
AN INTRODUCTION TO D-MODULES

WITH APPLICATIONS TO LOCAL COHOMOLOGY



Motivations

Craig Huneke, in a Research Notes in Mathematics of 1992, raised
the following question:

R commutative noetherian ring, I ⊆ R an ideal. If M is a finitely
generated (f.g.) R-module, is Ass(H i

I (M)) a finite set for all i?



Motivations

The point of the question above is that H i
I (M) may be not finitely

generated. In some cases however the answer is clearly positive:

(i) M f.g. ⇒ H0
I (M) f.g.; in particular, Ass(H0

I (M)) is finite.

(ii) If I = m is maximal, then Ass(H i
m(M)) ⊆ {m} for all i .



Motivations

A bit of history of the problem...

(i) Huneke-Sharp, Trans. Amer. Math. Soc. 1993: If R is regular
and char(R) > 0, then then for any ideal |Ass(H i

I (R))| <∞.

(ii) Lyubeznik, Invent. Math. 1993: If R is a regular local ring
containing Q, then for any ideal |Ass(H i

I (R))| <∞.

(iii) Lyubeznik, Comm. Algebra 2000: If R is an unramified
regular local ring of mixed characteristic, then for any ideal
|Ass(H i

I (R))| <∞.

(iv) Bhatt-Blickle-Lyubeznik-Singh-Zhang, 2012: If
R = Z[x1, . . . , xn], then for any ideal |Ass(H i

I (R))| <∞.



Motivations

(iv) Brodmann-Lashgari, Proc. Amer. Math. Soc. 2000: If g is
grade(I ,M), then Ass(H1

I (M)) and Ass(Hg
I (M)) are finite.

(v) Singh, Math. Res. Lett. 2000: If R =
Z[u, v ,w , x , y , z ]

(ux + vy + wz)
and

I = (x , y , z) ⊆ R, then H3
I (R) has p-torsion elements for

infinitely many primes. Consequently Ass(H3
I (R)) is infinite.

(vi) Katzman, J. Algebra 2002: For any field K , if R is the ring
K [s, t, u, v , x , y ]

(su2x2 + (s + t)uvxy + tv2y2)
, then |Ass(H2

(x ,y)(R))| =∞.

(vii) Takagi-Takahashi, Math. Res. Lett. 2007: If R has positive
characteristic, is Gorenstein and has F -finite representation
type, then for any ideal |Ass(H i

I (R))| <∞.



Motivations

In the proof of Huneke-Sharp (R regular of positive characteristic),
it is crucial that the iterated Frobenius maps F e : R → R, sending
r to rp

e
, are flat and that {F e(I )R}e∈N is cofinal with {I k}k∈N.

A family of ring homomorphisms with these two properties does
not exist for R = Q[[x1, . . . , xn]]. In these lectures we will explore
the machinery used by Lyubeznik to prove his first theorem:

If R is a regular local ring containing Q and I ⊆ R is an ideal, then
Ass(H i

I (R)) is finite for every i .

To this aim, we need to introduce the theory of D-modules.

In these seminars I’ll follow some lectures given by Anurag Singh at
the Local Cohomology Workshop held in Mumbai (India) in 2011.



Some almost commutative algebra

Let A be a (possibly noncommutative) ring. A left A-module M is
noetherian if one of the following equivalent conditions holds:

(i) All submodules are finitely generated.

(ii) ACC holds on submodules.

(iii) ACC holds on f.g. submodules.

EXAMPLE: The free K -algebra A = K 〈x , y〉 on x and y is not
noetherian: In fact the left ideal

∑
i∈N Axy i is not f.g..



Some almost commutative algebra

Let K be a field in the center of A.

A filtration on A is a family F = {Fi}i≥−1 such that:

(i) Fi are finite-dimensional K -vector spaces;

(ii) F−1 = {0} and 1 ∈ F0;

(iii) F−1 ⊆ F0 ⊆ F1 ⊆ . . . ⊆ A and
⋃

i≥−1Fi = A.

(iv) Fi · Fj ⊆ Fi+j .

From now on we will fix the filtration F and assume that
grF A =

⊕
i≥0Fi/Fi−1 is a commutative noetherian ring.

