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The most used lower bounds, setting U = P" \ X, come from:

Cohomology over U.

Cohomology over Ug;.
What does provide a better lower bound?

In the first part of the talk we will discuss this question.



ZARISKI VS ETALE TOPOLOGY



ZARISKI VS ETALE TOPOLOGY



ZARISKI VS ETALE TOPOLOGY



Let U be a scheme over a field K. lts is:

= sup{i € N: 3 quasi-coherent sheaf F : H'(U, F) # 0}.



Let U be a scheme over a field K. Its cohomological dimension is:

cd(U) = sup{i € N: 3 quasi-coherent sheaf F : H'(U, F) # 0}.



Let U be a scheme over a field K. Its cohomological dimension is:

cd(U) = sup{i € N: 3 quasi-coherent sheaf F : H'(U, F) # 0}.

The is:

— sup{i € N: 3 torsion sheaf G : H'(Ug,G) # 0}.



Let U be a scheme over a field K. Its cohomological dimension is:

cd(U) = sup{i € N: 3 quasi-coherent sheaf F : H'(U, F) # 0}.

The étale cohomological dimension of U is:

écd(U) = sup{i € N: 3 torsion sheaf G : H'(Ug,G) # 0}.



Let U be a scheme over a field K. Its cohomological dimension is:

cd(U) = sup{i € N: 3 quasi-coherent sheaf F : H'(U, F) # 0}.

The étale cohomological dimension of U is:

écd(U) = sup{i € N: 3 torsion sheaf G : H'(Ug,G) # 0}.

QUESTION (Hartshorne, 1970):



Let U be a scheme over a field K. Its cohomological dimension is:

cd(U) = sup{i € N: 3 quasi-coherent sheaf F : H'(U, F) # 0}.

The étale cohomological dimension of U is:

écd(U) = sup{i € N: 3 torsion sheaf G : H'(Ug,G) # 0}.

QUESTION (Hartshorne, 1970):



Let U be a scheme over a field K. Its cohomological dimension is:

cd(U) = sup{i € N: 3 quasi-coherent sheaf F : H'(U, F) # 0}.

The étale cohomological dimension of U is:

écd(U) = sup{i € N: 3 torsion sheaf G : H'(Ug,G) # 0}.

QUESTION (Hartshorne, 1970): écd(U) < cd(U) + dim(U) ?
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\
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X C P" smooth, U =P"\ X.

Reduction to K = C;
Hi(U,]:) Ogus+ Hartshorne Hj(Xh, C);
Hi (X, C) 2% HI(Xa, 2/ pLL);

: Poincare’ duality Hn+,-(

Hi(Xe, Z/ pZ) Use, 2/ pZ).
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kEZ

So the above theorem implies that, , if X is an ACM surface, then:

cd(U) =n-3.
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