AN INTRODUCTION TO \mathcal{D} -MODULES WITH APPLICATIONS TO LOCAL COHOMOLOGY

Craig Huneke, in a *Research Notes in Mathematics* of 1992, raised the following question:

R commutative noetherian ring, $I \subseteq R$ an ideal. If *M* is a finitely generated (f.g.) *R*-module, is $Ass(H_i^j(M))$ a finite set for all *i*?

The point of the question above is that $H_I^i(M)$ may be not finitely generated. In some cases however the answer is clearly positive:

(i) M f.g. ⇒ H⁰_I(M) f.g.; in particular, Ass(H⁰_I(M)) is finite.
(ii) If I = m is maximal, then Ass(Hⁱ_m(M)) ⊆ {m} for all i.

A bit of history of the problem...

- (i) Huneke-Sharp, Trans. Amer. Math. Soc. 1993: If R is regular and char(R) > 0, then then for any ideal |Ass(Hⁱ_I(R))| < ∞.
- (ii) Lyubeznik, Invent. Math. 1993: If R is a regular local ring containing Q, then for any ideal |Ass(Hⁱ_I(R))| < ∞.
- (iii) Lyubeznik, Comm. Algebra 2000: If R is an unramified regular local ring of mixed characteristic, then for any ideal | Ass(Hⁱ_I(R))| < ∞.

(iv) Bhatt-Blickle-Lyubeznik-Singh-Zhang, 2012: If $R = \mathbb{Z}[x_1, \dots, x_n]$, then for any ideal $|\operatorname{Ass}(H_I^i(R))| < \infty$.

Brodmann-Lashgari, Proc. Amer. Math. Soc. 2000: If g is (iv) grade(I, M), then $Ass(H^1_I(M))$ and $Ass(H^g_I(M))$ are finite. (v) Singh, Math. Res. Lett. 2000: If $R = \frac{\mathbb{Z}[u, v, w, x, y, z]}{(ux + vy + wz)}$ and $I = (x, y, z) \subseteq R$, then $H_I^3(R)$ has *p*-torsion elements for infinitely many primes. Consequently $Ass(H_{i}^{3}(R))$ is infinite. (vi) Katzman, J. Algebra 2002: For any field K, if R is the ring K[s, t, u, v, x, y] $\frac{(x_1,x_2,x_3,y_3,x_3,y_3,y_1)}{(su^2x^2+(s+t)uvxy+tv^2y^2)}, \text{ then } |\operatorname{Ass}(H^2_{(x,y)}(R))|=\infty.$ (vii) Takagi-Takahashi, Math. Res. Lett. 2007: If R has positive characteristic, is Gorenstein and has F-finite representation type, then for any ideal $|\operatorname{Ass}(H_i^i(R))| < \infty$.

In the proof of Huneke-Sharp (R regular of positive characteristic), it is crucial that the iterated Frobenius maps $F^e : R \to R$, sending r to r^{p^e} , are flat and that $\{F^e(I)R\}_{e\in\mathbb{N}}$ is cofinal with $\{I^k\}_{k\in\mathbb{N}}$.

A family of ring homomorphisms with these two properties does not exist for $R = \mathbb{Q}[[x_1, \ldots, x_n]]$. In these lectures we will explore the machinery used by Lyubeznik to prove his first theorem:

If R is a regular local ring containing \mathbb{Q} and $I \subseteq R$ is an ideal, then $Ass(H_I^i(R))$ is finite for every *i*.

To this aim, we need to introduce the theory of \mathcal{D} -modules.

In these seminars I'll follow some lectures given by Anurag Singh at the Local Cohomology Workshop held in Mumbai (India) in 2011.

Let A be a (possibly noncommutative) ring. A left A-module M is *noetherian* if one of the following equivalent conditions holds:

- (i) All submodules are finitely generated.
- (ii) ACC holds on submodules.
- (iii) ACC holds on f.g. submodules.

