J-MULTIPLICITY OF DETERMINANTAL IDEALS

Joint work with Jack Jeffries and Jonathan Montaño

Preliminaries

Let (R, \mathfrak{m}) be a d-dimensional local ring with $|R / \mathfrak{m}|=\infty$. Given an ideal $I \subseteq R$, we form the associated graded ring:

$$
G=\operatorname{gr}(R)=\bigoplus_{k \in \mathbb{N}} I^{k} / I^{k+1}
$$

(here the direct sum is taken as R-modules). It turns out that G is a d-dimensional standard graded algebra over R / I. Let $\mathfrak{m} G$ be the extension of \mathfrak{m} to G, and introduce the fiber cone:

$$
F=F(I)=G / \mathfrak{m} G=\bigoplus_{k \in \mathbb{N}} I^{k} / \mathfrak{m} I^{k}
$$

F is a standard graded R / \mathfrak{m}-algebra. Its dimension is known as the analytic spread of I and denoted by $\ell(I)$.

Preliminaries

Notice that, for all $i \in \mathbb{N}$, we have:

$$
H_{\mathfrak{m} G}^{i}(G) \cong H_{\mathfrak{m}}^{i}(G) \cong \bigoplus_{k \in \mathbb{N}} H_{\mathfrak{m}}^{i}\left(I^{k} / I^{k+1}\right)
$$

So, by $0 \rightarrow I^{k} / I^{k+1} \rightarrow R / I^{k+1} \rightarrow R / I^{k} \rightarrow 0$ we get:

$$
\operatorname{grade}(\mathfrak{m} G, G)=\min _{k}\left\{\operatorname{depth}\left(I^{k} / I^{k+1}\right)\right\}=\min _{k}\left\{\operatorname{depth}\left(R / I^{k}\right)\right\} .
$$

In particular $\ell(I) \leq d-\min _{k}\left\{\operatorname{depth}\left(R / I^{k}\right)\right\}$ (Burch), with equality holding if G is Cohen-Macaulay (Eisenbud-Huneke).

Definition of j-multiplicity

Let us analyze the G-submodule $M=H_{\mathfrak{m} G}^{0}(G) \subseteq G$:
(i) Because both $\mathfrak{m} G$ and G are graded, then M is a graded G-submodule of G;
(ii) By Noetherianity there is $N \gg 0$ for which $(\mathfrak{m} G)^{N} M=0$, therefore M is actually a finitely generated graded $G /(\mathfrak{m} G)^{N}$-module;
(iii) Since $G /(\mathfrak{m} G)^{N}$ is a standard graded algebra over R / \mathfrak{m}^{N} (that is local Artinian), the function $n \mapsto \operatorname{dim}_{R / \mathfrak{m}} M_{n}$ is eventually a polynomial $P(n)$;
(iv) The above function is a multiple of $n \mapsto$ length $_{R / \mathfrak{m}^{N}} M_{n}$, so $P(n)$ has degree $\operatorname{dim}(M)-1 \leq \operatorname{dim}(G / \mathfrak{m} G)-1=\ell(I)-1$.
DEFINITION: The j-multiplicity of I is the natural number:

$$
j(I)=\lim _{n \rightarrow \infty} \frac{(d-1)!}{n^{d-1}} P(n)=\lim _{n \rightarrow \infty} \frac{(d-1)!}{n^{d-1}} \operatorname{dim}_{R / \mathfrak{m}} H_{\mathfrak{m}}^{0}\left(I^{n} / I^{n+1}\right)
$$

Fiddling with j-multiplicity

Let $R=\bigoplus_{n \in \mathbb{N}} R_{n}$ be a standard graded ring over an infinite field $R_{0}=K, \mathfrak{m}=\bigoplus_{n>0} R_{n}$ the maximal irrelevant ideal and $I \subseteq R$ is a graded ideal. Everything said before holds in this situation by letting the maximal irrelevant ideal play the role of the former unique maximal ideal. In particular

$$
j(I)=\lim _{n \rightarrow \infty} \frac{(d-1)!}{n^{d-1}} \operatorname{dim}_{K} H_{\mathfrak{m}}^{0}\left(I^{n} / I^{n+1}\right)
$$

REMARK: There are ideals I such that $H_{\mathrm{m}}^{0}\left(I^{n} / I^{n+1}\right)=0$ for all n, for example any complete intersection of height $<d$ in a regular R : For such ideals I in fact $\operatorname{depth}\left(I^{n} / I^{n+1}\right)>0$ for all $n \in \mathbb{N}$.

