LYUBEZNIK NUMBERS AND DEPTH

Matteo Varbaro

Bass numbers

Let R be a noetherian ring and M an R-module. Consider a minimal injective resolution:

$$
0 \rightarrow M \rightarrow E^{0} \rightarrow E^{1} \rightarrow E^{2} \rightarrow \ldots
$$

The indecomposable injective R-modules are $E_{R}(R / \mathfrak{p})$ for some $\mathfrak{p} \in \operatorname{Spec} R$. The Bass numbers of M are defined as the number $\mu_{i}(\mathfrak{p}, M)$ of copies of $E_{R}(R / \mathfrak{p})$ occurring in E^{i}. In other words:

$$
E^{i} \cong \bigoplus_{\mathfrak{p} \in \operatorname{Spec}(R)} E_{R}(R / \mathfrak{p})^{\mu_{i}(\mathfrak{p}, M)}
$$

It turns out that $\mu_{i}(\mathfrak{p}, M)=\operatorname{dim}_{\kappa(\mathfrak{p})} \operatorname{Ext}_{R_{\mathfrak{p}}}^{i}\left(\kappa(\mathfrak{p}), M_{\mathfrak{p}}\right)$.
In particular, if M is finitely generated, each Bass number is finite.

Cohomology with support

Throughout the talk all the rings and schemes we consider are noetherian.

Given a closed subset Y of a regular n-dimensional scheme $X=\operatorname{Spec}(S)$, we will freely use the following facts on the S-modules $H_{Y}^{i}\left(X, \mathcal{O}_{X}\right)$ (which may be not finitely generated):
(i) (Grothendieck) $\Rightarrow H_{Y}^{i}\left(X, \mathcal{O}_{X}\right)=0$ if $i>\operatorname{dim}(X)$ and if $i<\operatorname{codim}_{X} Y$. Also, given any S-module M and $\mathfrak{m} \subseteq S$:

$$
H_{\mathfrak{m}}^{i}(M)=0 \quad \forall i>\operatorname{dim}(\operatorname{Supp}(M)) .
$$

(ii) (Hartshorne-Lichtenbaum) $\Rightarrow H_{Y}^{n}\left(X, \mathcal{O}_{X}\right)=0 \Leftrightarrow \operatorname{dim}(Y)>0$
(iii) (Peskine-Szpiro, Ogus) \Rightarrow If S is local, contains a field and $\operatorname{depth}\left(\mathcal{O}_{Y}(Y)\right) \geq 2$, then

$$
H_{Y}^{n-1}\left(X, \mathcal{O}_{X}\right)=H_{Y}^{n}\left(X, \mathcal{O}_{X}\right)=0
$$

Lyubeznik numbers

Theorem (Huneke-Sharp, Lyubeznik): If S is a regular local ring containing a field, then each Bass number of $H_{Y}^{i}\left(X, \mathcal{O}_{X}\right)$ is finite for any closed subset $Y \subseteq X=\operatorname{Spec}(S)$ and all $i \in \mathbb{N}$.

Definition-Theorem (Lyubeznik): R local containing a field. The completion \widehat{R} is isomorphic to S / I, where $I \subseteq S=k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$. The Bass numbers $\mu_{i}\left(\mathfrak{m}, H_{Y}^{n-j}\left(X, \mathcal{O}_{X}\right)\right)$, where $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$ and $Y=\mathcal{V}(I) \subseteq \operatorname{Spec}(S)=X$, depend only on $Z=\operatorname{Spec}(R)$, i and j. The Lyubeznik numbers of Z are therefore defined as:

$$
\lambda_{i, j}(Z)=\mu_{i}\left(\mathfrak{m}, H_{Y}^{n-j}\left(X, \mathcal{O}_{X}\right)\right)
$$

He also showed that $H_{\mathfrak{m}}^{i}\left(H_{Y}^{n-j}\left(X, \mathcal{O}_{X}\right)\right) \cong E_{S}(k)^{\lambda_{i, j}(Z)}$.

Basic properties

For a while, R will be a local ring containing a field k, $S=k\left[\left[x_{1}, \ldots, x_{n}\right]\right], \mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$ and $I \subseteq S$ s. $\mathrm{t} . \widehat{R} \cong S / I$, $X=\operatorname{Spec}(S), Y=\mathcal{V}(I) \subseteq X$ and $Z=\operatorname{Spec}(R)$.