Such rings are called almost commutative.



Some almost commutative algebra

Let M be a left A-module.

A filtration on M is a family G = {Gi}i≥m, m ∈ Z, such that:

(i) Gi are finite F0-modules;

(ii) Gm = {0};
(iii) Gm ⊆ Gm+1 ⊆ Gm+2 ⊆ . . . ⊆ M and

⋃
i≥m Gi = M.

(iv) Fi · Gj ⊆ Gi+j .

We will denote by grGM the grF A-module
⊕

i≥m+1 Gi/Gi−1. G is

called a good filtration if grGM is finitely generated over grF A.

REMARK: If M is finitely generated as a left A-module by
m1, . . . ,mk , then Gs =

∑k
i=1Fsmi is a good filtration on M.



Some almost commutative algebra

LEMMA: Let M be a left A-module, and G and H filtrations on it.

(i) G is good if and only if there is a j0 ∈ Z such that:

Fi · Gj = Gi+j ∀ i ≥ 0, j ≥ j0.

(ii) If G is good, then M is finitely generated over A.

(iii) If G is good, then there exists r ∈ Z such that:

Gt ⊆ Ht+r ∀ t ∈ Z.

If also H is good, then there exists s ∈ Z such that:

Ht−s ⊆ Gt ⊆ Ht+s ∀ t ∈ Z.



Some almost commutative algebra

Proof: (i). Put F̃j =
⊕

i≤j Fi/Fi−1 and G̃j =
⊕

i≤j Gi/Gi−1. If G
is good, then there exists j0 ∈ Z such that

F̃i · G̃j = G̃i+j ∀ i ≥ 0, j ≥ j0

This means that, for every i ≥ 0, j ≥ j0, Fi · Gj + Gi+j−1 = Gi+j .
By inducting on i we can assume Gi+j−1 = Fi−1 · Gj (1 ∈ F0).
This yields Fi · Gj = Gi+j since Fi−1 ⊆ Fi . The converse is trivial.

(ii) follows immediately from (i).

(iii) Let j0 ∈ Z be as in (i). Since G and H are filtrations, there
exists r ∈ Z such that Gj0 ⊆ Hr . So

Gt ⊆ Gt+j0 = Ft · Gj0 ⊆ Ft · Hr ⊆ Ht+r . �



Some almost commutative algebra

Assume that F0 = K and grF A is generated in degree 1 over K . If
G is a good filtration on a left A-module M, then dimK Gi/Gi−1 is
a polynomial in i for i � 0. This implies that dimK Gi is also a
polynomial in i for i � 0. Let us call such a polynomial PG .

The polynomial PG is not an invariant of M, depending on the
good filtration G. However, given two good filtrations G and H on
M, the degrees and the leading coefficients of PG and of PH are
the same! This follows immediately from point (iii) of the lemma.

DEFINITION: Let M be a finitely generated left A-module. By
considering a good filtration G on it, we define:

I dim(M) = degree of PG .

I e(M) = dim(M)!·(leading coefficient of PG).



Some almost commutative algebra

LEMMA: Let M be a left A-module with a good filtration G.
Given a short exact sequence of left A-modules

0→ M ′ → M → M ′′ → 0,

set G′ = G ∩M ′ and G′′ = Im(G). Then

0→ grG
′
M ′ → grGM → grG

′′
M ′′ → 0

is an exact sequence of grF A-modules, G′ and G′′ are good
filtrations and:

I dim(M) = max{dim(M ′), dim(M ′′)}.
I If dim(M ′) = dim(M ′′), then e(M) = e(M ′) + e(M ′′).

In particular, if M is a f.g. left A-module, then it is noetherian.



The Weyl algebra

Let K be a field of characteristic 0 and D be the Weil algebra,
namely the free K -algebra K 〈x1, . . . , xn, ∂1, . . . , ∂n〉 mod out by

[xi , xj ] = xixj − xjxi = 0

[∂i , ∂j ] = ∂i∂j − ∂j∂i = 0

[∂i , xj ] = ∂ixj − xi∂j = δij

Given two vectors α = (α1, . . . , αn) and β = (β1, . . . , βn) in Nn,

we write xα∂β for xα1
1 · · · xαn

n ∂β1
1 · · · ∂

βn

n . It is easy to see that:

{xα∂β : α, β ∈ Nn}

is a K -basis of D, known as the Poincaré-Birkhoff-Witt basis.



