
Cohomological and projective dimensions



COHOMOLOGICAL AND PROJECTIVE DIMENSIONS
D e f i n i t i o n s

Let R be a ring, I ⊂ R an ideal and M an R-module. By

H i
I (M)

we mean the ith local cohomology module of M with support in I .
One way to think at it is by the following isomorphism:

H i
I (M) ∼= lim−→ExtiR(R/In,M)

where (In)n∈N is an inverse system of ideals cofinal with (I n)n∈N:

∀ n ∈ N In+1 ⊂ In and ∃ k,m ∈ N : Ik ⊂ I n and Im ⊂ In
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COHOMOLOGICAL AND PROJECTIVE DIMENSIONS
D e f i n i t i o n s

The cohomological dimension of I is the numerical invariant:

cd(R, I ) = inf{c ∈ N : H i
I (M) = 0 ∀ M and i > c}.

It is not difficult to prove that:

cd(R, I ) = inf{c ∈ N : H i
I (R) = 0 ∀ i > c}.

The very starting results are due to Grothendieck:

ht(I ) ≤ cd(R, I ) ≤ dim R.
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COHOMOLOGICAL AND PROJECTIVE DIMENSIONS
A r e s u l t o f P e s k i n e - S z p i r o

Let R = K [x1, . . . , xn] and I = (f1, . . . , fr ) ⊂ R graded.

Peskine-Szpiro: If char(K ) = p > 0, then

cd(R, I ) ≤ pd(R/I ) = n − depth(R/I )

The proof is easy; for all e ∈ N:

I [pe ] = (f pe

1 , . . . , f pe

r ).

Notice that I [pe ] = F e(I )R, where F e : R → R is the eth-iterated

of the Frobenius. By a result of Kunz F e is flat, so we conclude since:

H i
I (R) ∼= lim−→ExtiR(R/I [pe ],R).
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COHOMOLOGICAL AND PROJECTIVE DIMENSIONS
C h a r a c t e r i s t i c 0

If char(K ) = 0 the above argument of course is not applicable.
Actually, if I is the ideal of t-minors of the generic r × s matrix:

Bruns-Schwänzl: cd(I ) = rs − t2 + 1
.

On the other hand pd(R/I ) = (r − t + 1)(s − t + 1), so:

cd(R, I ) > pd(R/I ) (a part from trivial cases).

As one can check, for all p ≤ n − 4, this provides examples of
graded ideals I ⊂ R for which cd(R, I ) > pd(R/I ) = p.

QUESTION: If pd(R/I ) ≤ n − 3, is cd(R, I ) ≤ n − 3???
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COHOMOLOGICAL AND PROJECTIVE DIMENSIONS
cd(R, I ) ≤ n − 2

The case cd(R, I ) ≤ n − 2 has been completely characterized by
Peskine-Szpiro, Ogus, Huneke-Lyubeznik:
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COHOMOLOGICAL AND PROJECTIVE DIMENSIONS
T h e r e s u l t

Let K be a field of characteristic 0 and I ⊂ R = K [x1, . . . , xn] a
graded ideal such that pd(R/I ) ≤ n − 3. Then:

cd(R, I ) ≤ n − 3.
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COHOMOLOGICAL AND PROJECTIVE DIMENSIONS
A c o n s e q u e n c e

Singh-Walther: Let I ⊂ R be the ideal defining E × P1 ⊂ P5, where
E ⊂ P2 is an elliptic curve defined over Z (char(K ) = 0).Then R/J is not
Cohen-Macaulay for all graded ideals such that

√
J = I .

Their proof relies on the fact that such an R/I has F -pure type.

However, this is a direct consequence of our result: Indeed, a well-known
theorem of Hartshorne implies cd(R, I ) = 4 = 6− 2 = n − 2. Thus if
J ⊂ R is a graded ideal such that R/J is CM and

√
J = I , so

depth(R/J) = dim(R/J) = 3, then cd(R, I ) = cd(R, J) ≤ n − 3.

Actually a similar argument works to show the following:

Let I ⊂ R be the ideal defining of C × X ⊂ Pn−1 (char(K ) = 0), where

C is a projective smooth curve of genus > 0 and X is any projective

scheme. Then depth(R/J) ≤ 2 for all graded ideals such that
√

J =
√

I .
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COHOMOLOGICAL AND PROJECTIVE DIMENSIONS
T h e g e o m e t r i c p o i n t o f v i e w

Let I ⊂ R = K [x1, . . . , xn], X = Proj(R/I ) ⊂ Pn−1 and U = Pn−1 \ X .
By the Grothendieck-Serre correspondence cd(R, I )− 1 is equal to:

cd(U) = inf{s : H i (U,F) = 0 ∀ i > s and F coherent}

Ogus: If char(K ) = 0, then cd(U) < n − s is and only if:

(i) Supp(H i
I (R)) ⊂ {m} for all i > n − s.

