Cohomological and projective dimensions

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 DefinitiensLet R be a ring, $I \subset R$ an ideal and M an R-module. By

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let R be a ring, $I \subset R$ an ideal and M an R-module.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

portinitions

Let R be a ring, $I \subset R$ an ideal and M an R-module. By

$$
H_{i}^{i}(M)
$$

we mean the i th local cohomology module of M with support in I.
One way to think at it is by the following isomorphism:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

onfinitions

Let R be a ring, $I \subset R$ an ideal and M an R-module. By

$$
H_{l}^{i}(M)
$$

we mean the i th local cohomology module of M with support in I.
One way to think at it is by the following isomorphism:
$H_{l}^{i}(M) \cong \lim _{\longrightarrow} \operatorname{Ext}_{R}^{i}\left(R / I_{n}, M\right)$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let R be a ring, $I \subset R$ an ideal and M an R-module. By

$$
H_{l}^{i}(M)
$$

we mean the i th local cohomology module of M with support in I.
One way to think at it is by the following isomorphism:

$$
H_{l}^{i}(M) \cong \underset{\lim }{ } \operatorname{Ext}_{R}^{i}\left(R / I_{n}, M\right)
$$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let R be a ring, $I \subset R$ an ideal and M an R-module. By

$$
H_{l}^{i}(M)
$$

we mean the i th local cohomology module of M with support in I. One way to think at it is by the following isomorphism:

$$
H_{l}^{i}(M) \cong \lim _{\longrightarrow} \operatorname{Ext}_{R}^{i}\left(R / I_{n}, M\right)
$$

where $\left(I_{n}\right)_{n \in \mathbb{N}}$ is an inverse system of ideals cofinal with $\left(I^{n}\right)_{n \in \mathbb{N}}$:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let R be a ring, $I \subset R$ an ideal and M an R-module. By

$$
H_{i}^{i}(M)
$$

we mean the i th local cohomology module of M with support in I. One way to think at it is by the following isomorphism:

$$
H_{l}^{i}(M) \cong \lim _{\longrightarrow} \operatorname{Ext}_{R}^{i}\left(R / I_{n}, M\right)
$$

where $\left(I_{n}\right)_{n \in \mathbb{N}}$ is an inverse system of ideals cofinal with $\left(I^{n}\right)_{n \in \mathbb{N}}$:

$$
\forall n \in \mathbb{N} I_{n+1} \subset I_{n} \text { and } \exists k, m \in \mathbb{N}: I_{k} \subset I^{n} \text { and } I^{m} \subset I_{n}
$$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let R be a ring, $I \subset R$ an ideal and M an R-module. By

$$
H_{i}^{i}(M)
$$

we mean the i th local cohomology module of M with support in I. One way to think at it is by the following isomorphism:

$$
H_{l}^{i}(M) \cong \lim _{\longrightarrow} \operatorname{Ext}_{R}^{i}\left(R / I_{n}, M\right)
$$

where $\left(I_{n}\right)_{n \in \mathbb{N}}$ is an inverse system of ideals cofinal with $\left(I^{n}\right)_{n \in \mathbb{N}}$:

$$
\forall n \in \mathbb{N} \quad I_{n+1} \subset I_{n} \text { and } \exists k, m \in \mathbb{N}: I_{k} \subset I^{n} \text { and } I^{m} \subset I_{n}
$$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let R be a ring, $I \subset R$ an ideal and M an R-module. By

$$
H_{i}^{i}(M)
$$

we mean the i th local cohomology module of M with support in I. One way to think at it is by the following isomorphism:

$$
H_{l}^{i}(M) \cong \lim _{\longrightarrow} \operatorname{Ext}_{R}^{i}\left(R / I_{n}, M\right)
$$

where $\left(I_{n}\right)_{n \in \mathbb{N}}$ is an inverse system of ideals cofinal with $\left(I^{n}\right)_{n \in \mathbb{N}}$:

$$
\forall n \in \mathbb{N} \quad I_{n+1} \subset I_{n} \text { and } \exists k, m \in \mathbb{N}: I_{k} \subset I^{n} \text { and } I^{m} \subset I_{n}
$$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 DefinitionsThe cohomological dimension of I is the numerical invariant:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

ofecinitions

The cohomological dimension of I is the numerical invariant:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

ofatinitions

The cohomological dimension of I is the numerical invariant:

$$
\operatorname{cd}(R, I)=\inf \left\{c \in \mathbb{N}: H_{l}^{i}(M)=0 \quad \forall M \text { and } i>c\right\} .
$$

