteq \mathcal{G}_{t+j_{0}}=\mathcal{F}_{t} \cdot \mathcal{G}_{j_{0}} \subseteq \mathcal{F}_{t} \cdot \mathcal{H}_{r} \subseteq \mathcal{H}_{t+r} .
$$

Some almost commutative algebra

Assume that $\mathcal{F}_{0}=K$ and $\mathrm{gr}^{\mathcal{F}} A$ is generated in degree 1 over K. If \mathcal{G} is a good filtration on a left A-module M, then $\operatorname{dim}_{K} \mathcal{G}_{i} / \mathcal{G}_{i-1}$ is a polynomial in i for $i \gg 0$. This implies that $\operatorname{dim}_{K} \mathcal{G}_{i}$ is also a polynomial in i for $i \gg 0$. Let us call such a polynomial $P_{\mathcal{G}}$.

The polynomial $P_{\mathcal{G}}$ is not an invariant of M, depending on the good filtration \mathcal{G}. However, given two good filtrations \mathcal{G} and \mathcal{H} on M, the degrees and the leading coefficients of $P_{\mathcal{G}}$ and of $P_{\mathcal{H}}$ are the same! This follows immediately from point (iii) of the lemma.

DEFINITION: Let M be a finitely generated left A-module. By considering a good filtration \mathcal{G} on it, we define:

- $\operatorname{dim}(M)=$ degree of $\mathcal{P}_{\mathcal{G}}$.
- $e(M)=\operatorname{dim}(M)!\cdot\left(\right.$ leading coefficient of $\left.P_{\mathcal{G}}\right)$.

Some almost commutative algebra

LEMMA: Let M be a left A-module with a good filtration \mathcal{G}.
Given a short exact sequence of left A-modules

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

set $\mathcal{G}^{\prime}=\mathcal{G} \cap M^{\prime}$ and $\mathcal{G}^{\prime \prime}=\operatorname{Im}(\mathcal{G})$. Then

$$
0 \rightarrow \mathrm{gr}^{\mathcal{G}^{\prime}} M^{\prime} \rightarrow \mathrm{gr}^{\mathcal{G}} M \rightarrow \mathrm{gr}^{\mathcal{G}^{\prime \prime}} M^{\prime \prime} \rightarrow 0
$$

is an exact sequence of $\mathrm{gr}^{\mathcal{F}} A$-modules, \mathcal{G}^{\prime} and $\mathcal{G}^{\prime \prime}$ are good filtrations and:

- $\operatorname{dim}(M)=\max \left\{\operatorname{dim}\left(M^{\prime}\right), \operatorname{dim}\left(M^{\prime \prime}\right)\right\}$.
- If $\operatorname{dim}\left(M^{\prime}\right)=\operatorname{dim}\left(M^{\prime \prime}\right)$, then $e(M)=e\left(M^{\prime}\right)+e\left(M^{\prime \prime}\right)$.

In particular, if M is a f.g. left A-module, then it is noetherian.

The Weyl algebra

Let K be a field of characteristic 0 and \mathcal{D} be the Weil algebra, namely the free K-algebra $K\left\langle x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}\right\rangle \bmod$ out by

$$
\left\{\begin{array}{l}
{\left[x_{i}, x_{j}\right]=x_{i} x_{j}-x_{j} x_{i}=0} \\
{\left[\partial_{i}, \partial_{j}\right]=\partial_{i} \partial_{j}-\partial_{j} \partial_{i}=0} \\
{\left[\partial_{i}, x_{j}\right]=\partial_{i} x_{j}-x_{i} \partial_{j}=\delta_{i j}}
\end{array}\right.
$$

Given two vectors $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\underline{\beta}=\left(\beta_{1}, \ldots, \beta_{n}\right)$ in \mathbb{N}^{n}, we write $\underline{x}^{\underline{\alpha}} \underline{\underline{\beta}}^{\beta}$ for $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \partial_{1}^{\beta_{1}} \cdots \partial_{n}^{\beta^{n}}$. It is easy to see that:

$$
\left\{\underline{x}^{\underline{\alpha}} \underline{\partial}^{\underline{\beta}}: \underline{\alpha}, \underline{\beta} \in \mathbb{N}^{n}\right\}
$$

is a K-basis of \mathcal{D}, known as the Poincaré-Birkhoff-Witt basis.

