A SPECIAL FEATURE OF QUADRATIC MONOMIAL IDEALS

MATTEO VARBARO

The aim of the talk has been to show a property peculiar of quadratic monomial ideals, namely the Main Lemma below, proved in collaboration with Giulio Caviglia and Alexandru Constantinescu in CCV. The original motivation for looking up such property was to use it in the study of a conjecture by Gil Kalai, for which indeed it has been extremely helpful. During the talk, I mentioned how this lemma could be exploited in other situations. First of all let us recall it:

Main Lemma. Let k be an infinite field, and $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]=: S$ an ideal of height c. If I is monomial and generated in degree 2, then there exist linear forms $\ell_{i, j}$ for $i \in\{1,2\}$ and $j \in\{1, \ldots, c\}$ such that $\ell_{1,1} \ell_{2,1}, \ldots, \ell_{1, c} \ell_{2, c}$ is an S-regular sequence contained in I.

In general, if R is a standard graded Cohen-Macaulay k-algebra, where k is an infinite field, and $J \subseteq R$ is a height c homogeneous ideal generated in a single degree d, then we can always find an R-regular sequence g_{1}, \ldots, g_{c} of degree d elements inside J. So, with the notation of the Main Lemma, since the polynomial ring S is Cohen-Macaulay, we already know that there is an S-regular sequence f_{1}, \ldots, f_{c} consisting of quadratic polynomials inside I. The point of the result is that we can choose each f_{i} being a product of two linear forms.

Before sketching the (elementary) proof of the Main Lemma, let us see that the analog property fails for nonquadratic monomial ideals.

Example. Let J be the height 2 monomial ideal $\left(x^{2} y, y^{2} z, x z^{2}\right) \subseteq k[x, y, z]$. It is straightforward to check that the only products of linear forms $\ell_{1} \ell_{2} \ell_{3}$ in J are (scalar multiples of) the monomials $x^{2} y, y^{2} z$ and $z^{2} x$. Clearly, no combination of 2 such monomials form a $k[x, y, z]$-regular sequence.

Proof of the Main Lemma. The proof goes like follows: Take a height c minimal prime \mathfrak{p} of I

$$
\mathfrak{p}=\left(x_{1}, \ldots, x_{c}\right)
$$

(this of course can be done after relabeling the variables). We decompose the k-vector space generated by the quadratic monomials of I as:

$$
I_{2}=\bigoplus_{i=1}^{c} x_{i} V_{i}
$$

where $V_{i}=\left\langle x_{j}: x_{i} x_{j} \in I\right.$ and $\left.j \geq i\right\rangle$. We aim to find $\ell_{i} \in V_{i}$ such that

$$
\operatorname{dim}_{k}\left(\left\langle x_{i}: i \in A\right\rangle+\left\langle\ell_{i}: i \in[c] \backslash A\right\rangle\right)=c \quad \forall A \subseteq[c]=\{1, \ldots, c\}
$$

Indeed, one can easily check that the condition above characterizes the fact that $x_{1} \ell_{1}, \ldots, x_{c} \ell_{c}$ is an S-regular sequence. The trick to find such linear forms ℓ_{i} is to construct a family of bipartite graphs G_{A}, for all $A \subseteq[c]$, in the following way:
(i) $V\left(G_{A}\right)=[c] \cup\left\{x_{1}, \ldots, x_{n}\right\}$;
(ii) $E\left(G_{A}\right)=\left\{\left\{i, x_{i}\right\}: i \in[c] \backslash A\right\} \cup\left\{\left\{i, x_{j}\right\}: i \in A\right.$ and $\left.x_{j} \in V_{i}\right\}$.

Claim: There is a matching of G_{A} containing all the vertices of $[c]$. To show this, we will appeal to the Marriage Theorem, by showing that, for a subset $B \subseteq[c]$, the set $N(B)$ of vertices adjacent to some vertex in B has cardinality not smaller than that of B. To this purpose, note
that:

$$
\begin{aligned}
|N(B)|= & \operatorname{dim}_{k}\left(\sum_{i \in A \cap B} V_{i}+\sum_{i \in([c] \backslash A) \cap B}\left\langle x_{i}\right\rangle\right)= \\
& \operatorname{dim}_{k}\left(\sum_{i \in A \cap B} V_{i}+\sum_{i \in[c] \backslash(A \cap B)}\left\langle x_{i}\right\rangle\right)-\operatorname{dim}_{k}\left(\sum_{i \in[c] \backslash B}\left\langle x_{i}\right\rangle\right) \geq|B|,
\end{aligned}
$$

where the inequality follows from the fact that the ideal $\sum_{i \in A \cap B}\left(V_{i}\right)+\left(x_{i}: i \in[c] \backslash(A \cap B)\right)$, containing I, must have height at least c. Therefore, we get by the Marriage Theorem the existence of

$$
j(1, A), j(2, A), \ldots, j(c, A)
$$

such that $\left\{1, x_{j(1, A)}\right\}, \ldots,\left\{c, x_{j(c, A)}\right\}$ is a matching of G_{A}, which implies that

$$
\operatorname{dim}_{k}\left\langle x_{j(1, A)}, \ldots, x_{j(c, A)}\right\rangle=c
$$