It is not difficult to prove that:
$\operatorname{cd}(R, I)=\inf \left\{c \in \mathbb{N}: H_{l}^{i}(R)=0\right.$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Definitions

The cohomological dimension of I is the numerical invariant:

$$
\operatorname{cd}(R, I)=\inf \left\{c \in \mathbb{N}: H_{l}^{i}(M)=0 \quad \forall M \text { and } i>c\right\} .
$$

It is not difficult to prove that:
$\operatorname{cd}(R, I)=\inf \left\{c \in \mathbb{N}: H_{l}^{i}(R)=0 \quad \forall i>c\right\}$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The cohomological dimension of I is the numerical invariant:

$$
\operatorname{cd}(R, I)=\inf \left\{c \in \mathbb{N}: H_{l}^{i}(M)=0 \quad \forall M \text { and } i>c\right\} .
$$

It is not difficult to prove that:

$$
\operatorname{cd}(R, I)=\inf \left\{c \in \mathbb{N}: H_{l}^{i}(R)=0 \quad \forall i>c\right\}
$$

The very starting results are due to Grothendieck:
$h t(I) \leq \operatorname{cd}(R, I) \leq \operatorname{dim} R$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The cohomological dimension of I is the numerical invariant:

$$
\operatorname{cd}(R, I)=\inf \left\{c \in \mathbb{N}: H_{l}^{i}(M)=0 \quad \forall M \text { and } i>c\right\} .
$$

It is not difficult to prove that:

$$
\operatorname{cd}(R, I)=\inf \left\{c \in \mathbb{N}: H_{l}^{i}(R)=0 \quad \forall i>c\right\}
$$

The very starting results are due to Grothendieck:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The cohomological dimension of I is the numerical invariant:

$$
\operatorname{cd}(R, I)=\inf \left\{c \in \mathbb{N}: H_{l}^{i}(M)=0 \quad \forall M \text { and } i>c\right\} .
$$

It is not difficult to prove that:

$$
\operatorname{cd}(R, I)=\inf \left\{c \in \mathbb{N}: H_{l}^{i}(R)=0 \quad \forall i>c\right\}
$$

The very starting results are due to Grothendieck:

$$
h t(I) \leq \operatorname{cd}(R, I) \leq \operatorname{dim} R .
$$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The cohomological dimension of I is the numerical invariant:

$$
\operatorname{cd}(R, I)=\inf \left\{c \in \mathbb{N}: H_{l}^{i}(M)=0 \quad \forall M \text { and } i>c\right\} .
$$

It is not difficult to prove that:

$$
\operatorname{cd}(R, I)=\inf \left\{c \in \mathbb{N}: H_{l}^{i}(R)=0 \quad \forall i>c\right\}
$$

The very starting results are due to Grothendieck:

$$
h t(I) \leq \operatorname{cd}(R, I) \leq \operatorname{dim} R .
$$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

A hesult of Deskine-Szpiro

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ and $I=\left(f_{1}, \ldots, f_{r}\right) \subset R$ graded.
Deckine Szpiro. If char $(K)-p>0$ then

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

A result of peskine szoira

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ and $I=\left(f_{1}, \ldots, f_{r}\right) \subset R$ graded.
Peskine-Szpiro: If $\operatorname{char}(K)=p>0$, then

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ and $I=\left(f_{1}, \ldots, f_{r}\right) \subset R$ graded.
Peskine-Szpiro: If $\operatorname{char}(K)=p>0$, then

$$
\operatorname{cd}(R, I) \leq \operatorname{pd}(R / I)=n-\operatorname{depth}(R / I)
$$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ and $I=\left(f_{1}, \ldots, f_{r}\right) \subset R$ graded.
Peskine-Szpiro: If $\operatorname{char}(K)=p>0$, then

$$
\operatorname{cd}(R, I) \leq \operatorname{pd}(R / I)=n-\operatorname{depth}(R / I)
$$