EXAMPLE: The free *K*-algebra $A = K\langle x, y \rangle$ on *x* and *y* is not noetherian: In fact the left ideal $\sum_{i \in \mathbb{N}} Axy^i$ is not f.g..

Let K be a field in the center of A.

A filtration on A is a family $\mathcal{F} = \{\mathcal{F}_i\}_{i \ge -1}$ such that: (i) \mathcal{F}_i are finite-dimensional K-vector spaces;

(ii)
$$\mathcal{F}_{-1} = \{0\}$$
 and $1 \in \mathcal{F}_0$;
(iii) $\mathcal{F}_{-1} \subseteq \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \ldots \subseteq A$ and $\bigcup_{i \ge -1} \mathcal{F}_i = A$
(iv) $\mathcal{F}_i \cdot \mathcal{F}_j \subseteq \mathcal{F}_{i+j}$.

From now on we will fix the filtration \mathcal{F} and assume that $\operatorname{gr}^{\mathcal{F}} A = \bigoplus_{i \ge 0} \mathcal{F}_i / \mathcal{F}_{i-1}$ is a commutative noetherian ring.

Such rings are called *almost commutative*.

Let M be a left A-module.

A filtration on M is a family $\mathcal{G} = \{\mathcal{G}_i\}_{i \ge m}, m \in \mathbb{Z}$, such that: (i) \mathcal{G}_i are finite \mathcal{F}_0 -modules; (ii) $\mathcal{G}_m = \{0\}$; (iii) $\mathcal{G}_m \subseteq \mathcal{G}_{m+1} \subseteq \mathcal{G}_{m+2} \subseteq \ldots \subseteq M$ and $\bigcup_{i \ge m} \mathcal{G}_i = M$. (iv) $\mathcal{F}_i \cdot \mathcal{G}_j \subseteq \mathcal{G}_{i+j}$.

We will denote by $\operatorname{gr}^{\mathcal{G}} M$ the $\operatorname{gr}^{\mathcal{F}} A$ -module $\bigoplus_{i \ge m+1} \mathcal{G}_i / \mathcal{G}_{i-1}$. \mathcal{G} is called a *good filtration* if $\operatorname{gr}^{\mathcal{G}} M$ is finitely generated over $\operatorname{gr}^{\mathcal{F}} A$. REMARK: If M is finitely generated as a left A-module by m_1, \ldots, m_k , then $\mathcal{G}_s = \sum_{i=1}^k \mathcal{F}_s m_i$ is a good filtration on M.

LEMMA: Let M be a left A-module, and \mathcal{G} and \mathcal{H} filtrations on it. (i) \mathcal{G} is good if and only if there is a $j_0 \in \mathbb{Z}$ such that:

$$\mathcal{F}_i \cdot \mathcal{G}_j = \mathcal{G}_{i+j} \ \forall \ i \geq 0, \ j \geq j_0.$$

(ii) If \mathcal{G} is good, then M is finitely generated over A. (iii) If \mathcal{G} is good, then there exists $r \in \mathbb{Z}$ such that:

$$\mathcal{G}_t \subseteq \mathcal{H}_{t+r} \ \forall \ t \in \mathbb{Z}.$$

If also \mathcal{H} is good, then there exists $s \in \mathbb{Z}$ such that:

$$\mathcal{H}_{t-s} \subseteq \mathcal{G}_t \subseteq \mathcal{H}_{t+s} \ \forall \ t \in \mathbb{Z}.$$

Proof. (i). Put $\widetilde{\mathcal{F}_j} = \bigoplus_{i \leq j} \mathcal{F}_i / \mathcal{F}_{i-1}$ and $\widetilde{\mathcal{G}}_j = \bigoplus_{i \leq j} \mathcal{G}_i / \mathcal{G}_{i-1}$. If \mathcal{G} is good, then there exists $j_0 \in \mathbb{Z}$ such that

$$\widetilde{\mathcal{F}_{i}} \cdot \widetilde{\mathcal{G}}_{j} = \widetilde{\mathcal{G}_{i+j}} \,\,\forall \,\, i \geq 0, \,\, j \geq j_{0}$$