If $\operatorname{dim}(Z)=d$, then $\operatorname{codim}_{X} Y=n-d$. In particular, if $j>d$, $H_{Y}^{n-j}\left(X, \mathcal{O}_{X}\right)$ vanishes, therefore:

$$
\lambda_{i, j}(Z)=0 \quad \forall j>d
$$

If the closure of $\mathfrak{p} \in X$ has dimension bigger than j, then

$$
H_{Y}^{n-j}\left(X, \mathcal{O}_{X}\right)_{\mathfrak{p}}=H_{\operatorname{Spec}\left(\mathcal{O}_{Y, \mathfrak{p}}\right)}^{n-j}\left(\operatorname{Spec}\left(S_{\mathfrak{p}}\right), \mathcal{O}_{\operatorname{Spec}\left(S_{\mathfrak{p}}\right)}\right)=0
$$

So $\operatorname{dim} \operatorname{Supp}\left(H_{Y}^{n-j}\left(X, \mathcal{O}_{X}\right)\right) \leq j$. In particular, $H_{\mathfrak{m}}^{i}\left(H_{Y}^{n-j}\left(X, \mathcal{O}_{X}\right)\right)$ vanishes whenever $i>j$, so that:

$$
\lambda_{i, j}(Z)=0 \quad \forall i>j
$$

The Lyubeznik table

Thus the following $(d+1) \times(d+1)$ upper triangular matrix is an invariant of a d-dimensional affine scheme Z as above:

$$
\Lambda(Z)=\left(\begin{array}{ccccc}
\lambda_{0,0} & \lambda_{0,1} & \lambda_{0,2} & \cdots & \lambda_{0, d} \\
0 & \lambda_{1,1} & \lambda_{1,2} & \cdots & \lambda_{1, d} \\
0 & 0 & \lambda_{2,2} & \cdots & \lambda_{2, d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \lambda_{d, d}
\end{array}\right)
$$

(here $\lambda_{i, j}=\lambda_{i, j}(Z)$). The above matrix is pretty mysterious, however there are various results describing some of the entries...

Easy statements

(i) If all the irreducible components of Y have dimension at least b, then:

$$
\lambda_{i, i}(Z)=0 \quad \forall i<b .
$$

Since $\mathcal{O}_{Y, \mathfrak{p}}$ has positive dimension for any $\mathfrak{p} \in X$ whose closure has dimension i, we have $\operatorname{dim} \operatorname{Supp}\left(H_{Y}^{n-i}\left(X, \mathcal{O}_{X}\right)\right)<i$ for all $i<b$.
(ii) If Y is a complete intersection, then $H_{Y}^{n-j}\left(X, \mathcal{O}_{X}\right)=0$ for all $j<d$ because $X \backslash Y$ is covered by $n-d$ affines. So $\lambda_{i, j}(Z)=0$ if $j<d$. Furthermore, because the second page of the spectral sequence

$$
\left.E_{2}^{i, j}=H_{\mathfrak{m}}^{i}\left(H_{Y}^{n-j}\left(X, \mathcal{O}_{X}\right)\right)\right) \Rightarrow H_{\mathfrak{m}}^{n+i-j}(S)
$$

is full of zeroes, it is easy to infer that $\lambda_{i, d}(Z)=\delta_{i, d}$.

More serious results

Theorem (Zhang): $\lambda_{d, d}(Z)$ is the number of connected components of the codimension 1 graph of $Y \times{ }_{k} \bar{k}$.

Theorem (Blickle-Bondu): If $\mathcal{O}_{Y, \mathfrak{p}}$ is a complete intersection for any nonclosed point $\mathfrak{p} \in Y$, then $\lambda_{i, d}(Z)-\delta_{i, d}=\lambda_{0, d-i+1}(Z)$ and $\lambda_{i, j}(Z)$ vanishes whenever $0<i$ and $j<d$.

Theorem (Garcia Lopez-Sabbah, Blickle-Bondu, Blickle): If, besides satisfying the condition above, $R=\mathcal{O}_{V, x}$ for a closed k-subvariety V of a smooth variety, then

$$
\lambda_{0, j}(Z)= \begin{cases}\operatorname{dim}_{\mathbb{C}} H_{\{x\}}^{j}\left(V_{\text {an }}, \mathbb{C}\right) & \text { if } k=\mathbb{C} \\ \operatorname{dim}_{\mathbb{Z} / p \mathbb{Z}} H_{\{x\}}^{j}\left(V_{\text {ét }}, \mathbb{Z} / p \mathbb{Z}\right) & \text { if } k=\mathbb{Z} / p \mathbb{Z}\end{cases}
$$

Projective invariant?

Conjecture (Lyubeznik): Let X be a projective scheme over k. The Lyubeznik table of the spectrum of the coordinate ring of X (localized at the maximal irrelevant) is actually an invariant of X.

All the previous results provide evidence for the above conjecture.
(Zhang): True in positive characteristic!

Vanishing of $\lambda_{i, j}$ from the depth

Proposition: $\lambda_{i, j}(Z)=0$ for all $j<\operatorname{depth}(R)$ and $i \geq j-1$.
Proof: If we pick $\mathfrak{p} \in Y$ such that $\operatorname{dim}(\mathcal{V}(\mathfrak{p}))=j-1$, then:

$$
\operatorname{depth}\left(\mathcal{O}_{Y, \mathfrak{p}}\right) \geq 2
$$

which thereby implies

$$
H_{Y}^{n-j}\left(X, \mathcal{O}_{X}\right)_{\mathfrak{p}} \cong H_{\operatorname{Spec}\left(\mathcal{O}_{Y, \mathfrak{p}}\right)}^{n-j}\left(\operatorname{Spec}\left(S_{\mathfrak{p}}\right), \mathcal{O}_{\operatorname{Spec}\left(S_{\mathfrak{p}}\right)}\right)=0
$$

so that $\operatorname{dim} \operatorname{Supp}\left(H_{Y}^{n-j}\left(X, \mathcal{O}_{X}\right)\right)<j-1$.