The proof is easy; for all $e \in \mathbb{N}$:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ and $I=\left(f_{1}, \ldots, f_{r}\right) \subset R$ graded.
Peskine-Szpiro: If $\operatorname{char}(K)=p>0$, then

$$
\operatorname{cd}(R, I) \leq \operatorname{pd}(R / I)=n-\operatorname{depth}(R / I)
$$

The proof is easy;

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ and $I=\left(f_{1}, \ldots, f_{r}\right) \subset R$ graded.
Peskine-Szpiro: If $\operatorname{char}(K)=p>0$, then

$$
\operatorname{cd}(R, I) \leq \operatorname{pd}(R / I)=n-\operatorname{depth}(R / I)
$$

The proof is easy; for all $e \in \mathbb{N}$:

Notice that $\left.\| \rho^{e}\right]=F^{e}(I) R$, where $F^{e}: R \rightarrow R$ is the eth-iterated
of the Frobenius.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ and $I=\left(f_{1}, \ldots, f_{r}\right) \subset R$ graded .
Peskine-Szpiro: If $\operatorname{char}(K)=p>0$, then

$$
\operatorname{cd}(R, I) \leq \operatorname{pd}(R / I)=n-\operatorname{depth}(R / I)
$$

The proof is easy; for all $e \in \mathbb{N}$:

$$
I^{\left[p^{e}\right]}=\left(f_{1}^{p^{e}}, \ldots, f_{r}^{p^{e}}\right)
$$

Notice that $\left[\left[^{\left[p^{e}\right]}=F^{e}(I) R\right.\right.$, where $F^{e}: R \rightarrow R$ is the eth-iterated
of the Frobenius. By a result of Kunz F^{e} is flat,

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ and $I=\left(f_{1}, \ldots, f_{r}\right) \subset R$ graded .
Peskine-Szpiro: If $\operatorname{char}(K)=p>0$, then

$$
\operatorname{cd}(R, I) \leq \operatorname{pd}(R / I)=n-\operatorname{depth}(R / I)
$$

The proof is easy; for all $e \in \mathbb{N}$:

$$
I^{\left[p^{e}\right]}=\left(f_{1}^{p^{e}}, \ldots, f_{r}^{p^{e}}\right)
$$

Notice that $I_{\left[p^{e}\right]}=F^{e}(I) R$, where $F^{e}: R \rightarrow R$ is the eth-iterated of the Frobenius.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ and $I=\left(f_{1}, \ldots, f_{r}\right) \subset R$ graded.
Peskine-Szpiro: If $\operatorname{char}(K)=p>0$, then

$$
\operatorname{cd}(R, I) \leq \operatorname{pd}(R / I)=n-\operatorname{depth}(R / I)
$$

The proof is easy; for all $e \in \mathbb{N}$:

$$
I^{\left[p^{e}\right]}=\left(f_{1}^{p^{e}}, \ldots, f_{r}^{p^{e}}\right)
$$

Notice that $I I^{\left[p^{e}\right]}=F^{e}(I) R$, where $F^{e}: R \rightarrow R$ is the eth-iterated of the Frobenius. By a result of $\mathrm{Kunz} F^{e}$ is flat,

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ and $I=\left(f_{1}, \ldots, f_{r}\right) \subset R$ graded.
Peskine-Szpiro: If $\operatorname{char}(K)=p>0$, then

$$
\operatorname{cd}(R, I) \leq \operatorname{pd}(R / I)=n-\operatorname{depth}(R / I)
$$

The proof is easy; for all $e \in \mathbb{N}$:

$$
I^{\left[p^{e}\right]}=\left(f_{1}^{p^{e}}, \ldots, f_{r}^{p^{e}}\right)
$$

Notice that $I I^{\left[p^{e}\right]}=F^{e}(I) R$, where $F^{e}: R \rightarrow R$ is the eth-iterated of the Frobenius. By a result of Kunz F^{e} is flat, so we conclude since:
$H_{j}^{i}(R) \cong \lim _{\longrightarrow} \operatorname{Ext}_{R}^{i}\left(R / / \rho^{\left[\rho^{e}\right]}, R\right)$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ and $I=\left(f_{1}, \ldots, f_{r}\right) \subset R$ graded.
Peskine-Szpiro: If $\operatorname{char}(K)=p>0$, then

$$
\operatorname{cd}(R, I) \leq \operatorname{pd}(R / I)=n-\operatorname{depth}(R / I)
$$