Now it is enough to put

$$
\ell_{i}=\sum_{A \subseteq[c]} \lambda(A) x_{j(i, A)}
$$

where $\lambda(A)$ are general elements of k.
As already mentioned, we were motivated in proving the Main Lemma to study the following conjecture of Kalai:
Conjecture. (Kalai): The f-vector of a Cohen-Macaulay flag simplicial complex is the f-vector of a Cohen-Macaulay balanced simplicial complex.

It is convenient to recall here that the f-vector $\left(f_{-1}, \ldots, f_{d-1}\right)$ of a $(d-1)$-dimensional simplicial complex Δ is defined as:

$$
f_{j}=\mid\{j \text {-dimensional faces of } \Delta\} \mid
$$

As a consequence of the Main Lemma, we get the following:
Theorem. The h-vector of a Cohen-Macaulay flag simplicial complex is the h-vector of a CohenMacaulay balanced simplicial complex.

To show how the theorem above follows form the Main Lemma, we remind that, if $\left(h_{0}, \ldots, h_{d}\right)$ and $\left(f_{-1}, \ldots, f_{d-1}\right)$ are, respectively, the h - and f-vector of a given $(d-1)$-dimensional simplicial complex, then the following equations hold true:

$$
h_{j}=\sum_{i=0}^{j}(-1)^{j-i}\binom{d-i}{j-i} f_{i-1} \quad \text { and } \quad f_{j-1}=\sum_{i=0}^{j}\binom{d-i}{j-i} h_{i}
$$

From these formulas one sees that the theorem above is very close to answering positively the conjecture of Kalai: The only defect is that h - and f-vector determine each other only if the dimension of the simplicial complex is known, and the h-vector does not provide such an information (in fact it may happen that $h_{d}=0$).

For the convenience of the reader, let us recall the definitions of the objects occurring in the conjecture of Kalai:
(i) A simplicial complex Δ is said to be Cohen-Macaulay (over k) if its Stanley-Reisner ring $k[\Delta]$ is Cohen-Macaulay;
(ii) A simplicial complex is said to be flag if all its minimal nonfaces have cardinality 2 ;
(iii) A $(d-1)$-dimensional simplicial complex is said to be balanced if its 1-skeleton is a d-colorable graph.
Why were we able to prove the " h-version" of the conjecture of Kalai and not the original one? The point is that the entries of the h-vector of a simplicial complex Δ are the coefficients of the h-polynomial of $k[\Delta]$. So, by combining the Main Lemma with the main result obtained by Abedelfatah in Ab1, we get the following:

Theorem. A1. The h-vector of $a(d-1)$-dimensional Cohen-Macaulay flag simplicial complex on $n+d$ vertices equals to the Hilbert function of S / J where J is an ideal of S containing $\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)$.

Notice that the ideal J of Theorem A1 can be chosen monomial (just passing to the initial ideal). In this case, the Hilbert function of S / J is just the f-vector of the simplicial complex Γ on n vertices whose faces are $\left\{i_{1}, \ldots, i_{r}\right\}$ where $x_{i_{1}} \cdots x_{i_{r}} \notin J$. Therefore Theorem A1 can be re-stated as:

Theorem. A2. The h-vector of $a(d-1)$-dimensional Cohen-Macaulay flag simplicial complex Δ on $n+d$ vertices is the f-vector of some simplicial complex Γ on n vertices.

On the other hand, Theorem A2 is in turn equivalent to:
Theorem. A3. The h-vector of $a(d-1)$-dimensional Cohen-Macaulay flag simplicial complex Δ on $n+d$ vertices is the h-vector of an ($n-1$)-dimensional Cohen-Macaulay balanced simplicial complex Ω on $2 n$ vertices.

Proof. By Theorem A2 we know that there is a simplicial complex Γ on n vertices with f-vector equal to the h-vector of Δ. Set:

$$
J=I_{\Gamma}+\left(x_{1}^{2}, \ldots, x_{n}^{2}\right) \subseteq S
$$

and consider the polarization J^{\prime} of J in $S\left[y_{1}, \ldots, y_{n}\right]$. Then $J^{\prime}=I_{\Omega}$ where, since the polarization preserves the minimal graded free resolution, the h-vector of Ω is the Hilbert function of S / J (which is the f-vector of Γ) and Ω is Cohen-Macaulay.
Now, notice that Ω is $(n-1)$-dimensional, and the coloring $\operatorname{col}\left(x_{i}\right)=\operatorname{col}\left(y_{i}\right)=i$ provides an n-coloring of the 1 -skeleton of Ω, so that Ω is balanced.
Remark. To show that Theorem A3 \Longrightarrow Theorem A1, one has to use that the StanleyReisner ring of a pure ($d-1$)-dimensional balanced simplicial complex Ω has a special system of parameters, namely:

$$
\ell_{i}=\sum_{\operatorname{col}\left(x_{j}\right)=i} x_{j} \quad \forall i=1, \ldots, d .
$$