Fiddling with j-multiplicity

Example: Let us consider

$$
X=\left(\begin{array}{llllll}
x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} \\
x_{21} & x_{22} & x_{23} & x_{24} & x_{25} & x_{26}
\end{array}\right)
$$

$R=K[X]$ and $I=I_{2}(X)$. The fiber cone of I is the coordinate ring of the Grassmannian $G(2,6)$. In particular its dimension is 9 , so $\ell(I)=9<12=\operatorname{dim}(R)$. One can show that the associated graded ring is Cohen-Macaulay, so by Eisenbud-Huneke we infer

$$
\min _{k}\left\{\operatorname{depth}\left(I^{k} / I^{k+1}\right)\right\}=12-9=3 .
$$

In particular $H_{\mathfrak{m}}^{0}\left(I^{n} / I^{n+1}\right)=0$ for all n, so $j(I)=0$.

Basic results

There are examples of ideals $I \subseteq R$ with $\ell(I)<d=\operatorname{dim}(R)$ but nevertheless $H_{\mathfrak{m}}^{0}(G) \neq 0$. However we have a nice characterization for the vanishing of the j-multiplicity:

Proposition: The following are equivalent:
(i) $j(I) \neq 0$;
(ii) $\operatorname{dim} H_{\mathfrak{m}}^{0}(G)=d$.
(iii) $\ell(I)=d$.

Proof: Not obvious only $(i i i) \Rightarrow(i i)$. Pick $\mathfrak{p} \in \operatorname{Supp}_{G}(F)$ such that $\operatorname{dim} G / \mathfrak{p}=d$. Then $\mathfrak{p} \in \operatorname{Min}_{G}(G) \subseteq \operatorname{Ass}_{G}(G)$, so there is a nonzero $x \in G$ such that $\mathfrak{p}=0:_{G} x$. Because $\mathfrak{m} G \subseteq \mathfrak{p}$, we have $\mathfrak{m} G \cdot x=0$. Hence $x \in H_{\mathfrak{m} G}^{0}(G) \subseteq G$, so $\mathfrak{p} \in \operatorname{Ass}\left(H_{\mathfrak{m} G}^{0}(G)\right)$. We therefore infer $\operatorname{dim} H_{\mathfrak{m} G}^{0}(G)=d$.

Basic results

As I should have already mentioned, the j-multiplicity of an \mathfrak{m}-primary ideal I agrees with the Hilbert-Samuel multiplicity of I. In fact the j-multiplicity was introduced by Achilles-Manaresi to extend the good features of Hilbert-Samuel multiplicity to the non-m-primary situation. For example, Flenner-Manaresi proved:

$$
f \in \bar{I} \Leftrightarrow j\left(I_{\mathfrak{p}}\right)=j\left((I+(f))_{\mathfrak{p}}\right) \forall \mathfrak{p} \in \operatorname{Spec}(R)
$$

However to compute the j-multiplicity seems a really difficult problem. So far one of the few successful ways to get it is provided by a length formula of Achilles-Manaresi: If a_{1}, \ldots, a_{d} are general elements of I, then

$$
j(I)=\text { length }_{R / \mathfrak{m}}\left(\frac{R}{\left(a_{1}, \ldots, a_{d-1}\right): I^{\infty}+\left(a_{d}\right)}\right)
$$

Known examples

Various generalizations and applications of the previous formula were given by Nishida-Ulrich, who in particular were able to show that $j(I)=4$ where I is the ideal of $R=K\left[x_{1}, \ldots, x_{5}\right]$ generated by the 2 -minors of the matrix

$$
X=\left(\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
x_{2} & x_{3} & x_{4} & x_{5}
\end{array}\right)
$$

A large class for which the j-multiplicity is known is provided by a recent result of Jeffries-Montaño, who express the j-multiplicity of any monomial ideal $I \subseteq R=K\left[x_{1}, \ldots, x_{d}\right]$ as the volume of a polytopal complex in \mathbb{R}^{d} described by the exponents of the minimal monomial generators of I.