The proof is easy; for all $e \in \mathbb{N}$:

$$
I^{\left[p^{e}\right]}=\left(f_{1}^{p^{e}}, \ldots, f_{r}^{p^{e}}\right)
$$

Notice that $I I^{\left[p^{e}\right]}=F^{e}(I) R$, where $F^{e}: R \rightarrow R$ is the eth-iterated of the Frobenius. By a result of Kunz F^{e} is flat, so we conclude since:

$$
H_{l}^{i}(R) \cong \lim _{\longrightarrow} \operatorname{Ext}_{R}^{i}\left(R / I^{\left[p^{e}\right]}, R\right)
$$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ and $I=\left(f_{1}, \ldots, f_{r}\right) \subset R$ graded.
Peskine-Szpiro: If $\operatorname{char}(K)=p>0$, then

$$
\operatorname{cd}(R, I) \leq \operatorname{pd}(R / I)=n-\operatorname{depth}(R / I)
$$

The proof is easy; for all $e \in \mathbb{N}$:

$$
I^{\left[p^{e}\right]}=\left(f_{1}^{p^{e}}, \ldots, f_{r}^{p^{e}}\right)
$$

Notice that $I I^{\left[p^{e}\right]}=F^{e}(I) R$, where $F^{e}: R \rightarrow R$ is the eth-iterated of the Frobenius. By a result of Kunz F^{e} is flat, so we conclude since:

$$
H_{l}^{i}(R) \cong \lim _{\longrightarrow} \operatorname{Ext}_{R}^{i}\left(R / I^{\left[p^{e}\right]}, R\right)
$$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

If char $(K)=0$ the above argument of course is not applicable. Actually, if I is the ideal of t-minors of the generic $r \times s$ matrix:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

If char $(K)=0$ the above argument of course is not applicable.
Actually, if I is the ideal of t-minors of the generic $r \times s$ matrix:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

If char $(K)=0$ the above argument of course is not applicable. Actually, if I is the ideal of t-minors of the generic $r \times s$ matrix:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

If char $(K)=0$ the above argument of course is not applicable. Actually, if I is the ideal of t-minors of the generic $r \times s$ matrix:

$$
\text { Bruns-Schwänzl: } \operatorname{cd}(I)=r s-t^{2}+1
$$

On the other hand $\operatorname{pd}(R / 1)=(r-t+1)(s-t+1)$, so:
$\mathrm{cd}(R, I)>\operatorname{pd}(R / I)$ (a part from trivial cases).

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

If char $(K)=0$ the above argument of course is not applicable. Actually, if I is the ideal of t-minors of the generic $r \times s$ matrix:

$$
\text { Bruns-Schwänzl: } \operatorname{cd}(I)=r s-t^{2}+1
$$

On the other hand $\operatorname{pd}(R / I)=(r-t+1)(s-t+1)$, so:
$\mathrm{cd}(R, I)>\mathrm{pd}(R / I)$ (a part from trivial cases). As on can check for all $n<n-4$ thic nrovidoc avamined

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

If char $(K)=0$ the above argument of course is not applicable. Actually, if l is the ideal of t-minors of the generic $r \times s$ matrix:

$$
\text { Bruns-Schwänzl: } \operatorname{cd}(I)=r s-t^{2}+1
$$

On the other hand $\operatorname{pd}(R / I)=(r-t+1)(s-t+1)$, so:
$\mathrm{cd}(R, I)>\mathrm{pd}(R / I)$ (a part from trivial cases).
As one can check, for all $p \leq n-4$, this provides examples of graded ideals $I \subset R$ for which $\operatorname{cd}(R, I)>\operatorname{pd}(R / I)=p$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

If char $(K)=0$ the above argument of course is not applicable.
Actually, if I is the ideal of t-minors of the generic $r \times s$ matrix:

$$
\text { Bruns-Schwänzl: } \operatorname{cd}(I)=r s-t^{2}+1
$$

On the other hand $\operatorname{pd}(R / I)=(r-t+1)(s-t+1)$, so:

$$
\mathrm{cd}(R, I)>\operatorname{pd}(R / I) \text { (a part from trivial cases). }
$$

