
J-MULTIPLICITY OF DETERMINANTAL IDEALS

Joint work with Jack Jeffries and Jonathan Montaño



Preliminaries

Let (R,m) be a d-dimensional local ring with |R/m| =∞. Given
an ideal I ⊆ R, we form the associated graded ring:

G = grI (R) =
⊕
k∈N

I k/I k+1

(here the direct sum is taken as R-modules). It turns out that G is
a d-dimensional standard graded algebra over R/I . Let mG be the
extension of m to G , and introduce the fiber cone:

F = F (I ) = G/mG =
⊕
k∈N

I k/mI k .

F is a standard graded R/m-algebra. Its dimension is known as the
analytic spread of I and denoted by `(I ).



Preliminaries

Notice that, for all i ∈ N, we have:

H i
mG (G ) ∼= H i

m(G ) ∼=
⊕
k∈N

H i
m(I k/I k+1).

So, by 0→ I k/I k+1 → R/I k+1 → R/I k → 0 we get:

grade(mG ,G ) = min
k
{depth(I k/I k+1)} = min

k
{depth(R/I k)}.

In particular `(I ) ≤ d −mink{depth(R/I k)} (Burch), with equality
holding if G is Cohen-Macaulay (Eisenbud-Huneke).



Definition of j-multiplicity

Let us analyze the G -submodule M = H0
mG (G ) ⊆ G :

(i) Because both mG and G are graded, then M is a graded
G -submodule of G ;

(ii) By Noetherianity there is N � 0 for which (mG )NM = 0,
therefore M is actually a finitely generated graded
G/(mG )N -module;

(iii) Since G/(mG )N is a standard graded algebra over R/mN

(that is local Artinian), the function n 7→ dimR/mMn is
eventually a polynomial P(n);

(iv) The above function is a multiple of n 7→ lengthR/mN Mn, so
P(n) has degree dim(M)− 1 ≤ dim(G/mG )− 1 = `(I )− 1.

DEFINITION: The j-multiplicity of I is the natural number:

j(I ) = lim
n→∞

(d − 1)!

nd−1
P(n) = lim

n→∞

(d − 1)!

nd−1
dimR/mH0

m(I n/I n+1)



Fiddling with j-multiplicity

Let R =
⊕

n∈N Rn be a standard graded ring over an infinite field
R0 = K , m =

⊕
n>0 Rn the maximal irrelevant ideal and I ⊆ R is

a graded ideal. Everything said before holds in this situation by
letting the maximal irrelevant ideal play the role of the former
unique maximal ideal. In particular

j(I ) = lim
n→∞

(d − 1)!

nd−1
dimK H0

m(I n/I n+1)

REMARK: There are ideals I such that H0
m(I n/I n+1) = 0 for all n,

for example any complete intersection of height < d in a regular
R: For such ideals I in fact depth(I n/I n+1) > 0 for all n ∈ N.



Fiddling with j-multiplicity

Example: Let us consider

X =

(
x11 x12 x13 x14 x15 x16
x21 x22 x23 x24 x25 x26

)
R = K [X ] and I = I2(X ). The fiber cone of I is the coordinate
ring of the Grassmannian G (2, 6). In particular its dimension is 9,
so `(I ) = 9 < 12 = dim(R). One can show that the associated
graded ring is Cohen-Macaulay, so by Eisenbud-Huneke we infer

min
k
{depth(I k/I k+1)} = 12− 9 = 3.

In particular H0
m(I n/I n+1) = 0 for all n, so j(I ) = 0.



Basic results

There are examples of ideals I ⊆ R with `(I ) < d = dim(R) but
nevertheless H0

m(G ) 6= 0. However we have a nice characterization
for the vanishing of the j-multiplicity:

Proposition: The following are equivalent:

(i) j(I ) 6= 0;

(ii) dimH0
m(G ) = d .

(iii) `(I ) = d .

Proof: Not obvious only (iii)⇒ (ii). Pick p ∈ SuppG (F ) such that
dimG/p = d . Then p ∈ MinG (G ) ⊆ AssG (G ), so there is a
nonzero x ∈ G such that p = 0 :G x . Because mG ⊆ p, we have
mG · x = 0. Hence x ∈ H0

mG (G ) ⊆ G , so p ∈ Ass(H0
mG (G )). We

therefore infer dimH0
mG (G ) = d .



Basic results

As I should have already mentioned, the j-multiplicity of an
m-primary ideal I agrees with the Hilbert-Samuel multiplicity of I .
In fact the j-multiplicity was introduced by Achilles-Manaresi to
extend the good features of Hilbert-Samuel multiplicity to the
non-m-primary situation. For example, Flenner-Manaresi proved:

f ∈ Ī ⇔ j(Ip) = j((I + (f ))p) ∀ p ∈ Spec(R)

However to compute the j-multiplicity seems a really difficult
problem. So far one of the few successful ways to get it is provided
by a length formula of Achilles-Manaresi: If a1, . . . , ad are general
elements of I , then

j(I ) = lengthR/m

(
R

(a1, . . . , ad−1) : I∞ + (ad)

)



Known examples

Various generalizations and applications of the previous formula
were given by Nishida-Ulrich, who in particular were able to show
that j(I ) = 4 where I is the ideal of R = K [x1, . . . , x5] generated
by the 2-minors of the matrix

X =

(
x1 x2 x3 x4
x2 x3 x4 x5

)

A large class for which the j-multiplicity is known is provided by a
recent result of Jeffries-Montaño, who express the j-multiplicity of
any monomial ideal I ⊆ R = K [x1, . . . , xd ] as the volume of a
polytopal complex in Rd described by the exponents of the
minimal monomial generators of I .