The Weyl algebra

The Bernstein filtration \mathcal{F} on \mathcal{D} is defined as $\mathcal{F}_{-1}=0$ and

$$
\mathcal{F}_{s}=\left\langle\underline{x}^{\underline{\alpha}} \underline{\underline{\beta}} \underline{\underline{\beta}}:\right| \underline{\alpha}|+|\underline{\beta}| \leq s\rangle \quad \forall s \in \mathbb{N} .
$$

Since the only nonzero bracket decreases the "degrees", $\mathrm{gr}^{\mathcal{F}} \mathcal{D}$ is commutative. More precisely:

$$
\operatorname{gr}^{\mathcal{F}} \mathcal{D}=K\left[x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}\right] .
$$

In particular, $\operatorname{dim}(\mathcal{D})=2 n$ and $e(\mathcal{D})=1$.

The Weyl algebra

An astonishing property

THEOREM (Bernstein) Let $M \neq 0$ be a finitely generated left \mathcal{D}-module. Then $n \leq \operatorname{dim}(M) \leq 2 n$.
Proof: Let \mathcal{G} be a good filtration on M. We want to show that

$$
\mathcal{F}_{s} \longrightarrow \operatorname{Hom}_{K}\left(\mathcal{G}_{s}, \mathcal{G}_{2 s}\right)
$$

mapping f to $m \mapsto f m$ is injective for all $s \in \mathbb{N}$. If $s=0$ it is OK.
Suppose t is the least positive integer such that exists $0 \neq f \in \mathcal{F}_{t}$ with $f \cdot \mathcal{G}_{t}=0$. For sure there exists i such that either x_{i} or ∂_{i} occurs in f. If ∂_{i} occurs in f, then $\left[x_{i}, f\right]$ is a nonzero element of \mathcal{F}_{t-1}. Then there is $m \in \mathcal{G}_{t-1} \subseteq \mathcal{G}_{t}$ such that $\left[x_{i}, f\right] \cdot m \neq 0$. However $\left[x_{i}, f\right] \cdot m=x_{i} f m-f x_{i} m \in x_{i}\left(f \cdot \mathcal{G}_{t}\right)-f \cdot \mathcal{G}_{t}=0$. If x_{i} occurs in f... So the maps above are injective. In particular:
pol. of degree $2 n \sim \operatorname{dim}_{K}\left(\mathcal{F}_{s}\right) \leq\left(\operatorname{dim}_{K}\left(\mathcal{G}_{s}\right)\right) \cdot\left(\operatorname{dim}_{K}\left(\mathcal{G}_{2 s}\right)\right) \sim$ pol. of degree $2 \operatorname{dim}(M)$.

Holonomic \mathcal{D}-modules

A finitely generated left \mathcal{D}-module M is called holonomic if either $M=0$ or $\operatorname{dim}(M)=n$.

EXAMPLES: (i) $S=K\left[z_{1}, \ldots, z_{n}\right]$ is a left \mathcal{D}-module by putting:

$$
x_{i} \cdot f=z_{i} f, \quad \partial_{i} \cdot f=\frac{\partial f}{\partial z_{i}} \quad \forall f \in S
$$

Obviously $\mathcal{G}_{s}=\langle f \in S: \operatorname{deg}(f) \leq s\rangle$ defines a good filtration on S. So S is holonomic.
(ii) Let $\mathfrak{m}=\left(z_{1}, \ldots, z_{m}\right) \subseteq S . H_{\mathfrak{m}}^{n}(S)$ is a left \mathcal{D}-module by:

$$
\partial_{i}^{k} \cdot \frac{1}{z_{1} \cdots z_{n}}=\frac{(-1)^{k} k!}{z_{1} \cdots z_{i-1} z_{i}^{k+1} z_{i+1} \cdots x_{n}}
$$

Clearly $\mathcal{G}_{s}=\left\langle\frac{1}{z_{1} \cdots z_{n} \cdot u}: u\right.$ monomial of $\left.S, \operatorname{deg}(u) \leq s\right\rangle$ defines a good filtration on $H_{\mathfrak{m}}^{n}(S)$. In particular $H_{\mathfrak{m}}^{n}(S)$ is holonomic.