This means that, for every $i \ge 0$, $j \ge j_0$, $\mathcal{F}_i \cdot \mathcal{G}_j + \mathcal{G}_{i+j-1} = \mathcal{G}_{i+j}$. By inducting on i we can assume $\mathcal{G}_{i+j-1} = \mathcal{F}_{i-1} \cdot \mathcal{G}_j$ $(1 \in \mathcal{F}_0)$. This yields $\mathcal{F}_i \cdot \mathcal{G}_j = \mathcal{G}_{i+j}$ since $\mathcal{F}_{i-1} \subseteq \mathcal{F}_i$. The converse is trivial. (ii) follows immediately from (i).

(iii) Let $j_0 \in \mathbb{Z}$ be as in (i). Since \mathcal{G} and \mathcal{H} are filtrations, there exists $r \in \mathbb{Z}$ such that $\mathcal{G}_{j_0} \subseteq \mathcal{H}_r$. So

$$\mathcal{G}_t \subseteq \mathcal{G}_{t+j_0} = \mathcal{F}_t \cdot \mathcal{G}_{j_0} \subseteq \mathcal{F}_t \cdot \mathcal{H}_r \subseteq \mathcal{H}_{t+r}. \qquad \Box$$

Assume that $\mathcal{F}_0 = K$ and $\operatorname{gr}^{\mathcal{F}} A$ is generated in degree 1 over K. If \mathcal{G} is a good filtration on a left A-module M, then $\dim_K \mathcal{G}_i/\mathcal{G}_{i-1}$ is a polynomial in *i* for $i \gg 0$. This implies that $\dim_K \mathcal{G}_i$ is also a polynomial in *i* for $i \gg 0$. Let us call such a polynomial $P_{\mathcal{G}}$.

The polynomial $P_{\mathcal{G}}$ is not an invariant of M, depending on the good filtration \mathcal{G} . However, given two good filtrations \mathcal{G} and \mathcal{H} on M, the degrees and the leading coefficients of $P_{\mathcal{G}}$ and of $P_{\mathcal{H}}$ are the same! This follows immediately from point (iii) of the lemma.

DEFINITION: Let M be a finitely generated left A-module. By considering a good filtration G on it, we define:

- dim(M) = degree of $\mathcal{P}_{\mathcal{G}}$.
- $e(M) = \dim(M)! \cdot (\text{leading coefficient of } P_G).$

LEMMA: Let M be a left A-module with a good filtration G. Given a short exact sequence of left A-modules

$$0 \to M' \to M \to M'' \to 0,$$

set $\mathcal{G}' = \mathcal{G} \cap M'$ and $\mathcal{G}'' = \operatorname{Im}(\mathcal{G})$. Then

$$0 \to \operatorname{gr}^{\mathcal{G}'} M' \to \operatorname{gr}^{\mathcal{G}} M \to \operatorname{gr}^{\mathcal{G}''} M'' \to 0$$

is an exact sequence of $\operatorname{gr}^{\mathcal{F}} A\text{-modules},\ \mathcal{G}'$ and \mathcal{G}'' are good filtrations and:

• dim(M) = max{dim(M'), dim(M'')}.

• If $\dim(M') = \dim(M'')$, then e(M) = e(M') + e(M'').

In particular, if M is a f.g. left A-module, then it is noetherian.