As one can check, for all $p \leq n-4$, \square graded ideals $/ \subset R$ for which $\operatorname{cd}(R, /)>\operatorname{pd}(R / I)=p$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

If char $(K)=0$ the above argument of course is not applicable. Actually, if I is the ideal of t-minors of the generic $r \times s$ matrix:

$$
\text { Bruns-Schwänzl: } \operatorname{cd}(I)=r s-t^{2}+1
$$

On the other hand $\operatorname{pd}(R / I)=(r-t+1)(s-t+1)$, so:

$$
\mathrm{cd}(R, I)>\operatorname{pd}(R / I) \text { (a part from trivial cases). }
$$

As one can check, for all $p \leq n-4$, this provides examples of graded ideals $I \subset R$ for which $\operatorname{cd}(R, I)>\operatorname{pd}(R / I)=p$.

QUESTION: If $\operatorname{pd}(R / I) \leq n-3$, is $\operatorname{cd}(R, /) \leq n-3$???

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

If char $(K)=0$ the above argument of course is not applicable. Actually, if I is the ideal of t-minors of the generic $r \times s$ matrix:

$$
\text { Bruns-Schwänzl: } \operatorname{cd}(I)=r s-t^{2}+1
$$

On the other hand $\operatorname{pd}(R / I)=(r-t+1)(s-t+1)$, so:

$$
\mathrm{cd}(R, I)>\operatorname{pd}(R / I) \text { (a part from trivial cases). }
$$

As one can check, for all $p \leq n-4$, this provides examples of graded ideals $I \subset R$ for which $\operatorname{cd}(R, I)>\operatorname{pd}(R / I)=p$.

QUESTION: If $\operatorname{pd}(R / I) \leq n-3$, is $\operatorname{cd}(R . /) \leq n-3 ? ? ?$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

If char $(K)=0$ the above argument of course is not applicable. Actually, if I is the ideal of t-minors of the generic $r \times s$ matrix:

$$
\text { Bruns-Schwänzl: } \operatorname{cd}(I)=r s-t^{2}+1
$$

On the other hand $\operatorname{pd}(R / I)=(r-t+1)(s-t+1)$, so:

$$
\mathrm{cd}(R, I)>\operatorname{pd}(R / I) \text { (a part from trivial cases). }
$$

As one can check, for all $p \leq n-4$, this provides examples of graded ideals $I \subset R$ for which $\operatorname{cd}(R, I)>\operatorname{pd}(R / I)=p$.

QUESTION: If $\operatorname{pd}(R / I) \leq n-3$, is $\operatorname{cd}(R, /) \leq n-3 ? ? ?$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 $\operatorname{cd}(R, I)<n \quad 2$The case $\operatorname{cd}(R, I) \leq n-2$ has been completely characterized by Peskine-Szpiro,

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 alsThe case $\operatorname{cd}(R, I) \leq n-2$ has been completely characterized by

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 aneThe case $\operatorname{cd}(R, I) \leq n-2$ has been completely characterized by Peskine-Szpiro,

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 andThe case $\operatorname{cd}(R, I) \leq n-2$ has been completely characterized by Peskine-Szpiro, Ogus,

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 andThe case $\operatorname{cd}(R, I) \leq n-2$ has been completely characterized by Peskine-Szpiro, Ogus, Huneke-Lyubeznik:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 $\operatorname{ed}(R+1)<n-2$The case $\operatorname{cd}(R, I) \leq n-2$ has been completely characterized by Peskine-Szpiro, Ogus, Huneke-Lyubeznik:

$$
\operatorname{cd}(R, I) \leq n-2 \Longleftrightarrow \operatorname{Proj}(R / I) \text { is geometrically connected }
$$

This yields $\operatorname{pd}(R / I) \leq n-2 \Longrightarrow c d(R, I) \leq n-2$. Indeed,