Holonomic \mathcal{D}-modules

Let $S=K\left[z_{1}, \ldots, z_{n}\right]$ be the polynomial ring in n variables over K. Clearly there is a K-algebra homomorphism (indeed an inclusion):

$$
\begin{array}{rll}
S & \xrightarrow{\iota} \mathcal{D} \\
z_{i} & \mapsto & x_{i}
\end{array}
$$

From this, we can (and will) view any left \mathcal{D}-module M as an S-module via restriction by ι. In particular, we are allowed to define the set of associated primes over S of any \mathcal{D}-module M :

$$
\operatorname{Asss}(M)=\{\mathfrak{p} \in \operatorname{Spec}(S): \mathfrak{p}=0: s m \text { for some } 0 \neq m \in M\}
$$

The first goal of today is to show the following:
THEOREM: If M is holonomic, then $\left|\operatorname{Asss}_{s}(M)\right| \leq e(M)<\infty$.

Let $f \in S$ and keep on denoting f its image $\iota(f) \in \mathcal{D}$. By using the definition of the multiplication in the Weyl algebra:

$$
f \cdot \partial_{i}=\partial_{i} \cdot f-\frac{\partial f}{\partial z_{i}} \quad \forall i \in\{1, \ldots, n\}
$$

Doing an induction on s, we get

$$
f^{s} \cdot \partial_{i}=\partial_{i} \cdot f^{s}-s f^{s-1} \frac{\partial f}{\partial z_{i}}
$$

This shows the following:
REMARK: Let M be a left \mathcal{D}-module and I an ideal of S. By considering M as an S-module, we can form the S-module

$$
H_{l}^{0}(M)=\left\{m \in M: I^{s} m=0 \text { for some } s \in \mathbb{N}\right\}
$$

Then $H_{l}^{0}(M)$ is a \mathcal{D}-submodule of $M . \square$

Holonomic \mathcal{D}-modules

Given a shot exact sequence of left \mathcal{D}-modules

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

we have that:
(i) M is holonomic if and only if M^{\prime} and $M^{\prime \prime}$ are holonomic.
(ii) If (i) holds, then $e(M)=e\left(M^{\prime}\right)+e\left(M^{\prime \prime}\right)$.

PROPOSITION: If M is holonomic, then length ${ }_{\mathcal{D}}(M) \leq e(M)$.
Proof: Take a chain of \mathcal{D}-modules:

$$
0=M_{0} \subsetneq M_{1} \subsetneq \ldots \subsetneq M_{\ell}=M
$$

From the exact sequences $0 \rightarrow M_{i-1} \rightarrow M_{i} \rightarrow M_{i} / M_{i-1} \rightarrow 0$, we infer that M_{i} and M_{i} / M_{i-1} are nonzero holonomic \mathcal{D}-modules for all $i=1, \ldots, \ell$ and that

$$
0<e\left(M_{1}\right)<e\left(M_{2}\right)<\ldots<e\left(M_{\ell}\right)=e(M)
$$

Holonomic \mathcal{D}-modules

We are now ready to show the following for left \mathcal{D}-modules M :
THEOREM: If M is holonomic, then $\left|\operatorname{Asss}_{s}(M)\right| \leq e(M)<\infty$.
Proof: We want to induct on $\ell=\operatorname{length}_{\mathcal{D}}(M)(\leq e(M))$. If $\ell=1$, take $\mathfrak{p} \in \operatorname{Ass}(M)$. Then $H_{\mathfrak{p}}^{0}(M)$ is a nonzero \mathcal{D}-submodule of M. Because $\ell=1$, then we have $H_{\mathfrak{p}}^{0}(M) \cong M$. If $\mathfrak{q} \in \operatorname{Asss}_{s}(M)=$ $\operatorname{Ass}_{s}\left(H_{\mathfrak{p}}^{0}(M)\right)$ one has $\mathfrak{p} \subseteq \mathfrak{q}$, so by symmetry we deduce $\mathfrak{q}=\mathfrak{p}$.
If $\ell>1$, take a (nonzero) simple \mathcal{D}-submodule $N \subseteq M$. Of course length ${ }_{S}(M / N)<\ell$, and by the short exact sequence of \mathcal{D}-modules