The Weyl algebra

Let *K* be a field of characteristic 0 and \mathcal{D} be the *Weil algebra*, namely the free *K*-algebra $K\langle x_1, \ldots, x_n, \partial_1, \ldots, \partial_n \rangle$ mod out by

$$\begin{cases} [x_i, x_j] = x_i x_j - x_j x_i = 0\\ [\partial_i, \partial_j] = \partial_i \partial_j - \partial_j \partial_i = 0\\ [\partial_i, x_j] = \partial_i x_j - x_i \partial_j = \delta_{ij} \end{cases}$$

Given two vectors $\underline{\alpha} = (\alpha_1, \ldots, \alpha_n)$ and $\underline{\beta} = (\beta_1, \ldots, \beta_n)$ in \mathbb{N}^n , we write $\underline{x}^{\underline{\alpha}}\underline{\partial}^{\underline{\beta}}_{-}$ for $x_1^{\alpha_1} \cdots x_n^{\alpha_n} \overline{\partial}^{\beta_1}_1 \cdots \overline{\partial}^{\beta^n}_n$. It is easy to see that:

$$\{\underline{x}^{\underline{\alpha}}\underline{\partial}^{\underline{\beta}}:\underline{\alpha},\underline{\beta}\in\mathbb{N}^n\}$$

is a K-basis of \mathcal{D} , known as the Poincaré-Birkhoff-Witt basis.

The Weyl algebra

The Bernstein filtration \mathcal{F} on \mathcal{D} is defined as $\mathcal{F}_{-1} = 0$ and

$$\mathcal{F}_{s} = \langle \underline{x}^{\underline{\alpha}} \underline{\partial}^{\underline{\beta}} : |\underline{\alpha}| + |\underline{\beta}| \leq s \rangle \ \forall \ s \in \mathbb{N}.$$

Since the only nonzero bracket decreases the "degrees", $\operatorname{gr}^{\mathcal{F}}\mathcal{D}$ is commutative. More precisely:

$$\operatorname{gr}^{\mathcal{F}} \mathcal{D} = \mathcal{K}[x_1, \ldots, x_n, \partial_1, \ldots, \partial_n].$$

In particular, $\dim(\mathcal{D}) = 2n$ and $e(\mathcal{D}) = 1$.

The Weyl algebra

An astonishing property

THEOREM (Bernstein) Let $M \neq 0$ be a finitely generated left \mathcal{D} -module. Then $n \leq \dim(M) \leq 2n$.

Proof. Let \mathcal{G} be a good filtration on M. We want to show that

$$\mathcal{F}_{s} \longrightarrow \operatorname{Hom}_{\mathcal{K}}(\mathcal{G}_{s}, \mathcal{G}_{2s})$$

mapping f to $m \mapsto fm$ is injective for all $s \in \mathbb{N}$. If s = 0 it is OK.

Suppose t is the least positive integer such that exists $0 \neq f \in \mathcal{F}_t$ with $f \cdot \mathcal{G}_t = 0$. For sure there exists i such that either x_i or ∂_i occurs in f. If ∂_i occurs in f, then $[x_i, f]$ is a nonzero element of \mathcal{F}_{t-1} . Then there is $m \in \mathcal{G}_{t-1} \subseteq \mathcal{G}_t$ such that $[x_i, f] \cdot m \neq 0$. However $[x_i, f] \cdot m = x_i fm - fx_i m \in x_i (f \cdot \mathcal{G}_t) - f \cdot \mathcal{G}_t = 0$. If x_i occurs in f... So the maps above are injective. In particular:

pol. of degree $2n \sim \dim_{\mathcal{K}}(\mathcal{F}_s) \leq (\dim_{\mathcal{K}}(\mathcal{G}_s)) \cdot (\dim_{\mathcal{K}}(\mathcal{G}_{2s})) \sim$ pol. of degree $2\dim(M)$.

A finitely generated left D-module M is called *holonomic* if either M = 0 or dim(M) = n.

EXAMPLES: (i) $S = K[z_1, ..., z_n]$ is a left \mathcal{D} -module by putting:

$$x_i \cdot f = z_i f, \quad \partial_i \cdot f = \frac{\partial f}{\partial z_i} \qquad \forall f \in S.$$

Obviously $\mathcal{G}_s = \langle f \in S : \deg(f) \leq s \rangle$ defines a good filtration on S. So S is holonomic.