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 $\operatorname{ed}(R+1)<n-2$The case $\operatorname{cd}(R, I) \leq n-2$ has been completely characterized by Peskine-Szpiro, Ogus, Huneke-Lyubeznik:

$$
\operatorname{cd}(R, I) \leq n-2 \Longleftrightarrow \operatorname{Proj}(R / I) \text { is geometrically connected }
$$

This yields $\mathrm{pd}(R / I) \leq n-2 \Longrightarrow \operatorname{cd}(R, I) \leq n-2$.

$$
\operatorname{depth}(R / I) \geq 2 \Longrightarrow \operatorname{depth}(R / I \otimes K K) \geq 2
$$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 $\operatorname{ed}(R+1)<n-2$The case $\operatorname{cd}(R, I) \leq n-2$ has been completely characterized by Peskine-Szpiro, Ogus, Huneke-Lyubeznik:

$$
\operatorname{cd}(R, I) \leq n-2 \Longleftrightarrow \operatorname{Proj}(R / I) \text { is geometrically connected }
$$

This yields $\operatorname{pd}(R / I) \leq n-2 \Longrightarrow c d(R, I) \leq n-2$. Indeed,

$$
\operatorname{depth}(R / I) \geq 2 \Longrightarrow \operatorname{depth}\left(R / I \otimes_{K} \bar{K}\right) \geq 2
$$

So, by a result of Hartshorne, $\operatorname{Proj}(R / I \otimes K \bar{K})$ is connected, i.e. $\operatorname{Proj}(R / I)$ is geometrically connected.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 $\operatorname{ed}(R+1)<\pi-2$The case $\operatorname{cd}(R, I) \leq n-2$ has been completely characterized by Peskine-Szpiro, Ogus, Huneke-Lyubeznik:

$$
\operatorname{cd}(R, I) \leq n-2 \Longleftrightarrow \operatorname{Proj}(R / I) \text { is geometrically connected }
$$

This yields $\operatorname{pd}(R / I) \leq n-2 \Longrightarrow c d(R, I) \leq n-2$. Indeed,

$$
\operatorname{depth}(R / I) \geq 2 \Longrightarrow \operatorname{depth}\left(R / I \otimes_{K} \bar{K}\right) \geq 2
$$

So, by a result of Hartshorne, $\operatorname{Proj}\left(R / I \otimes_{K} \bar{K}\right)$ is connected, $\operatorname{Proj}(R / I)$ is geometrically connected.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The case $\operatorname{cd}(R, I) \leq n-2$ has been completely characterized by Peskine-Szpiro, Ogus, Huneke-Lyubeznik:

$$
\operatorname{cd}(R, I) \leq n-2 \Longleftrightarrow \operatorname{Proj}(R / I) \text { is geometrically connected }
$$

This yields $\operatorname{pd}(R / I) \leq n-2 \Longrightarrow c d(R, I) \leq n-2$. Indeed,

$$
\operatorname{depth}(R / I) \geq 2 \Longrightarrow \operatorname{depth}\left(R / I \otimes_{K} \bar{K}\right) \geq 2
$$

So, by a result of Hartshorne, $\operatorname{Proj}\left(R / I \otimes_{K} \bar{K}\right)$ is connected, i.e. $\operatorname{Proj}(R / I)$ is geometrically connected.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The case $\operatorname{cd}(R, I) \leq n-2$ has been completely characterized by Peskine-Szpiro, Ogus, Huneke-Lyubeznik:

$$
\operatorname{cd}(R, I) \leq n-2 \Longleftrightarrow \operatorname{Proj}(R / I) \text { is geometrically connected }
$$

This yields $\operatorname{pd}(R / I) \leq n-2 \Longrightarrow c d(R, I) \leq n-2$. Indeed,

$$
\operatorname{depth}(R / I) \geq 2 \Longrightarrow \operatorname{depth}\left(R / I \otimes_{K} \bar{K}\right) \geq 2
$$

So, by a result of Hartshorne, $\operatorname{Proj}\left(R / I \otimes_{K} \bar{K}\right)$ is connected, i.e. $\operatorname{Proj}(R / I)$ is geometrically connected. So we infer $\operatorname{cd}(R, I) \leq n-2$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The tesurt

Let K be a field of characteristic 0 and $I \subset R=K\left[x_{1}, \ldots, x_{n}\right]$ a graded ideal