If Ω is on m vertices, then $k[\Omega] /\left(\ell_{1}, \ldots, \ell_{d}\right) \cong k\left[x_{1}, \ldots, x_{m-d}\right] / J$, where J is an ideal containing the squares of the variables. Furthermore, if Ω is Cohen-Macaulay, then $\ell_{1}, \ldots, \ell_{d}$ is a $k[\Omega]$ regular sequence, so the h-polynomial of $k[\Omega] /\left(\ell_{1}, \ldots, \ell_{d}\right)$ is the same as the h-polynomial of $k[\Omega]$.
Remark. Theorem A1 can be seen as the solution of a particular case of a general conjecture of Eisenbud-Green-Harris, namely the quadratic monomial case. For the precise statement of the conjecture see EGH1, EGH2]. During the conference in Cortona, Abedelfatah posted on the arxiv a solution of the EGH conjecture in the monomial case (any degree), see Ab2. His proof is not an obvious extension of ours, essentially because the Example given in the first page.

At the end of the talk, I discussed another aspect in which the Main Lemma might be helpful: The dual graph $G(\Delta)$ of a pure $(d-1)$-dimensional simplicial complex Δ is defined as:
(i) $V(G(\Delta))=\{$ facets of $\Delta\}$;
(ii) $E(G(\Delta))=\{\{F, G\}:|F \cap G|=d-1\}$.

Recently, Adiprasito and Benedetti proved in $[\mathrm{AB}]$ that, if Δ is a $(d-1)$-dimensional CohenMacaulay flag simplicial complex on n vertices, then

$$
\operatorname{diam}(G(\Delta)) \leq n-d
$$

The Main Lemma might be helpful to get further understanding of $G(\Delta)$ for Δ flag as follows: Recall that

$$
I_{\Delta}=\bigcap_{F \text { facet of } \Delta}\left(x_{i}: i \notin F\right),
$$

so the graph $G(\Delta)$ may be thought also as the graph of minimal primes of I_{Δ}; i.e. the graph whose vertices are the minimal primes of I_{Δ}, and two minimal primes are connected by an edge if and only if the height of their sum is one more than the height of I_{Δ}. The Main Lemma says that there exist linear forms $\ell_{i, j}$ such that $\ell_{1,1} \ell_{2,1}, \ldots, \ell_{1, n-d} \ell_{2, n-d}$ is an S-regular sequence contained in I_{Δ}. This implies that the graph $G(\Delta)$ is an induced subgraph of the graph of minimal primes of the ideal

$$
\left(\ell_{1,1} \ell_{2,1}, \ldots, \ell_{1, n-d} \ell_{2, n-d}\right)
$$

Such a graph is quite simple to describe: It is obtained by contracting some edges (which ones depends on the geometry of the matroid given by $\ell_{1,1}, \ell_{2,1}, \ldots, \ell_{1, n-d}, \ell_{2, n-d}$) of the graph \mathbb{G} defined as:

- $V(\mathbb{G})=2^{\{1, \ldots, n-d\}}$;
- $\{A, B\} \in E(\mathbb{G})$ if and only if $|A \cup B|-|A \cap B|=1$.

This should give strong restrictions on the structure of $G(\Delta)$ for Δ flag.

References

[Ab1] A. Abedelfatah, On the Eisenbud-Green-Harris conjecture, arXiv:1212.2653.
[Ab2] A. Abedelfatah, Hilbert functions of monomial ideals contsining a regular sequence, arXiv:1309.2776.
[AB] K. Adiprasito, B. Benedetti, The Hirsch conjecture holds for normal flag complexes, arXiv:1303.3598.
[CCV] G. Caviglia, A. Constantinescu, M. Varbaro, On a conjecture by Kalai, arXiv:1212.3726, to appear in Israel J. Math.
[CV] A. Constantinescu, M. Varbaro, On the h-vectors of Cohen-Macaulay Flag Complexes, Math. Scand. 112, 86-111, 2013.
[EGH1] D. Eisenbud, M. Green and J. Harris, Higher Castelnuovo Theory, Asterisque 218, 187-202, 1993.
[EGH2] D. Eisenbud, M. Green and J. Harris, Cayley-Bacharach theorems and conjectures, Bull. Amer. Math. Soc. (N.S.) 33, no. 3, 295-324, 1996.

Dipartimento di Matematica, Università degli Studi di Genova, Via Dodecaneso 35, 16146, Italy
E-mail address: varbaro@dima.unige.it

