J-MULTIPLICITY OF DETERMINANTAL IDEALS
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Preliminaries

Let (R, m) be a d-dimensional local ring with |R/m| = co. Given
an ideal | C R, we form the associated graded ring:

— grl @ Ik/lk+1
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(here the direct sum is taken as R-modules). It turns out that G is
a d-dimensional standard graded algebra over R/I. Let mG be the
extension of m to G, and introduce the fiber cone:

F=F()=G/mG=pI"/mI.
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F is a standard graded R/m-algebra. Its dimension is known as the
analytic spread of / and denoted by /(/).



Preliminaries

Notice that, for all i € N, we have:

nG(G) = Hi(G) = P Hy(14/171).
keN

So, by 0 — [K/IK+1 & R/IKFL 5 R/I% — 0 we get:

grade(mG, G) = mkin{depth(lk/lkﬂ)} = mkin{depth(R/lk)}.

In particular £(/) < d — ming{depth(R/I*)} (Burch), with equality
holding if G is Cohen-Macaulay (Eisenbud-Huneke).



Definition of j-multiplicity

Let us analyze the G-submodule M = H2 -(G) C G:

(i) Because both mG and G are graded, then M is a graded
G-submodule of G;

(i) By Noetherianity there is N >> 0 for which (mG)"M =0,
therefore M is actually a finitely generated graded
G/(mG)N-module;

(i) Since G/(mG)N is a standard graded algebra over R/m"
(that is local Artinian), the function n +— dimg /m Mp, is
eventually a polynomial P(n);

(iv) The above function is a multiple of n > lengthg /v My, so
P(n) has degree dim(M) — 1 < dim(G/mG) —1=¢(/) — 1.

DEFINITION: The j-multiplicity of I is the natural number:

— ! d—1)!
j(1) = lim (d—1) P(n) = lim % dimg/m HO.(1"/1"11)
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Fiddling with j-multiplicity

Let R = €, . Rn be a standard graded ring over an infinite field
Ro=K, m= @n>0 R, the maximal irrelevant ideal and / C R is
a graded ideal. Everything said before holds in this situation by
letting the maximal irrelevant ideal play the role of the former
unique maximal ideal. In particular

j(1) = lim (d_l)!dimK HO.(1m/1m+1y

n—oo pd—1

REMARK: There are ideals / such that HO(/"/I™1) = 0 for all n,
for example any complete intersection of height < d in a regular
R: For such ideals / in fact depth(/"//™1) > 0 for all n € N.



Fiddling with j-multiplicity

Example: Let us consider

X — X111 X12 X13  X14 X15 X16
X21 X22 X23 X24 X25 X26

R = K[X] and | = l(X). The fiber cone of / is the coordinate
ring of the Grassmannian G(2,6). In particular its dimension is 9,
so /(I) =9 < 12 = dim(R). One can show that the associated
graded ring is Cohen-Macaulay, so by Eisenbud-Huneke we infer

mkin{depth(/k//kﬂ)} =12-9=3.

In particular H%(/"/1"+1) = 0 for all n, so j(/) = 0.



Basic results

There are examples of ideals | C R with ¢(/) < d = dim(R) but
nevertheless H(G) # 0. However we have a nice characterization
for the vanishing of the j-multiplicity:

Proposition: The following are equivalent:

(i) (1) #0;

(i) dim HO(G) = d.
(i) 2(1)=d.
Proof: Not obvious only (iii) = (ii). Pick p € Supp¢(F) such that
dim G/p = d. Then p € Ming(G) C Assg(G), so there is a
nonzero x € G such that p =0 :¢ x. Because mG C p, we have
mG - x = 0. Hence x € H3-(G) C G, so p € Ass(H2(G)). We
therefore infer dim H2 (G) = d.



Basic results

As | should have already mentioned, the j-multiplicity of an
m-primary ideal | agrees with the Hilbert-Samuel multiplicity of /.
In fact the j-multiplicity was introduced by Achilles-Manaresi to
extend the good features of Hilbert-Samuel multiplicity to the
non-m-primary situation. For example, Flenner-Manaresi proved:

f el j(h)=j((I+()p) ¥ p € Spec(R)

However to compute the j-multiplicity seems a really difficult
problem. So far one of the few successful ways to get it is provided
by a length formula of Achilles-Manaresi: If a;,...,ay are general
elements of /, then

J(1) = lengthg ( R )

(a1,...,a4-1) : I+ (aq)




Known examples

Various generalizations and applications of the previous formula
were given by Nishida-Ulrich, who in particular were able to show
that j(/) = 4 where [ is the ideal of R = K[xi, ..., x5] generated
by the 2-minors of the matrix

X — X1 X2 X3 X4
X2 X3 X4 Xs

A large class for which the j-multiplicity is known is provided by a
recent result of Jeffries-Montano, who express the j-multiplicity of
any monomial ideal /| C R = K|[x,...,x4| as the volume of a
polytopal complex in R? described by the exponents of the
minimal monomial generators of /.