(ii) Let $\mathfrak{m} = (z_1, \ldots, z_m) \subseteq S$. $H^n_\mathfrak{m}(S)$ is a left \mathcal{D} -module by:

$$\partial_i^k \cdot \frac{1}{z_1 \cdots z_n} = \frac{(-1)^k k!}{z_1 \cdots z_{i-1} z_i^{k+1} z_{i+1} \cdots x_n}$$

Clearly $\mathcal{G}_s = \left\langle \frac{1}{z_1 \cdots z_n \cdot u} : u \text{ monomial of } S, \deg(u) \leq s \right\rangle$ defines a good filtration on $\mathcal{H}^n_{\mathfrak{m}}(S)$. In particular $\mathcal{H}^n_{\mathfrak{m}}(S)$ is holonomic.

Let $S = K[z_1, ..., z_n]$ be the polynomial ring in *n* variables over *K*. Clearly there is a *K*-algebra homomorphism (indeed an inclusion):

 $\begin{array}{cccc} S & \stackrel{\iota}{\to} & \mathcal{D} \\ z_i & \mapsto & x_i \end{array}$

From this, we can (and will) view any left \mathcal{D} -module M as an S-module via restriction by ι . In particular, we are allowed to define the set of associated primes over S of any \mathcal{D} -module M:

 $\operatorname{Ass}_{\mathcal{S}}(M) = \{ \mathfrak{p} \in \operatorname{Spec}(\mathcal{S}) : \mathfrak{p} = 0 :_{\mathcal{S}} m \text{ for some } 0 \neq m \in M \}$

The first goal of today is to show the following:

THEOREM: If *M* is holonomic, then $|Ass_{\mathcal{S}}(M)| \le e(M) < \infty$.

Let $f \in S$ and keep on denoting f its image $\iota(f) \in \mathcal{D}$. By using the definition of the multiplication in the Weyl algebra:

$$f \cdot \partial_i = \partial_i \cdot f - \frac{\partial f}{\partial z_i} \quad \forall \ i \in \{1, \dots, n\}.$$

Doing an induction on s, we get

$$f^{s} \cdot \partial_{i} = \partial_{i} \cdot f^{s} - sf^{s-1} \frac{\partial f}{\partial z_{i}}.$$

This shows the following:

REMARK: Let M be a left \mathcal{D} -module and I an ideal of S. By considering M as an S-module, we can form the S-module

$$H^0_I(M) = \{ m \in M : I^s m = 0 \text{ for some } s \in \mathbb{N} \}.$$

Then $H^0_I(M)$ is a \mathcal{D} -submodule of M.

Given a shot exact sequence of left \mathcal{D} -modules

$$0 \to M' \to M \to M'' \to 0$$

we have that:

(i) *M* is holonomic if and only if *M'* and *M''* are holonomic.
(ii) If (i) holds, then e(M) = e(M') + e(M'').

PROPOSITION: If *M* is holonomic, then $\text{length}_{\mathcal{D}}(M) \leq e(M)$. *Proof*: Take a chain of \mathcal{D} -modules:

$$0 = M_0 \subsetneq M_1 \subsetneq \ldots \subsetneq M_\ell = M.$$

From the exact sequences $0 \rightarrow M_{i-1} \rightarrow M_i \rightarrow M_i/M_{i-1} \rightarrow 0$, we infer that M_i and M_i/M_{i-1} are nonzero holonomic \mathcal{D} -modules for all $i = 1, \ldots, \ell$ and that

$$0 < e(M_1) < e(M_2) < \ldots < e(M_\ell) = e(M).$$

We are now ready to show the following for left \mathcal{D} -modules M:

THEOREM: If *M* is holonomic, then $|Ass_{\mathcal{S}}(M)| \le e(M) < \infty$.