Our contribute

With Jeffries and Montaño we express the j-multiplicities of the ideal generated by the t-minors of a generic $m \times n$-matrix (respectively t-minors of a generic symmetric $n \times n$-matrix) (respectively $2 t$-pfaffians of a generic alternating $n \times n$-matrix) as an interesting integral in \mathbb{R}^{m}. Actually we are able to express it also as the volume of a polytope in $\mathbb{R}^{m n}$, but the above integrals are tantalizing related to certain quantities in random matrix theory!

We also give a combinatorial formula for the j-multiplicity of the ideal generated by the t-minors of a Hankel matrix (the kind of matrix of the Nishida-Ulrich example).

$m \times n$-generic matrices

Let's discuss the case of generic $m \times n$-matrices. So

$$
X=\left(\begin{array}{ccccc}
x_{11} & x_{12} & \cdots & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & \cdots & x_{2 n} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
x_{m 1} & x_{m 2} & \cdots & \cdots & x_{m n}
\end{array}\right)
$$

$R=K[X]$ and $I=I_{t}(X)$ is the ideal generated by the t-minors of X. Without loss of generality, we assume $t \leq m \leq n$. If $t=m$ then the fiber cone of I is the coordinate ring of the Grassmannian $G(m, n)$, So $\ell(I)=m(n-m)+1<m n=\operatorname{dim}(R)$ in this case, therefore $j\left(I_{m}(X)\right)=0$. We will thus place ourselves in the case $t<m$, where $\ell(I)=m n$.

2 -minors of a 3×3

So the first nontrivial case is $t=2, m=n=3$. In the remaining part of the talk we will carry on this example, i. e. I is the ideal of 2 -minors of a 3×3-matrix, and R is a polynomial ring in 9 variables over a field K. By a result of Bruns

$$
I^{s}=\mathfrak{m}^{2 s} \cap I^{(s)}
$$

Because

$$
H_{\mathfrak{m}}^{0}\left(I^{s} / I^{s+1}\right)=\frac{\left(I^{s+1}\right)^{s a t} \cap I^{s}}{I^{s+1}}=\frac{\left(I^{(s+1)}\right) \cap I^{s}}{I^{s+1}}
$$

we wish to compute the dimension of $\frac{\left(I^{(s+1)}\right) \cap^{s}}{I^{s+1}}$.

2 -minors of a 3×3

To this aim we have to consider the K-basis of $R=K[X]$ consisting of standard monomials, i.e. products of minors of X forming an ascending chain with respect to a certain partial order on the minors of X. For example:

$$
[123 \mid 123]^{2} \cdot[13 \mid 13] \cdot[23 \mid 13]^{4} \cdot[2 \mid 1]
$$

is a standard monomial. Instead the following

$$
[123 \mid 123]^{2} \cdot[13 \mid 23] \cdot[23 \mid 13]^{4} \cdot[2 \mid 1]
$$

is not.

For a product of minors $\Delta=\delta_{1} \cdots \delta_{k}$, where δ_{i} is an a_{i}-minor, the vector $\left(a_{1}, \ldots, a_{k}\right)$ is referred to be the shape of Δ. If Δ is a standard monomial, then $a_{1} \geq \ldots \geq a_{k}$.