Our contribute

With Jeffries and Montano we express the j-multiplicities of the
ideal generated by the t-minors of a generic m X n-matrix
(respectively t-minors of a generic symmetric n X n-matrix)
(respectively 2t-pfaffians of a generic alternating n x n-matrix) as
an interesting integral in R™. Actually we are able to express it also
as the volume of a polytope in R™", but the above integrals are
tantalizing related to certain quantities in random matrix theory!

We also give a combinatorial formula for the j-multiplicity of the
ideal generated by the t-minors of a Hankel matrix (the kind of
matrix of the Nishida-Ulrich example).



m X n-generic matrices

Let’'s discuss the case of generic m x n-matrices. So

Xl]_ X12 e ... X]_n

X21 X992 e e Xon
X =

Xml Xm2 oo e an

R = K[X] and | = I;(X) is the ideal generated by the t-minors of
X. Without loss of generality, we assume t < m<n. Ift=m
then the fiber cone of I is the coordinate ring of the Grassmannian
G(m,n), So ¢(I) = m(n — m)+ 1 < mn = dim(R) in this case,
therefore j(/,m(X)) = 0. We will thus place ourselves in the case

t < m, where {(]) = mn.



2-minors of a 3 X 3

So the first nontrivial case is t = 2, m = n = 3. In the remaining
part of the talk we will carry on this example, i. e. [ is the ideal of
2-minors of a 3 x 3-matrix, and R is a polynomial ring in 9
variables over a field K. By a result of Bruns

I =m25n 0s),

Because

(/s+1)sat nJ/s B (I(s+1)) nJ/s
|s+1 o |s+1 ’

HO(I /14 =

. . . s+ s
we wish to compute the dimension of (I,S%



2-minors of a 3 X 3

To this aim we have to consider the K-basis of R = K[X]
consisting of standard monomials, i.e. products of minors of X
forming an ascending chain with respect to a certain partial order
on the minors of X. For example:

[123|123)? - [13]13] - [23]13]* - [2]1]
is a standard monomial. Instead the following

[123|123]? - [13]23] - [23]13]* - [2]1]
is not.

For a product of minors A = 97 - - - §x, where §; is an a;-minor, the
vector (ai, ..., ax) is referred to be the shape of A. If Ais a
standard monomial, then a; > ... > ay.



2-minors of a 3 X 3

Quite surprisingly, whether a product of minors A = 47 - - - §; of

shape (a1, ..., ax) belongs or not to /() depends only on its shape:
k
Ae/(5)®2(a;—1)25
i=1

For what we said till now the K-dimension of H2(/°/I5t1) is given
by the of standard monomials in the set A(s) = (/1) n/5)\ /5L,
Thanks to the mentioned results, we can infer that a shape

(a1,...,ak) occurs in A(s) iff one of the following two holds:
2s —2x —y =3|{i : a; = 3} 2s —2x—y+1=3{i:a =3}
x+2y<s-—3 x+2y<s-—1
x,y >0 x,y >0

where x = [{i : a; = 1}| and y = |{i : a; = 2}|.



2-minors of a 3 X 3

We now have to count how many standard monomials are there of
a given shape (a1, ..., ax). After a careful manipulation of the
hook length formula we get that this number is:

1/4((x +1) + (v + 1))*(x + 1)*(y + 1)

where x = |{i : a; = 1}| and y = |{i : a; = 2}|. So the dimension
as a K-vector space of HO(/°/1°*1), call it j(s), is about:

HE S (et 0 b ) 07
(x,y)EN?
x+2y<s—3

+1 Z (x+1)+(y+ 1))2(x +1)%(y + 1)2>

4
(x,y)EN?
x+2y<s—1



Riemann sums

Let us call f(x,y) = (x + y)?x?y? and R the triangle of R?
{(x,y) €R?: x>0,y >0and x+2y <1}. Then

j(s)~s%/6 Z f(x,y)

(x,y)e(1/s)N2NR

and by standard integration theory,

1
2 > f(X,y)%/Rf(Xm)dxdy

(x,y)e(1/s)N2NR

Consequently,

8

8
3 S
j(s) ~ 6/ Xy} (x +y)? dxdy =
R

s
20160

We conclude that j(/) = 8!/20160 =[2].



The general statement

Our general result is that, if I is the ideal generated by the
t-minors of a generic m x n-matrix, then:

(nm—1)I-t
(n—Dl(n=2)---(n—m)l-(m—1)!... 11

where ¢ =

Surprisingly, the exact evaluation of the above integral would give
the probability for a m x m random Hermitian matrix Z with both
Z and Id — Z positive definite, with probability density function
proportional to det(Z)"~™, to have trace = t. This seems to be an
important problem in random matrix theory.