Proof: We want to induct on $\ell = \text{length}_{\mathcal{D}}(M) \ (\leq e(M))$. If $\ell = 1$, take $\mathfrak{p} \in \text{Ass}_{\mathcal{S}}(M)$. Then $H^0_{\mathfrak{p}}(M)$ is a nonzero \mathcal{D} -submodule of M. Because $\ell = 1$, then we have $H^0_{\mathfrak{p}}(M) \cong M$. If $\mathfrak{q} \in \text{Ass}_{\mathcal{S}}(M) = \text{Ass}_{\mathcal{S}}(H^0_{\mathfrak{p}}(M))$ one has $\mathfrak{p} \subseteq \mathfrak{q}$, so by symmetry we deduce $\mathfrak{q} = \mathfrak{p}$.

If $\ell > 1$, take a (nonzero) simple \mathcal{D} -submodule $N \subseteq M$. Of course length_S(M/N) < ℓ , and by the short exact sequence of \mathcal{D} -modules

$$0 \rightarrow N \rightarrow M \rightarrow M/N \rightarrow 0$$

we get that N and M/N are holonomic D-modules. However that above is also an exact sequence of S-modules, therefore we have:

$$\operatorname{Ass}_{\mathcal{S}}(M) \subseteq \operatorname{Ass}_{\mathcal{S}}(N) \cup \operatorname{Ass}_{\mathcal{S}}(M/N)$$

Local cohomology modules

Let $I = (f_1, ..., f_k)$ be an ideal of $S = K[z_1, ..., z_n]$, and M an *S*-module. The *i*th local cohomology module $H_I^i(M)$ is the (k - i)th homology of the Čhec complex:

$$0 \to M \to \bigoplus_i M_{f_i} \to \bigoplus_{i < j} M_{f_i f_j} \to \ldots \to M_{f_1 \cdots f_k} \to 0,$$

where the maps are the natural ones multiplied by a suitable sign. If each module of the above complex were a holonomic \mathcal{D} -module, then also the cohomology would be holonomic, since holonomicity is closed under short exact sequences. So, in this case, $H_I^i(M)$ would have a finite number of associated primes.

Our goal now is to show that S_f is a holonomic \mathcal{D} -module $\forall f \in S$.

Recall that, if \mathcal{G} is a good filtration on a left \mathcal{D} -module, then for any other filtration \mathcal{H} on M, there is $r \in \mathbb{Z}$ such that, for all $t \in \mathbb{Z}$, $\mathcal{G}_t \subseteq \mathcal{H}_{t+r}$. In particular, $\forall \epsilon > 0 \exists t_0$ such that:

(*)
$$\dim_{\mathcal{K}}(\mathcal{H}_t) \geq \frac{e(M) - \epsilon}{\dim(M)!} t^{\dim(M)} \quad \forall t \geq t_0$$

LEMMA: Let M be a left \mathcal{D} -module with a filtration \mathcal{G} . If there is $c \in \mathbb{R}_{>0}$ such that $\dim_{\mathcal{K}}(\mathcal{G}_t) \leq ct^n$ for $t \gg 0$, then M is holonomic. In particular, it is finitely generated!

Proof: Let M_0 be a finitely generated \mathcal{D} -submodule of M and set $\mathcal{G}'_t = \mathcal{G}_t \cap M_0 \ \forall \ t \in \mathbb{Z}$, which defines a filtration on M_0 . Then $\dim(M_0) \leq n$ and $e(M_0) \leq n!c$ by (*). Therefore M has ACC for finitely generated submodules. So it is finitely generated, and holonomic again by (*). \Box

THEOREM: Let M be a holonomic \mathcal{D} -module and $f \in S$. Then M_f is holonomic.