Vanishing of $\lambda_{i, j}$ from the depth

Notice that, if $\operatorname{char}(k)>0$, then $\lambda_{i, j}(Z)=0$ for all $j<\operatorname{depth}(R)$. Proof: Peskine-Szpiro $\Rightarrow H_{Y}^{n-j}\left(X, \mathcal{O}_{X}\right)=0 \quad \forall j<\operatorname{depth}(S / I) . \square$

That is false in characteristic 0 : consider $R=\left(k[\mathbb{X}] / I_{t}(\mathbb{X})\right)_{(\mathbb{X})}$ where \mathbb{X} is an $m \times n$-matrix of indeterminates. By Bruns-Schwänzl:

$$
\lambda_{i, j}(Z)= \begin{cases}0 & \text { if } j<t^{2}-1 \\ 0 & \text { if } j=t^{2}-1 \text { and } i>0 \\ 1 & \text { if } j=t^{2}-1 \text { and } i=0 \\ ? ? ? & \text { otherwise }\end{cases}
$$

But R is Cohen-Macaulay of dimension $(t-1)(m+n-t+1)$.

Vanishing of $\lambda_{i, j}$ from the depth

Conjecture: $\lambda_{i, j}(Z)=0 \quad \forall j<\operatorname{depth}(R)$ and $i \geq j-2$.
For example, according to this conjecture, the Lyubeznik table of a 7-dimensional local ring of depth 6 should look like:

$$
\Lambda(Z)=\left(\begin{array}{llllllll}
0 & 0 & 0 & * & * & * & * & * \\
0 & 0 & 0 & 0 & * & * & * & * \\
0 & 0 & 0 & 0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & *
\end{array}\right)
$$

Vanishing from the depth

Proposition: The above conjecture is equivalent to show that, if $\operatorname{depth}(S / I) \geq 3$, then:

$$
H_{Y}^{n-2}\left(X, \mathcal{O}_{X}\right)=H_{Y}^{n-1}\left(X, \mathcal{O}_{X}\right)=H_{Y}^{n}\left(X, \mathcal{O}_{X}\right)=0
$$

Proof: \Rightarrow : In any case $H_{Y}^{n-2}\left(X, \mathcal{O}_{X}\right)$ is supported only at the maximal ideal of S, so $H_{Y}^{n-2}\left(X, \mathcal{O}_{X}\right) \cong E(k)^{s}$ (Lyubeznik), so $\lambda_{0,2}(Z)=s$. For the converse implication argue like in the proof of few slides above.

Vanishing from the depth

Theorem (-): If Y is a closed subset of \mathbb{A}^{n} defined by a graded ideal and such that depth $\left(O_{Y}(Y)\right) \geq 3$, then

$$
H_{Y}^{n-2}\left(\mathbb{A}^{n}, \mathcal{O}_{\mathbb{A}^{n}}\right)=H_{Y}^{n-1}\left(\mathbb{A}^{n}, \mathcal{O}_{\mathbb{A}^{n}}\right)=H_{Y}^{n}\left(\mathbb{A}^{n}, \mathcal{O}_{\mathbb{A}^{n}}\right)=0
$$

Equivalently, if U is an open subset of \mathbb{P}^{n} such that the coordinate ring of the complement has depth at least 3 , then

$$
H^{n-2}(U, \mathcal{F})=H^{n-1}(U, \mathcal{F})=H^{n}(U, \mathcal{F})=0
$$

for any quasi-coherent sheaf \mathcal{F} on \mathbb{P}^{n}.

Vanishing from the depth

The coordinate ring of the Segre product

$$
\mathbb{P}^{1} \times \mathbb{P}^{2} \subseteq \mathbb{P}^{5}
$$

is a Cohen-Macaulay 4-dimensional graded ring. However, one can show that, in characteristic 0 , there is $m \in \mathbb{Z}$ such that:

$$
H^{2}\left(\mathbb{P}^{5} \backslash\left(\mathbb{P}^{1} \times \mathbb{P}^{2}\right), \mathcal{O}_{\mathbb{P}^{5}}(m)\right) \neq 0
$$

Set-theoretically Cohen-Macaulayness

Corollary: Let V be a smooth projective variety with nonzero irregularity over a field of characteristic 0 . Then there is no projective scheme wich is arithmetically Cohen-Macaulay and set-theoretically the same as V.

To my knowledge, the first example of an irreducible variety not "set-theoretically Cohen-Macaulay" has been exhibited in 2004 by Singh-Walther by using reduction to characteristic p methods.

Question: Are there analog examples for connected curves? Is there a graded ideal $I \subseteq \mathbb{C}[a, b, c, d]$ defining set-theoretically

$$
X=\left\{\left[s^{4}, s^{3} t, s t^{3}, t^{4}\right]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}
$$

such that $\mathbb{C}[a, b, c, d] / I$ is Cohen-Macaulay?

THANK YOU !!!