The Weyl algebra

The Bernstein filtration F on D is defined as F−1 = 0 and

Fs = 〈xα∂β : |α|+ |β| ≤ s〉 ∀ s ∈ N.

Since the only nonzero bracket decreases the “degrees”, grF D is
commutative. More precisely:

grF D = K [x1, . . . , xn, ∂1, . . . , ∂n].

In particular, dim(D) = 2n and e(D) = 1.



The Weyl algebra
An astonishing property

THEOREM (Bernstein) Let M 6= 0 be a finitely generated left
D-module. Then n ≤ dim(M) ≤ 2n.

Proof: Let G be a good filtration on M. We want to show that

Fs −→ HomK (Gs ,G2s)

mapping f to m 7→ fm is injective for all s ∈ N. If s = 0 it is OK.

Suppose t is the least positive integer such that exists 0 6= f ∈ Ft

with f · Gt = 0. For sure there exists i such that either xi or ∂i
occurs in f . If ∂i occurs in f , then [xi , f ] is a nonzero element of
Ft−1. Then there is m ∈ Gt−1 ⊆ Gt such that [xi , f ] ·m 6= 0.
However [xi , f ] ·m = xi fm − fxim ∈ xi (f · Gt)− f · Gt = 0. If xi
occurs in f ... So the maps above are injective. In particular:

pol. of degree 2n ∼ dimK (Fs) ≤ (dimK (Gs)) · (dimK (G2s))∼ pol. of degree 2 dim(M).

�



Holonomic D-modules

A finitely generated left D-module M is called holonomic if either
M = 0 or dim(M) = n.

EXAMPLES: (i) S = K [z1, . . . , zn] is a left D-module by putting:

xi · f = zi f , ∂i · f =
∂f

∂zi
∀ f ∈ S .

Obviously Gs = 〈f ∈ S : deg(f ) ≤ s〉 defines a good filtration on
S . So S is holonomic.

(ii) Let m = (z1, . . . , zm) ⊆ S . Hn
m(S) is a left D-module by:

∂ki ·
1

z1 · · · zn
=

(−1)kk!

z1 · · · zi−1z
k+1
i zi+1 · · · xn

.

Clearly Gs =

〈
1

z1 · · · zn · u
: u monomial of S , deg(u) ≤ s

〉
defines

a good filtration on Hn
m(S). In particular Hn

m(S) is holonomic.



Holonomic D-modules

Let S = K [z1, . . . , zn] be the polynomial ring in n variables over K .
Clearly there is a K -algebra homomorphism (indeed an inclusion):

S
ι−→ D

zi 7→ xi

From this, we can (and will) view any left D-module M as an
S-module via restriction by ι. In particular, we are allowed to
define the set of associated primes over S of any D-module M:

AssS(M) = {p ∈ Spec(S) : p = 0 :S m for some 0 6= m ∈ M}

The first goal of today is to show the following:

THEOREM: If M is holonomic, then |AssS(M)| ≤ e(M) <∞.



Let f ∈ S and keep on denoting f its image ι(f ) ∈ D. By using
the definition of the multiplication in the Weyl algebra:

f · ∂i = ∂i · f −
∂f

∂zi
∀ i ∈ {1, . . . , n}.

Doing an induction on s, we get

f s · ∂i = ∂i · f s − sf s−1 ∂f

∂zi
.

This shows the following:

REMARK: Let M be a left D-module and I an ideal of S . By
considering M as an S-module, we can form the S-module

H0
I (M) = {m ∈ M : I sm = 0 for some s ∈ N}.

Then H0
I (M) is a D-submodule of M. �



Holonomic D-modules
Given a shot exact sequence of left D-modules

0→ M ′ → M → M ′′ → 0

we have that:

(i) M is holonomic if and only if M ′ and M ′′ are holonomic.

(ii) If (i) holds, then e(M) = e(M ′) + e(M ′′).

PROPOSITION: If M is holonomic, then lengthD(M) ≤ e(M).