Proof: Let \mathcal{G} be a good filtration on M, and δ the maximum degree of a monomial in the support of f. Define $\mathcal{H} = {\mathcal{H}_t}_t$ on M_f as:

$$\mathcal{H}_t = \left\langle \frac{m}{f^t} : m \in \mathcal{G}_{t(\delta+1)} \right\rangle.$$

That $\cup_t \mathcal{H}_t = M_f$ and $\mathcal{H}_t \subseteq \mathcal{H}_{t+1}$ is easy. If $m/f^t \in \mathcal{H}_t$, then obviously $x_i \cdot m/f^t \in \mathcal{H}_{t+1}$. Furthermore:

$$\partial_i \cdot \frac{m}{f^t} = \frac{f^t \cdot (\partial_i \cdot m) - tf^{t-1} \partial f / \partial z_i \cdot m}{f^{2t}} = \frac{f \cdot (\partial_i \cdot m) - t \partial f / \partial z_i \cdot m}{f^{t+1}} \in \mathcal{H}_{t+1}.$$

So \mathcal{H} is a filtration of M_f such that:

$$\dim_{{{K}}}({{\mathcal H}}_t) \leq \dim_{{{K}}}({{\mathcal G}}_{t(1+\delta)}) \sim \frac{e(M)(1+\delta)^n}{n!}t^n$$

By the previous lemma M_f is holonomic. \Box

Finiteness properties of $H_l^i(S)$

We saw last week that S has a structure of holonomic \mathcal{D} -module. So by the above theorem S_f is holonomic for all $f \in S$. If I is an ideal of S generated by f_1, \ldots, f_k then, by meaning of the Čech complex, the local cohomology module $H'_I(S)$ is a subquotient of:

$$\bigoplus_{1\leq \ell_1<\ldots<\ell_i\leq k}S_{f_{\ell_1}\cdots f_{\ell_i}}.$$

In particular $H_{I}^{i}(S)$ is a holonomic \mathcal{D} -module. As a consequence:

THEOREM: For any ideal $I \subseteq S$ the set $\operatorname{Ass}_{S}(H_{I}^{i}(S))$ is finite. More generally, $\operatorname{Ass}_{S}(H_{I}^{i}(M))$ is finite \forall holonomic \mathcal{D} -modules M.

Finiteness properties of $H_l^i(S)$

THEOREM: Let
$$\mathfrak{m} = (z_1, \ldots, z_n) \subseteq S = K[z_1, \ldots, z_n].$$

- (i) Then $H^n_{\mathfrak{m}}(S) \cong \mathcal{D}/\mathcal{D}\mathfrak{m}$ as left \mathcal{D} -modules. In particular, $\mathcal{D}/\mathcal{D}\mathfrak{m}$ is isomorphic to the injective hull $E_S(K)$ of $K = S/\mathfrak{m}$.
- (ii) If M is an m-torsion \mathcal{D} -module, then $M \cong \bigoplus_{\lambda \in \Lambda} \mathcal{D}/\mathcal{D}\mathfrak{m}$ as left \mathcal{D} -modules. In particular M is an injective S-module.

Proof: (i) The map of \mathcal{D} -modules $\mathcal{D} \to H^n_{\mathfrak{m}}(S)$ sending 1 to $[1/z_1 \cdots z_n]$ is surjective, and one can check that its kernel is $\mathcal{D}\mathfrak{m}$.

(ii) Consider $soc(M) \subseteq M$ and a K-basis $\{m_{\lambda}\}_{\Lambda}$ of soc(M). This gives rise to the following diagram of S-modules:

$$\begin{array}{cccc} \bigoplus_{\lambda \in \Lambda} \mathcal{D} / \mathcal{D} \mathfrak{m} & \xrightarrow{f} & M \\ & \uparrow & & \uparrow \\ & \bigoplus_{\lambda \in \Lambda} K & \xrightarrow{\cong} & \operatorname{soc}(M \end{array}$$