$$
0 \rightarrow N \rightarrow M \rightarrow M / N \rightarrow 0
$$

we get that N and M / N are holonomic \mathcal{D}-modules. However that above is also an exact sequence of S-modules, therefore we have:

$$
\operatorname{Ass}_{S}(M) \subseteq \operatorname{Ass}_{S}(N) \cup \operatorname{Ass}_{S}(M / N)
$$

Local cohomology modules

Let $I=\left(f_{1}, \ldots, f_{k}\right)$ be an ideal of $S=K\left[z_{1}, \ldots, z_{n}\right]$, and M an S-module. The i th local cohomology module $H_{l}^{i}(M)$ is the $(k-i)$ th homology of the Čhec complex:

$$
0 \rightarrow M \rightarrow \bigoplus_{i} M_{f_{i}} \rightarrow \bigoplus_{i<j} M_{f_{i} f_{j}} \rightarrow \ldots \rightarrow M_{f_{1} \ldots f_{k}} \rightarrow 0
$$

where the maps are the natural ones multiplied by a suitable sign. If each module of the above complex were a holonomic \mathcal{D}-module, then also the cohomology would be holonomic, since holonomicity is closed under short exact sequences. So, in this case, $H_{l}^{i}(M)$ would have a finite number of associated primes.

Our goal now is to show that S_{f} is a holonomic \mathcal{D}-module $\forall f \in S$.

Holonomic \mathcal{D}-modules

Recall that, if \mathcal{G} is a good filtration on a left \mathcal{D}-module, then for any other filtration \mathcal{H} on M, there is $r \in \mathbb{Z}$ such that, for all $t \in \mathbb{Z}$, $\mathcal{G}_{t} \subseteq \mathcal{H}_{t+r}$. In particular, $\forall \epsilon>0 \exists t_{0}$ such that:

$$
\begin{equation*}
\operatorname{dim}_{K}\left(\mathcal{H}_{t}\right) \geq \frac{e(M)-\epsilon}{\operatorname{dim}(M)!} t^{\operatorname{dim}(M)} \quad \forall t \geq t_{0} \tag{*}
\end{equation*}
$$

LEMMA: Let M be a left \mathcal{D}-module with a filtration \mathcal{G}. If there is $c \in \mathbb{R}_{>0}$ such that $\operatorname{dim}_{K}\left(\mathcal{G}_{t}\right) \leq c t^{n}$ for $t \gg 0$, then M is holonomic. In particular, it is finitely generated!

Proof: Let M_{0} be a finitely generated \mathcal{D}-submodule of M and set $\mathcal{G}_{t}^{\prime}=\mathcal{G}_{t} \cap M_{0} \forall t \in \mathbb{Z}$, which defines a filtration on M_{0}. Then $\operatorname{dim}\left(M_{0}\right) \leq n$ and $e\left(M_{0}\right) \leq n!c$ by $\left(^{*}\right)$. Therefore M has ACC for finitely generated submodules. So it is finitely generated, and holonomic again by (*). \square

Holonomic \mathcal{D}-modules

THEOREM: Let M be a holonomic \mathcal{D}-module and $f \in S$. Then M_{f} is holonomic.
Proof: Let \mathcal{G} be a good filtration on M, and δ the maximum degree of a monomial in the support of f. Define $\mathcal{H}=\left\{\mathcal{H}_{t}\right\}_{t}$ on M_{f} as:

$$
\mathcal{H}_{t}=\left\langle\frac{m}{f^{t}}: m \in \mathcal{G}_{t(\delta+1)}\right\rangle
$$