Proof: Take a chain of D-modules:

0 = M0 ( M1 ( . . . ( M` = M.

From the exact sequences 0→ Mi−1 → Mi → Mi/Mi−1 → 0, we
infer that Mi and Mi/Mi−1 are nonzero holonomic D-modules for
all i = 1, . . . , ` and that

0 < e(M1) < e(M2) < . . . < e(M`) = e(M).

�



Holonomic D-modules
We are now ready to show the following for left D-modules M:

THEOREM: If M is holonomic, then |AssS(M)| ≤ e(M) <∞.

Proof: We want to induct on ` = lengthD(M) (≤ e(M)). If ` = 1,
take p ∈ AssS(M). Then H0

p (M) is a nonzero D-submodule of M.
Because ` = 1, then we have H0

p (M) ∼= M. If q ∈ AssS(M) =
AssS(H0

p (M)) one has p ⊆ q, so by symmetry we deduce q = p.

If ` > 1, take a (nonzero) simple D-submodule N ⊆ M. Of course
lengthS(M/N) < `, and by the short exact sequence of D-modules

0→ N → M → M/N → 0

we get that N and M/N are holonomic D-modules. However that
above is also an exact sequence of S-modules, therefore we have:

AssS(M) ⊆ AssS(N) ∪AssS(M/N)

�



Local cohomology modules

Let I = (f1, . . . , fk) be an ideal of S = K [z1, . . . , zn], and M an
S-module. The ith local cohomology module H i

I (M) is the
(k − i)th homology of the Čhec complex:

0→ M →
⊕
i

Mfi →
⊕
i<j

Mfi fj → . . .→ Mf1···fk → 0,

where the maps are the natural ones multiplied by a suitable sign.
If each module of the above complex were a holonomic D-module,
then also the cohomology would be holonomic, since holonomicity
is closed under short exact sequences. So, in this case, H i

I (M)
would have a finite number of associated primes.

Our goal now is to show that Sf is a holonomic D-module ∀ f ∈ S .



Holonomic D-modules

Recall that, if G is a good filtration on a left D-module, then for
any other filtration H on M, there is r ∈ Z such that, for all t ∈ Z,
Gt ⊆ Ht+r . In particular, ∀ ε > 0 ∃ t0 such that:

(∗) dimK (Ht) ≥
e(M)− ε
dim(M)!

tdim(M) ∀t ≥ t0

LEMMA: Let M be a left D-module with a filtration G. If there is
c ∈ R>0 such that dimK (Gt) ≤ ctn for t � 0, then M is
holonomic. In particular, it is finitely generated!

Proof: Let M0 be a finitely generated D-submodule of M and set
G′t = Gt ∩M0 ∀ t ∈ Z, which defines a filtration on M0. Then
dim(M0) ≤ n and e(M0) ≤ n!c by (*). Therefore M has ACC for
finitely generated submodules. So it is finitely generated, and
holonomic again by (*). �



Holonomic D-modules

THEOREM: Let M be a holonomic D-module and f ∈ S . Then
Mf is holonomic.

Proof: Let G be a good filtration on M, and δ the maximum degree
of a monomial in the support of f . Define H = {Ht}t on Mf as:

Ht =

〈
m

f t
: m ∈ Gt(δ+1)

〉
.

That ∪tHt = Mf and Ht ⊆ Ht+1 is easy. If m/f t ∈ Ht , then
obviously xi ·m/f t ∈ Ht+1. Furthermore:

∂i ·
m

f t
=

f t · (∂i ·m)− tf t−1∂f /∂zi ·m
f 2t

=
f · (∂i ·m)− t∂f /∂zi ·m

f t+1
∈ Ht+1.

So H is a filtration of Mf such that:

dimK (Ht) ≤ dimK (Gt(1+δ)) ∼
e(M)(1 + δ)n

n!
tn

By the previous lemma Mf is holonomic. �



Finiteness properties of H i
I (S)

We saw last week that S has a structure of holonomic D-module.
So by the above theorem Sf is holonomic for all f ∈ S . If I is an
ideal of S generated by f1, . . . , fk then, by meaning of the Čech
complex, the local cohomology module H i

I (S) is a subquotient of:⊕
1≤`1<...<`i≤k

Sf`1 ···f`i .

