
Cohomological dimension of open
subsets of the projective space

Matteo Varbaro

Dipartimento di Matematica, Università di Genova



ZARISKI VS ÉTALE TOPOLOGY
M o t i v a t i o n s

X⊂ Pn projective variety over K = K . By definition:

X = {P ∈ Pn : f1(P) = f2(P) = . . . = fr (P) = 0}.

What about the minimum r?

1. Combinatorial tools to approach such a minimum from above.

2. Cohomological ones to bound it from below.
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ZARISKI VS ÉTALE TOPOLOGY
M o t i v a t i o n s

X⊂ Pn projective variety over K = K . By definition:

X = {P ∈ Pn : f1(P) = f2(P) = . . . = fr (P) = 0}.

What about the minimum r?

1. Combinatorial tools to approach such a minimum from above.

2. Cohomological ones to bound it from below.
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ZARISKI VS ÉTALE TOPOLOGY
P r e c i s e s t a t e m e n t

Let U be a scheme over a field K . Its cohomological dimension is:

cd(U) = sup{i ∈ N : ∃ quasi-coherent sheaf F : H i (U,F) 6= 0}.

The étale cohomological dimension of U is:
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ZARISKI VS ÉTALE TOPOLOGY
O p e n s u b s e t s o f Pn

Take K = K and U ⊂ Pn open. Then

X = Pn \ U = {P ∈ Pn : f1(P) = f2(P) = . . . = fr (P) = 0}.

We have:

1. r ≥ cd(U) + 1.

2. r ≥ écd(U)− n + 1 = écd(U)− dim(U) + 1.
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The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = vs(Pd) ⊂ Pn, U = Pn \ X .

écd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro, 1973): char(K ) > 0, X ⊂ Pn d-dimensional
arithmetically Cohen-Macaulay scheme, U = Pn \ X . Then

cd(U) = n − d − 1

(Bruns-Schwänzl, 1990): char(K ) > 0, X = Ps × Pt ⊆ Pn.

2n − 3 = écd(U) > cd(U) + n = 2n − s − t − 1
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ZARISKI VS ÉTALE TOPOLOGY
S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = vs(Pd) ⊂ Pn, U = Pn \ X .
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ZARISKI VS ÉTALE TOPOLOGY
N o w a d a y s

CONJECTURE (Lyubeznik, 2002): écd(U) ≥ cd(U) + n
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ZARISKI VS ÉTALE TOPOLOGY
N o w a d a y s

CONJECTURE (Lyubeznik, 2002): écd(U) ≥ cd(U) + n
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3. What about U ⊂ Z open subset of a projective scheme Z
possibly different from Pn?
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ZARISKI VS ÉTALE TOPOLOGY
Q u e s t i o n s

1. What about X ⊂ Pn possibly singular and char(K ) = 0? Is
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ZARISKI VS ÉTALE TOPOLOGY
Q u e s t i o n s

1. What about X ⊂ Pn possibly singular and char(K ) = 0? Is
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COHOMOLOGICAL DIMENSION AND DEPTH
I n t r o d u c t i o n t o t h e p r o b l e m

(Peskine-Szpiro, 1973): char(K ) > 0, X ⊂ Pn d-dimensional
arithmetically Cohen-Macaulay scheme, U = Pn \ X . Then

cd(U) = n − d − 1

The above result fails in characteristic 0.

EXAMPLE: char(K ) = 0, X = Pr × Ps ⊂ Pn. Then:

cd(U) = n − 3.

dim(X ) = r + s, so the characteristic 0 analog of the theorem of
Peskine-Szpiro fails as soon as dim(X ) > 2.

What if dim(X ) ≤ 2?
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COHOMOLOGICAL DIMENSION AND DEPTH
T h e r e s u l t

(-,2012): char(K ) = 0, S = K [x1, . . . , xN ], I ⊂ S graded ideal
such that depth(S/I ) ≥ 3. Then, for any S-module M:

HN−2
I (M) = HN−1

I (M) = HN
I (M) = 0.

REMARK: If F is a q-c sheaf over Pn and S = K [x0, . . . , xn], let
M =

⊕
k∈Z Γ(X ,F(k)) be the associated S-module. If X ⊂ Pn,

I ⊂ S such that X ∼= Proj(S/I ) and U = Pn \ X , then:

H i
I (M) =

⊕
k∈Z

H i−1(U,F(k)) ∀i ≥ 2.

So the above theorem implies that, , if X is an ACM surface, then:

cd(U) = n − 3.
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COHOMOLOGICAL DIMENSION AND DEPTH
S k e t c h o f t h e p r o o f

We want to apply Ogus’ result. First of all we need to prove that
under our assumptions, if m = (x1, . . . , xN) :

Supp(HN−2
I (S)) ⊂ {m}.

Suppose not. Then ∃ ℘ ⊂ S prime of height h < N such that:

HN−2
IS℘

(S℘) ∼= HN−2
I (S)℘ 6= 0.

By classical results we can assume h = dim(S℘) = N − 1. By a
result of Ishebeck depth(S℘/IS℘) ≥ 2. Now combining a result of
Harthorne with one of Huneke-Lyubeznik we get a contradiction.
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COHOMOLOGICAL DIMENSION AND DEPTH
S k e t c h o f t h e p r o o f

As a second thing we reduce to K = C. Setting X = Proj(S/I ),
combining Hartshorne and Ogus, we will be done if we show that:

H1(Xh,C) = 0.

The exponential sequence:

0→ Z→ O(Xred)h → O
∗
(Xred)h

→ 0

implies H1(Xh,Z) ↪→ H1(Xh,O(Xred)h) is an injection.
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COHOMOLOGICAL DIMENSION AND DEPTH
S k e t c h o f t h e p r o o f

H1(Xh,Z) ↪→ H1(Xh,O(Xred)h) factorizes through H1(Xh,OXh
),

because the factorization at the sheaves level:

Z→ OXh
→ O(Xred)h

Therefore H1(Xh,Z) ↪→ H1(Xh,OXh
) is also an injection. Moreover

H1(Xh,OXh
) ∼= H1(X ,OX ) ∼= H2

m(S/I )0 = 0

So H1(Xh,Z) = 0. Finally, by the universal coefficient theorem:

H1(Xh,C) = 0.
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COHOMOLOGICAL DIMENSION AND DEPTH
A n a p p l i c a t i o n

The above argument implies an interesting fact: If I ⊂ S is a
graded ideal such that Proj(S/

√
I ) is smooth over K then:

dimK (H2
m(S/I )0) ≥ dimK (H2

m(S/
√
I )0).

A nice application is a generalization of a result of Singh and
Walther (2005): If I defines C × X , where C is a smooth
projective curve of positive genus and X is any positive
dimensional smooth projective scheme, then:

S/I is not set-theoretically Cohen-Macaulay.
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n and a ⊂ R is such that depth(R/a) ≥ 3, is it true that:

Hn−2
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