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 TheresultLet K be a field of characteristic 0 graded idea

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let K be a field of characteristic 0 and $I \subset R=K\left[x_{1}, \ldots, x_{n}\right]$ a graded ideal

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let K be a field of characteristic 0 and $I \subset R=K\left[x_{1}, \ldots, x_{n}\right]$ a graded ideal such that $\mathrm{pd}(R / I) \leq n-3$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let K be a field of characteristic 0 and $I \subset R=K\left[x_{1}, \ldots, x_{n}\right]$ a graded ideal such that $\mathrm{pd}(R / I) \leq n-3$. Then:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let K be a field of characteristic 0 and $I \subset R=K\left[x_{1}, \ldots, x_{n}\right]$ a graded ideal such that $\mathrm{pd}(R / I) \leq n-3$. Then:

$$
\operatorname{cd}(R, I) \leq n-3 .
$$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Singh-Walther: Let $I \subset R$ be the ideal defining E

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

A consequence

Singh-Walther:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^{1} \subset \mathbb{P}^{5}$,

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^{1} \subset \mathbb{P}^{5}$, where $E \subset \mathbb{P}^{2}$ is an elliptic curve defined over $\mathbb{Z}(\operatorname{char}(K)=0)$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^{1} \subset \mathbb{P}^{5}$, where $E \subset \mathbb{P}^{2}$ is an elliptic curve defined over $\mathbb{Z}(\operatorname{char}(K)=0)$. Then R / J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J}=1$.

Their proof relies on the fact that such an R / I has F-pure type.
However, this is a direct consequence of our result:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^{1} \subset \mathbb{P}^{5}$, where $E \subset \mathbb{P}^{2}$ is an elliptic curve defined over $\mathbb{Z}(\operatorname{char}(K)=0)$. Then R / J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J}=1$.

Their proof relies on the fact that such an R / I has F-pure type.
However, this is a direct consequence of our result: Indeed, a well known theorem of Hartshorne implies

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^{1} \subset \mathbb{P}^{5}$, where $E \subset \mathbb{P}^{2}$ is an elliptic curve defined over $\mathbb{Z}(\operatorname{char}(K)=0)$. Then R / J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J}=1$.

Their proof relies on the fact that such an R / I has F-pure type.
However, this is a direct consequence of our result:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^{1} \subset \mathbb{P}^{5}$, where $E \subset \mathbb{P}^{2}$ is an elliptic curve defined over $\mathbb{Z}(\operatorname{char}(K)=0)$. Then R / J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J}=1$.

Their proof relies on the fact that such an R / I has F-pure type.
However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\operatorname{cd}(R, I)=4=6-2$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^{1} \subset \mathbb{P}^{5}$, where $E \subset \mathbb{P}^{2}$ is an elliptic curve defined over $\mathbb{Z}(\operatorname{char}(K)=0)$. Then R / J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J}=1$.

Their proof relies on the fact that such an R / I has F-pure type.
However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\operatorname{cd}(R, I)=4=6-2=n-2$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^{1} \subset \mathbb{P}^{5}$, where $E \subset \mathbb{P}^{2}$ is an elliptic curve defined over $\mathbb{Z}(\operatorname{char}(K)=0)$. Then R / J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J}=1$.

Their proof relies on the fact that such an R / I has F-pure type.
However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\operatorname{cd}(R, /)=4=6-2=n-2$. Thus if $J \subset R$ is a graded ideal such that R / J is CM and $\sqrt{J}=I$,

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^{1} \subset \mathbb{P}^{5}$, where $E \subset \mathbb{P}^{2}$ is an elliptic curve defined over $\mathbb{Z}(\operatorname{char}(K)=0)$. Then R / J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J}=1$.

Their proof relies on the fact that such an R / I has F-pure type.
However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\operatorname{cd}(R, /)=4=6-2=n-2$. Thus if $J \subset R$ is a graded ideal such that R / J is CM and $\sqrt{J}=I$, so $\operatorname{depth}(R / J)=\operatorname{dim}(R / J)=3$,

Actually a similar argument works to show the following:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^{1} \subset \mathbb{P}^{5}$, where $E \subset \mathbb{P}^{2}$ is an elliptic curve defined over $\mathbb{Z}(\operatorname{char}(K)=0)$. Then R / J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J}=1$.

