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S =K|[xo,.-.,Xn] the polynomial ring.

» Given a homogeneous ideal / € S, its zero-locus is

Z(1)={PeP":f(P)=0V fel}cP"

» Given a subset X ¢ P”, we denote by
I(X)={feS:f(P)=0V PeX}cS

its corresponding homogeneous ideal.
By the Nullstellensatz, we have Z(Z (1)) = /1.
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Notation

A subset X c P" is a (projective) algebraic variety if Z(Z(X)) = X.
By the Nullstellensatz, there is a correspondence

nonempty projective| ~__ [radical homogeneous ideals
algebraic varieties not containing (xo,...,xn)

X = I(X)
Z() < |

An algebraic variety X ¢ P" of codimension ¢ is a complete
intersection (Cl) if Z(X) is generated by ¢ polynomials.

An algebraic variety X € P" is called a subspace arrangement if it is
the union of linear subspaces of P".
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Line arrangements in P3

Let C be a line arrangement in P3, i.e.
C=CGu...uG
where C; is a line in P3. Let's form the dual graph G(C) as follow:
» V(G(C)) ={1,...,s}.

+ E(G(O) = {{ij}: Gin G = ).

We are going to inquire on the connectedness properties of G(C)
given global properties of C.
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Suppose that C is a complete intersection, that is Z(C) = (f, g)
for two homogeneous polynomials ;g € S.

A classical result of Hartshorne implies that, in such a situation,
G(C) is connected. In a recent work joint with Bruno Benedetti,
we quantified more precisely this connectedness...

A graph G is r-connected if it has at least r vertices and removing
< r vertices yields a connected graph. In particular:

» G is connected < G is 1-connected:;

» G is (r+1)-connected = G is r-connected.



Examples of r-connectivity
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As we said, if CcP3is a complete intersection, that is
Z(C) = (f,g) for two homogeneous polynomials f, g € S, then
G(C) is connected by a result of Hartshorne.

THEOREM (Benedetti, -): In the above situation, if deg(f) = d
and deg(g) = e, then G(C) is (d + e — 2)-connected.

For example, if the ideal of definition of C is defined by 2 cubics,
then G(C) will be 4-connected.
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Sharpness of the above result

Given positive integers d, e, there is always a line arrangement
C ¢ P3 such that Z(C) = (f, g) with deg(f) = d,deg(g) = e. To
construct it, one has to choose linear forms

f117'"a€1d7€217"'7€2e €S= K[X07X1)X277X3]

such that:
» dimg(l1j, boj) =2 forall i=1,...,dand j=1,... e
> (fli,fgﬂ = <£1h,€2k> < i=h and j = k.

In this case f = {11---f14 and g = l21---f2. will do the job. If the
¢;'s are general enough, precisely if each four of them are linearly
independent, then one can check that the dual graph of C is not
(d + e — 1)-connected.
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Are all the (not too special) Cl line arrangements C € P3 as above?
That is, is Z(C) generated by products?

Michela Di Marca is working on this kind of issues, and she found
out examples of Cl line arrangements C ¢ P3 which are “not too
special” but Z(C) is not generated by products. Probably, Z(C) is
not generated by products for most of the Cl line arrangements

C cP3

And what about the possible graphs arising as dual graphs of Cl
line arrangement? One can see that not any graph arises as the
dual graph of a (not necessarily CI) line arrangement. On the other
hand, recently Kollar proved that any graph is the dual graph of a
projective curve!
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PROPOSITION: If an arrangement C ¢ P3 of N lines is a complete
intersection, then G(C) is [2v/N — 2]-connected.

Proof: If Z(C) = (f, g), for reasons of multiplicity de = N, where d
is the degree of f and e is the degree of g. So d + e > 2:/N, hence
we conclude because G(C) must be (d + e — 2)-connected. O

If CcP3isa complete intersection, then C = H; n Hy for some
surfaces H; and Hy of P3 (because, if Z(C) = (f,g), then
C=Z2(f)nZ(g)). The converse is false .....

A curve C c P? which is the intersection of two surfaces is called a
set-theoretic complete intersection (SCI).
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The following is a result by Mohan Kumar:

THEOREM: If C cP3 is a line arrangement, then C is a
set-theoretic complete intersection if and only if C is connected.

Notice that C is connected if and only if the dual graph G(C) is
connected. Therefore the above result implies that is plenty of line
arrangements which are SCI without being a Cl .....
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For example, choose /1,...,0yn.1 €S = KXo, ..., x3] general linear
forms (precisely, such that any 4 of them are linearly independent).

Forany i=1,...,N, set C;= Z({; ¢;.1) € P3. Furthermore, put
N
C=JGcP.
i-1
By construction, the dual graph G(C) is connected, so C is a

set-theoretic complete intersection. However, G(C) is not even
2-connected, whereas N can be arbitrarily large ...
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Until now we saw particular consequences of our results, I'd like to
spend the last slides describing the general setting.

Let X c IP" be an algebraic variety. Let us write X as the union of
its irreducible components:

X=XiuXou...uX.

The dual graph of X, denoted by G(X), is defined as follows:
FV(G(X)) = {1,...,5}
» E(G(X)) = {{i,j} : dim(X; n Xj) =dim(X) -1}
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THEOREM (Benedetti, - ): Let X € P" be an arithmetically
Gorenstein (i.e. S/Z(X) is Gorenstein) subspace arrangement.
Then G(X) is reg(S/Z(X))-connected, where reg(S/Z(X))
stands for the Castelnuovo-Mumford regularity of S/Z(X).

If X is a complete intersection, then it is arithmetically Gorenstein.
Furthermore, the Castelnuovo-Mumford regularity of S/Z(X) is

> deg(fi) - ¢
i=1

where Z(X) = (f1,...,f.) and ¢ = codimpn X.
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In an ongoing work with Bruno Benedetti and Barbara Bolognese,
we left the world of subspace arrangements. Let me remind the
following notion:

The degree of an algebraic variety X € IP” of codimension c is

defined as:
(XN L)

where L € P" is a general linear space of dimension c.

For example, if X is a linear space then its degree is 1.
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THEOREM (Benedetti, Bolognese, - ): Let X € P” be an
arithmetically Gorenstein algebraic variety. If each irreducible
component of X has degree < d, then G(X) is r-connected, where
r=|(reg(S/Z(X)) +d -1)/d|.

This recovers the result for subspace arrangements, since each
irreducible component, being a linear space, has degree 1.

Actually we proved more: namely, we showed a version of the
previous theorem for any arithmetically Gorenstein projective
scheme (not necessarily reduced). For such a version, one needs
that d bounds from above the Castelnuovo-Mumford regularity of
each component.
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