In particular H i
I (S) is a holonomic D-module. As a consequence:

THEOREM: For any ideal I ⊆ S the set AssS(H i
I (S)) is finite.

More generally, AssS(H i
I (M)) is finite ∀ holonomic D-modules M.



Finiteness properties of H i
I (S)

THEOREM: Let m = (z1, . . . , zn) ⊆ S = K [z1, . . . , zn].

(i) Then Hn
m(S) ∼= D/Dm as left D-modules. In particular, D/Dm is

isomorphic to the injective hull ES(K ) of K = S/m.

(ii) If M is an m-torsion D-module, then M ∼=
⊕

λ∈ΛD/Dm as left
D-modules. In particular M is an injective S-module.

Proof: (i) The map of D-modules D → Hn
m(S) sending 1 to [1/z1 · · · zn]

is surjective, and one can check that its kernel is Dm.

(ii) Consider soc(M) ⊆ M and a K -basis {mλ}Λ of soc(M). This gives
rise to the following diagram of S-modules:⊕

λ∈ΛD/Dm
f−−−−−→ Mx x⊕

λ∈Λ K
∼=−−−−−→ soc(M)

The inclusion on the left is essential, so f is injective. Therefore

M ∼=
⊕

λ∈ΛD/Dm
⊕

C . Since soc(C ) = 0, we infer that C = 0. �



Finiteness properties of H i
I (S)

The above result implies that, if H i
I (S) is m-torsion, then ∃ s ∈ N:

H i
I (S) ∼= ES(K )s .

There are several interesting situations in which H i
I (S) is m-torsion,

for example if i > ht(I ) and I defines a smooth projective scheme.
So s is an interesting number. Quite surprisingly, it is an invariant
of S/I , we will soon discuss this aspect in more generality. First,
let me say that, with not much more effort, we could prove:

THEOREM: injdim(H i
I (S)) ≤ dim(Supp(H i

I (S)) (≤ i).



Finiteness properties of H i
I (S)

Recall that the Bass numbers of an S-module M are defined as:

µi (p,M) = dimκ(p)(ExtiSp(κ(p),Mp)),

where p is a prime ideal of S . Another way to think at them is the
following: Every S-module M admits a minimal injective resolution

0→ M → E 0 → E 1 → E 2 . . .

Then E i ∼=
⊕

p∈Spec(S) ES(S/p)µi (p,M).

THEOREM: A holonomic D-module has finite Bass numbers. In
particular, µi (p,H

j
I (S)) is a finite number for all triples p, i , j .



The Lyubeznik numbers of a local ring containing a field

All the results stated for S hold true for any regular local ring R
containing K . The point is that R̂ ∼= K [[x1, . . . , xn]]. The algebra
of differentials D(K [[x ]],K ) of R̂ is left-Noetherian and well
described, so one can play a similar game to the previous one
replacing D by D(K [[x ]],K ). Finally one can descend everything
to R, essentially because K [[x ]] is a faithfully flat R-algebra.
Besides all the previous beautiful results, Lyubeznik supplied us
new invariants to play with:

DEFINITION-THEOREM: Let A be a local ring containing K . By
Cohen-structure theorem we have a surjection K [[x1, . . . , xn]]

π−→ Â.
Denoting by I = Ker(π) and m the maximal ideal of K [[x ]], the
finite numbers µp(m,Hn−i

I (K [[x ]]) depend only on A, p and i .
These invariants of A are usually denoted by λp,i (A) and called the
Lyubeznik’s numbers of A.



Open problems

(i) The conjecture of Lyubeznik is still unsolved: AssR(H i
I (R)) are

finite sets for any regular ring R.

(ii) A question of Lyubeznik: If A is a standard graded K -algebra
with maximal ideal m, are λp,i (Am) invariants of Proj(A)? (Zhang,
Adv. Math. 2011: Yes in positive characteristic).

(iii) One can show that λp,i = 0 if i > d = dim(A), p > i , or
p ≥ i − 1 and i < depth(A). Is λi−2,i (A) = 0 for all i < depth(A)?

(iv) Compute the entire table λp,i (Am) for determinantal rings A.