That $\cup_{t} \mathcal{H}_{t}=M_{f}$ and $\mathcal{H}_{t} \subseteq \mathcal{H}_{t+1}$ is easy. If $m / f^{t} \in \mathcal{H}_{t}$, then obviously $x_{i} \cdot m / f^{t} \in \mathcal{H}_{t+1}$. Furthermore:

$$
\partial_{i} \cdot \frac{m}{f^{t}}=\frac{f^{t} \cdot\left(\partial_{i} \cdot m\right)-t f^{t-1} \partial f / \partial z_{i} \cdot m}{f^{2 t}}=\frac{f \cdot\left(\partial_{i} \cdot m\right)-t \partial f / \partial z_{i} \cdot m}{f^{t+1}} \in \mathcal{H}_{t+1}
$$

So \mathcal{H} is a filtration of M_{f} such that:

$$
\operatorname{dim}_{K}\left(\mathcal{H}_{t}\right) \leq \operatorname{dim}_{K}\left(\mathcal{G}_{t(1+\delta)}\right) \sim \frac{e(M)(1+\delta)^{n}}{n!} t^{n}
$$

By the previous lemma M_{f} is holonomic. \square

Finiteness properties of $H_{l}^{i}(S)$

We saw last week that S has a structure of holonomic \mathcal{D}-module. So by the above theorem S_{f} is holonomic for all $f \in S$. If I is an ideal of S generated by f_{1}, \ldots, f_{k} then, by meaning of the Čech complex, the local cohomology module $H_{l}^{i}(S)$ is a subquotient of:

$$
\bigoplus_{1 \leq \ell_{1}<\ldots<\ell_{i} \leq k} S_{f_{\ell_{1}} \cdots f_{\ell_{i}}}
$$

In particular $H_{l}^{i}(S)$ is a holonomic \mathcal{D}-module. As a consequence:
THEOREM: For any ideal $I \subseteq S$ the set $\operatorname{Ass}_{S}\left(H_{l}^{i}(S)\right)$ is finite. More generally, $\operatorname{Asss}_{S}\left(H_{l}^{i}(M)\right)$ is finite \forall holonomic \mathcal{D}-modules M.

Finiteness properties of $H_{l}^{i}(S)$

THEOREM: Let $\mathfrak{m}=\left(z_{1}, \ldots, z_{n}\right) \subseteq S=K\left[z_{1}, \ldots, z_{n}\right]$.
(i) Then $H_{\mathfrak{m}}^{n}(S) \cong \mathcal{D} / \mathcal{D} \mathfrak{m}$ as left \mathcal{D}-modules. In particular, $\mathcal{D} / \mathcal{D} \mathfrak{m}$ is isomorphic to the injective hull $E_{S}(K)$ of $K=S / \mathfrak{m}$.
(ii) If M is an \mathfrak{m}-torsion \mathcal{D}-module, then $M \cong \bigoplus_{\lambda \in \Lambda} \mathcal{D} / \mathcal{D} \mathfrak{m}$ as left \mathcal{D}-modules. In particular M is an injective S-module.

Proof: (i) The map of \mathcal{D}-modules $\mathcal{D} \rightarrow H_{\mathfrak{m}}^{n}(S)$ sending 1 to $\left[1 / z_{1} \cdots z_{n}\right]$ is surjective, and one can check that its kernel is $\mathcal{D} \mathfrak{m}$.
(ii) Consider $\operatorname{soc}(M) \subseteq M$ and a K-basis $\left\{m_{\lambda}\right\}_{\Lambda}$ of $\operatorname{soc}(M)$. This gives rise to the following diagram of S-modules:

The inclusion on the left is essential, so f is injective. Therefore $M \cong \bigoplus_{\lambda \in \Lambda} \mathcal{D} / \mathcal{D} \mathfrak{m} \bigoplus C$. Since $\operatorname{soc}(C)=0$, we infer that $C=0$. \square