(ii) dimK H i
DR(X ) = i + 1 (mod 2) for all i < s − 1,

where H i
DR denotes algebraic DeRham cohomology.
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Our goal is to prove cd(R, I ) ≤ n − 3 provided depth(R/I ) ≥ 3.
So we need to show that cd(U) < n − 3. Since char(K ) = 0,
by Ogus’ result we must prove:

(i) Supp(H i
I (R)) ⊂ {m} for all i > n − 3.

√

(ii) H0
DR(X ) ∼= K .

(iii) H1
DR(X ) = 0.
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T r a s c e n d e n t a l m e t h o d s

We can assume K = C. Let us denote Xh the analytic space
associated to X .

Hartshorne: H i
DR(X ) ∼= H i (Xh,C) (singular cohomology).

depth(R/I ) ≥ 3 =⇒ X is connected. Moreover it is well known:

X connected (Zariski) ⇐⇒ Xh connected (euclidean)

Thus H0
DR(X ) ∼= H0(Xh,C) ∼= C ((ii)

√
).

So it remains to show (iii), i.e. H1(Xh,C) = 0.
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The proof of (iii) relies on the celebrated exponential sequence:

0→ ZXh

·2πi−−→ OXh

expXh−−−→ O∗Xh
→ 0.

This is well known, but references can be found only if X is
reduced (I radical), so I would like to explain it in the general case.
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expXh−−−→ O∗Xh
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where expXh
(f ) = expCn(f ), is a well-defined map.
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To show that expXh
is well-defined we can argue on the stalks. Let

P be a point of Xh. We can assume that P = 0. So let a ⊂ A =
C{x1, . . . , xn} be so that OCn,0

∼= A and OXh,0
∼= A/a. Let f ∈ a:

expCn,0(f )− 1 =
∑
m≥1

f m/m! ∈ a.

So it makes sense to write the commutative diagram:

OCn
expCn−−−−→ O∗Cny y

OXh

expXh−−−−→ O∗Xh

Notice that expXh
is surjective.
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Now we want to show that:

0→ ZXh

·2πi−−→ OXh

expXh−−−→ O∗Xh
→ 0

is exact. For the discussion above we have just to show exactness in the
middle. Let f ∈ A such that expCn,0(f )− 1 ∈ a. Then expCn,0(f )− 1

∈
√

a. Since the above sequence is exact if X is reduced, there exist
k ∈ Z such that f ′ = f − 2πik ∈

√
a. But

expCn,0(f ′)− 1 =
∑
m≥1

f ′m/m! = f ′ · (1 +
∑
m≥1

f ′m/(m + 1)!) ∈ a.

The element g =
∑

m≥1 f ′m/(m + 1)! ∈
√

a. This means that 1 + g is

invertible in A, so f ′ is actually an element of a.
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middle. Let f ∈ A such that expCn,0(f )− 1 ∈ a. Then expCn,0(f )− 1
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a. Since the above sequence is exact if X is reduced, there exist
k ∈ Z such that f ′ = f − 2πik ∈

√
a. But

expCn,0(f ′)− 1 =
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f ′m/m! = f ′ · (1 +
∑
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f ′m/(m + 1)!) ∈ a.

The element g =
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COHOMOLOGICAL AND PROJECTIVE DIMENSIONS
T h e c o n c l u s i o n

The exponential sequence yields a long exact sequence of abelian groups:

0→ H0(Xh,ZXh
)→ H0(Xh,OXh

)→ H0(Xh,O∗Xh
)→

H1(Xh,ZXh
)→ H1(Xh,OXh

)→ H1(Xh,O∗Xh
)→ . . .

By GAGA H0(Xh,OXh
) ∼= H0(X ,OX ), and the latter is an artinian

C-algebra. For such an algebra, it is easy to show that the exponential
map from the additive group to its multiplicative group of units is
surjective. So H0(Xh,OXh

)→ H0(Xh,O∗Xh
) is surjective, and thus

H1(Xh,ZXh
)→ H1(Xh,OXh

)

is injective.
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COHOMOLOGICAL AND PROJECTIVE DIMENSIONS
T h e c o n c l u s i o n

Using again GAGA, H1(Xh,OXh
) ∼= H1(X ,OX ). Moreover

H1(X ,OX ) ∼= H2
m(R/I )0

where R = C[x1, . . . , xn], I ⊂ R is such that X ∼= Proj(R/I ) and m

is the maximal irrelevant. Our assumption was depth(R/I ) ≥ 3. In
particular H2

m(R/I ) = 0, so H1(Xh,OXh
) = 0. Eventually, by the

injection H1(Xh,ZXh
) ↪→ H1(Xh,OXk

) we deduce H1(Xh,Z) ∼=
H1(Xh,ZXh

) = 0. By the universal coefficient theorem

H1(Xh,C) = 0,

and this was the missing piece (iii) to infer cd(R, I ) ≤ n − 3. �
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