The inclusion on the left is essential, so f is injective. Therefore $M \cong \bigoplus_{\lambda \in \Lambda} \mathcal{D}/\mathcal{D}\mathfrak{m} \bigoplus C$. Since $\operatorname{soc}(C) = 0$, we infer that C = 0. \Box

Finiteness properties of $H_I^i(S)$

The above result implies that, if $H_I^i(S)$ is m-torsion, then $\exists s \in \mathbb{N}$:

 $H_I^i(S)\cong E_S(K)^s.$

There are several interesting situations in which $H_I^i(S)$ is m-torsion, for example if i > ht(I) and I defines a smooth projective scheme. So s is an interesting number. Quite surprisingly, it is an invariant of S/I, we will soon discuss this aspect in more generality. First, let me say that, with not much more effort, we could prove:

THEOREM: injdim $(H_I^i(S)) \leq \dim(\operatorname{Supp}(H_I^i(S)) (\leq i))$.

Finiteness properties of $H_l^i(S)$

Recall that the Bass numbers of an S-module M are defined as:

$$\mu_i(\mathfrak{p}, M) = \dim_{\kappa(\mathfrak{p})}(\mathsf{Ext}^i_{S_\mathfrak{p}}(\kappa(\mathfrak{p}), M_\mathfrak{p})),$$

where p is a prime ideal of S. Another way to think at them is the following: Every S-module M admits a minimal injective resolution

$$0 \rightarrow M \rightarrow E^0 \rightarrow E^1 \rightarrow E^2 \dots$$

Then $E^i \cong \bigoplus_{\mathfrak{p} \in \operatorname{Spec}(S)} E_S(S/\mathfrak{p})^{\mu_i(\mathfrak{p},M)}$.

THEOREM: A holonomic \mathcal{D} -module has finite Bass numbers. In particular, $\mu_i(\mathfrak{p}, H_I^j(S))$ is a finite number for all triples \mathfrak{p}, i, j .

The Lyubeznik numbers of a local ring containing a field

All the results stated for *S* hold true for any regular local ring *R* containing *K*. The point is that $\widehat{R} \cong K[[x_1, \ldots, x_n]]$. The algebra of differentials $D(K[[\underline{x}]], K)$ of \widehat{R} is left-Noetherian and well described, so one can play a similar game to the previous one replacing \mathcal{D} by $D(K[[\underline{x}]], K)$. Finally one can descend everything to *R*, essentially because $K[[\underline{x}]]$ is a faithfully flat *R*-algebra. Besides all the previous beautiful results, Lyubeznik supplied us new invariants to play with:

DEFINITION-THEOREM: Let A be a local ring containing K. By Cohen-structure theorem we have a surjection $K[[x_1, \ldots, x_n]] \xrightarrow{\pi} \widehat{A}$. Denoting by $I = \text{Ker}(\pi)$ and \mathfrak{m} the maximal ideal of $K[[\underline{x}]]$, the finite numbers $\mu_p(\mathfrak{m}, H_I^{n-i}(K[[\underline{x}]]))$ depend only on A, p and i. These invariants of A are usually denoted by $\lambda_{p,i}(A)$ and called the Lyubeznik's numbers of A.

Open problems

(i) The conjecture of Lyubeznik is still unsolved: $\operatorname{Ass}_R(H_I^i(R))$ are finite sets for any regular ring R.

(ii) A question of Lyubeznik: If A is a standard graded K-algebra with maximal ideal m, are $\lambda_{p,i}(A_m)$ invariants of $\operatorname{Proj}(A)$? (Zhang, Adv. Math. 2011: Yes in positive characteristic).

(iii) One can show that $\lambda_{p,i} = 0$ if $i > d = \dim(A)$, p > i, or $p \ge i - 1$ and $i < \operatorname{depth}(A)$. Is $\lambda_{i-2,i}(A) = 0$ for all $i < \operatorname{depth}(A)$?

(iv) Compute the entire table $\lambda_{p,i}(A_m)$ for determinantal rings A.