Our contribute

With Jeffries and Montaño we express the j-multiplicities of the
ideal generated by the t-minors of a generic m × n-matrix
(respectively t-minors of a generic symmetric n × n-matrix)
(respectively 2t-pfaffians of a generic alternating n × n-matrix) as
an interesting integral in Rm. Actually we are able to express it also
as the volume of a polytope in Rmn, but the above integrals are
tantalizing related to certain quantities in random matrix theory!

We also give a combinatorial formula for the j-multiplicity of the
ideal generated by the t-minors of a Hankel matrix (the kind of
matrix of the Nishida-Ulrich example).



m × n-generic matrices

Let’s discuss the case of generic m × n-matrices. So

X =


x11 x12 · · · · · · x1n
x21 x22 · · · · · · x2n

...
...

. . .
. . .

...
xm1 xm2 · · · · · · xmn

 .

R = K [X ] and I = It(X ) is the ideal generated by the t-minors of
X . Without loss of generality, we assume t ≤ m ≤ n. If t = m
then the fiber cone of I is the coordinate ring of the Grassmannian
G (m, n), So `(I ) = m(n −m) + 1 < mn = dim(R) in this case,
therefore j(Im(X )) = 0. We will thus place ourselves in the case
t < m, where `(I ) = mn.



2-minors of a 3× 3

So the first nontrivial case is t = 2, m = n = 3. In the remaining
part of the talk we will carry on this example, i. e. I is the ideal of
2-minors of a 3× 3-matrix, and R is a polynomial ring in 9
variables over a field K . By a result of Bruns

I s = m2s ∩ I (s).

Because

H0
m(I s/I s+1) =

(I s+1)sat ∩ I s

I s+1
=

(I (s+1)) ∩ I s

I s+1
,

we wish to compute the dimension of (I (s+1))∩I s
I s+1 .



2-minors of a 3× 3

To this aim we have to consider the K -basis of R = K [X ]
consisting of standard monomials, i.e. products of minors of X
forming an ascending chain with respect to a certain partial order
on the minors of X . For example:

[123|123]2 · [13|13] · [23|13]4 · [2|1]

is a standard monomial. Instead the following

[123|123]2 · [13|23] · [23|13]4 · [2|1]

is not.

For a product of minors ∆ = δ1 · · · δk , where δi is an ai -minor, the
vector (a1, . . . , ak) is referred to be the shape of ∆. If ∆ is a
standard monomial, then a1 ≥ . . . ≥ ak .



2-minors of a 3× 3

Quite surprisingly, whether a product of minors ∆ = δ1 · · · δk of
shape (a1, . . . , ak) belongs or not to I (s) depends only on its shape:

∆ ∈ I (s) ⇔
k∑

i=1

(ai − 1) ≥ s

For what we said till now the K -dimension of H0
m(I s/I s+1) is given

by the of standard monomials in the set A(s) = (I (s+1) ∩ I s) \ I s+1.
Thanks to the mentioned results, we can infer that a shape
(a1, . . . , ak) occurs in A(s) iff one of the following two holds:

2s − 2x − y = 3|{i : ai = 3}|
x + 2y ≤ s − 3

x , y ≥ 0


2s − 2x − y + 1 = 3|{i : ai = 3}|
x + 2y ≤ s − 1

x , y ≥ 0

where x = |{i : ai = 1}| and y = |{i : ai = 2}|.



2-minors of a 3× 3

We now have to count how many standard monomials are there of
a given shape (a1, . . . , ak). After a careful manipulation of the
hook length formula we get that this number is:

1/4((x + 1) + (y + 1))2(x + 1)2(y + 1)2

where x = |{i : ai = 1}| and y = |{i : ai = 2}|. So the dimension
as a K -vector space of H0

m(I s/I s+1), call it j(s), is about:

1

3

(1

4

∑
(x ,y)∈N2

x+2y≤s−3

(
(x + 1) + (y + 1)

)2
(x + 1)2(y + 1)2

+
1

4

∑
(x ,y)∈N2

x+2y≤s−1

(
(x + 1) + (y + 1)

)2
(x + 1)2(y + 1)2

)



Riemann sums

Let us call f (x , y) = (x + y)2x2y2 and R the triangle of R2

{(x , y) ∈ R2 : x ≥ 0, y ≥ 0 and x + 2y ≤ 1}. Then

j(s) ≈ s6/6
∑

(x ,y)∈(1/s)N2∩R

f (x , y)

and by standard integration theory,

1

s2

∑
(x ,y)∈(1/s)N2∩R

f (x , y) ≈
∫
R
f (x , y) dx dy

Consequently,

j(s) ≈ s8

6

∫
R
x2y2(x + y)2 dx dy =

s8

20160
.

We conclude that j(I ) = 8!/20160 = 2 .



The general statement

Our general result is that, if I is the ideal generated by the
t-minors of a generic m × n-matrix, then:

j(I ) =
c

m!

∫
[0,1]m∑m
i=1 xi=t

(x1 · · · xm)n−m ·
∏
i<j

(xi − xj)
2 dσ,

where c =
(nm − 1)! · t

(n − 1)!(n − 2)! · · · (n −m)! · (m − 1)! · · · 1!
.

Surprisingly, the exact evaluation of the above integral would give
the probability for a m ×m random Hermitian matrix Z with both
Z and Id − Z positive definite, with probability density function
proportional to det(Z )n−m, to have trace = t. This seems to be an
important problem in random matrix theory.