Finiteness properties of $H_{l}^{i}(S)$

The above result implies that, if $H_{l}^{i}(S)$ is \mathfrak{m}-torsion, then $\exists s \in \mathbb{N}$:

$$
H_{l}^{i}(S) \cong E_{S}(K)^{s}
$$

There are several interesting situations in which $H_{l}^{i}(S)$ is \mathfrak{m}-torsion, for example if $i>\operatorname{ht}(I)$ and I defines a smooth projective scheme. So s is an interesting number. Quite surprisingly, it is an invariant of S / I, we will soon discuss this aspect in more generality. First, let me say that, with not much more effort, we could prove:

THEOREM: $\operatorname{injdim}\left(H_{l}^{i}(S)\right) \leq \operatorname{dim}\left(\operatorname{Supp}\left(H_{l}^{i}(S)\right)(\leq i)\right.$.

Finiteness properties of $H_{l}^{i}(S)$

Recall that the Bass numbers of an S-module M are defined as:

$$
\mu_{i}(\mathfrak{p}, M)=\operatorname{dim}_{\kappa(\mathfrak{p})}\left(\operatorname{Ext}_{S_{\mathfrak{p}}}^{i}\left(\kappa(\mathfrak{p}), M_{\mathfrak{p}}\right)\right)
$$

where \mathfrak{p} is a prime ideal of S. Another way to think at them is the following: Every S-module M admits a minimal injective resolution

$$
0 \rightarrow M \rightarrow E^{0} \rightarrow E^{1} \rightarrow E^{2} \ldots
$$

Then $E^{i} \cong \bigoplus_{\mathfrak{p} \in \operatorname{Spec}(S)} E_{S}(S / \mathfrak{p})^{\mu_{i}(\mathfrak{p}, M)}$.
THEOREM: A holonomic \mathcal{D}-module has finite Bass numbers. In particular, $\mu_{i}\left(\mathfrak{p}, H_{l}^{j}(S)\right)$ is a finite number for all triples \mathfrak{p}, i, j.

The Lyubeznik numbers of a local ring containing a field

All the results stated for S hold true for any regular local ring R containing K. The point is that $\widehat{R} \cong K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$. The algebra of differentials $D(K[[x]], K)$ of \widehat{R} is left-Noetherian and well described, so one can play a similar game to the previous one replacing \mathcal{D} by $D(K[[\underline{x}]], K)$. Finally one can descend everything to R, essentially because $K[[\underline{x}]]$ is a faithfully flat R-algebra. Besides all the previous beautiful results, Lyubeznik supplied us new invariants to play with:

DEFINITION-THEOREM: Let A be a local ring containing K. By Cohen-structure theorem we have a surjection $K\left[\left[x_{1}, \ldots, x_{n}\right]\right] \xrightarrow{\pi} \widehat{A}$. Denoting by $I=\operatorname{Ker}(\pi)$ and \mathfrak{m} the maximal ideal of $K[[\underline{x}]]$, the finite numbers $\mu_{p}\left(\mathfrak{m}, H_{l}^{n-i}(K[[\underline{x}]])\right.$ depend only on A, p and i. These invariants of A are usually denoted by $\lambda_{p, i}(A)$ and called the Lyubeznik's numbers of A.

Open problems

(i) The conjecture of Lyubeznik is still unsolved: $\operatorname{Ass}_{R}\left(H_{l}^{i}(R)\right)$ are finite sets for any regular ring R.
(ii) A question of Lyubeznik: If A is a standard graded K-algebra with maximal ideal \mathfrak{m}, are $\lambda_{p, i}\left(A_{\mathfrak{m}}\right)$ invariants of $\operatorname{Proj}(A)$? (Zhang, Adv. Math. 2011: Yes in positive characteristic).
(iii) One can show that $\lambda_{p, i}=0$ if $i>d=\operatorname{dim}(A), p>i$, or $p \geq i-1$ and $i<\operatorname{depth}(A)$. Is $\lambda_{i-2, i}(A)=0$ for all $i<\operatorname{depth}(A)$?
(iv) Compute the entire table $\lambda_{p, i}\left(A_{\mathfrak{m}}\right)$ for determinantal rings A.