2 -minors of a 3×3

Quite surprisingly, whether a product of minors $\Delta=\delta_{1} \cdots \delta_{k}$ of shape (a_{1}, \ldots, a_{k}) belongs or not to $I^{(s)}$ depends only on its shape:

$$
\Delta \in I^{(s)} \Leftrightarrow \sum_{i=1}^{k}\left(a_{i}-1\right) \geq s
$$

For what we said till now the K-dimension of $H_{\mathfrak{m}}^{0}\left(I^{s} / I^{s+1}\right)$ is given by the of standard monomials in the set $A(s)=\left(I^{(s+1)} \cap I^{s}\right) \backslash I^{s+1}$. Thanks to the mentioned results, we can infer that a shape (a_{1}, \ldots, a_{k}) occurs in $A(s)$ iff one of the following two holds:

$$
\left\{\begin{array} { l }
{ 2 s - 2 x - y = 3 | \{ i : a _ { i } = 3 \} | } \\
{ x + 2 y \leq s - 3 } \\
{ x , y \geq 0 }
\end{array} \quad \left\{\begin{array}{l}
2 s-2 x-y+1=3\left|\left\{i: a_{i}=3\right\}\right| \\
x+2 y \leq s-1 \\
x, y \geq 0
\end{array}\right.\right.
$$

where $x=\left|\left\{i: a_{i}=1\right\}\right|$ and $y=\left|\left\{i: a_{i}=2\right\}\right|$.

2 -minors of a 3×3

We now have to count how many standard monomials are there of a given shape $\left(a_{1}, \ldots, a_{k}\right)$. After a careful manipulation of the hook length formula we get that this number is:

$$
1 / 4((x+1)+(y+1))^{2}(x+1)^{2}(y+1)^{2}
$$

where $x=\left|\left\{i: a_{i}=1\right\}\right|$ and $y=\left|\left\{i: a_{i}=2\right\}\right|$. So the dimension as a K-vector space of $H_{\mathfrak{m}}^{0}\left(I^{s} / I^{s+1}\right)$, call it $j(s)$, is about:

$$
\begin{aligned}
& \frac{1}{3}\left(\frac{1}{4} \sum_{\substack{(x, y) \in \mathbb{N}^{2} \\
x+2 y \leq s-3}}((x+1)+(y+1))^{2}(x+1)^{2}(y+1)^{2}\right. \\
& \left.+\frac{1}{4} \sum_{\substack{(x, y) \in \mathbb{N}^{2} \\
x+2 y \leq s-1}}((x+1)+(y+1))^{2}(x+1)^{2}(y+1)^{2}\right)
\end{aligned}
$$

Riemann sums

Let us call $f(x, y)=(x+y)^{2} x^{2} y^{2}$ and \mathcal{R} the triangle of \mathbb{R}^{2} $\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0, y \geq 0\right.$ and $\left.x+2 y \leq 1\right\}$. Then

$$
j(s) \approx s^{6} / 6 \sum_{(x, y) \in(1 / s) \mathbb{N}^{2} \cap \mathcal{R}} f(x, y)
$$

and by standard integration theory,

$$
\frac{1}{s^{2}} \sum_{(x, y) \in(1 / s) \mathbb{N}^{2} \cap \mathcal{R}} f(x, y) \approx \int_{\mathcal{R}} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

Consequently,

$$
j(s) \approx \frac{s^{8}}{6} \int_{\mathcal{R}} x^{2} y^{2}(x+y)^{2} \mathrm{~d} x \mathrm{~d} y=\frac{s^{8}}{20160}
$$

We conclude that $j(I)=8!/ 20160=2$.

The general statement

Our general result is that, if I is the ideal generated by the t-minors of a generic $m \times n$-matrix, then:

$$
j(I)=\frac{c}{m!} \int_{\substack{[0,1]^{m} \\ \Gamma m}}\left(x_{1} \cdots x_{m}\right)^{n-m} \cdot \prod_{i<j}\left(x_{i}-x_{j}\right)^{2} \mathrm{~d} \sigma
$$

where $c=\frac{(n m-1)!\cdot t}{(n-1)!(n-2)!\cdots(n-m)!\cdot(m-1)!\cdots 1!}$.
Surprisingly, the exact evaluation of the above integral would give the probability for a $m \times m$ random Hermitian matrix Z with both Z and $I d-Z$ positive definite, with probability density function proportional to $\operatorname{det}(Z)^{n-m}$, to have trace $=t$. This seems to be an important problem in random matrix theory.