Their proof relies on the fact that such an R / I has F-pure type.
However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\operatorname{cd}(R, /)=4=6-2=n-2$. Thus if $J \subset R$ is a graded ideal such that R / J is CM and $\sqrt{J}=I$, so $\operatorname{depth}(R / J)=\operatorname{dim}(R / J)=3$, then $\operatorname{cd}(R, I)=\operatorname{cd}(R, J) \leq n-3$.

Actually a similar argument works to show the following:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^{1} \subset \mathbb{P}^{5}$, where $E \subset \mathbb{P}^{2}$ is an elliptic curve defined over $\mathbb{Z}(\operatorname{char}(K)=0)$. Then R / J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J}=1$.

Their proof relies on the fact that such an R / I has F-pure type.
However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\operatorname{cd}(R, /)=4=6-2=n-2$. Thus if $J \subset R$ is a graded ideal such that R / J is CM and $\sqrt{J}=I$, so $\operatorname{depth}(R / J)=\operatorname{dim}(R / J)=3$, then $\operatorname{cd}(R, I)=\operatorname{cd}(R, J) \leq n-3$.

Actually a similar argument works to show the following:
Let $\mid \in R$ be the ideal defining of $C \times X \in \mathbb{R}^{n-1}((c h a r(K)=0)$, where

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^{1} \subset \mathbb{P}^{5}$, where $E \subset \mathbb{P}^{2}$ is an elliptic curve defined over $\mathbb{Z}(\operatorname{char}(K)=0)$. Then R / J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J}=1$.

Their proof relies on the fact that such an R / I has F-pure type.
However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\operatorname{cd}(R, /)=4=6-2=n-2$. Thus if $J \subset R$ is a graded ideal such that R / J is CM and $\sqrt{J}=I$, so $\operatorname{depth}(R / J)=\operatorname{dim}(R / J)=3$, then $\operatorname{cd}(R, I)=\operatorname{cd}(R, J) \leq n-3$.

Actually a similar argument works to show the following:
Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}(\operatorname{char}(K)=0)$,

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^{1} \subset \mathbb{P}^{5}$, where $E \subset \mathbb{P}^{2}$ is an elliptic curve defined over $\mathbb{Z}(\operatorname{char}(K)=0)$. Then R / J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J}=1$.

Their proof relies on the fact that such an R / I has F-pure type.
However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\operatorname{cd}(R, /)=4=6-2=n-2$. Thus if $J \subset R$ is a graded ideal such that R / J is CM and $\sqrt{J}=I$, so $\operatorname{depth}(R / J)=\operatorname{dim}(R / J)=3$, then $\operatorname{cd}(R, I)=\operatorname{cd}(R, J) \leq n-3$.

Actually a similar argument works to show the following:
Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}(\operatorname{char}(K)=0)$, where C is a projective smooth curve of genus >0

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^{1} \subset \mathbb{P}^{5}$, where $E \subset \mathbb{P}^{2}$ is an elliptic curve defined over $\mathbb{Z}(\operatorname{char}(K)=0)$. Then R / J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J}=1$.

Their proof relies on the fact that such an R / I has F-pure type.
However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\operatorname{cd}(R, /)=4=6-2=n-2$. Thus if $J \subset R$ is a graded ideal such that R / J is CM and $\sqrt{J}=I$, so $\operatorname{depth}(R / J)=\operatorname{dim}(R / J)=3$, then $\operatorname{cd}(R, I)=\operatorname{cd}(R, J) \leq n-3$.

Actually a similar argument works to show the following:
Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}(\operatorname{char}(K)=0)$, where C is a projective smooth curve of genus >0 and X is any projective scheme.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^{1} \subset \mathbb{P}^{5}$, where $E \subset \mathbb{P}^{2}$ is an elliptic curve defined over $\mathbb{Z}(\operatorname{char}(K)=0)$. Then R / J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J}=1$.

Their proof relies on the fact that such an R / I has F-pure type.
However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\operatorname{cd}(R, /)=4=6-2=n-2$. Thus if $J \subset R$ is a graded ideal such that R / J is CM and $\sqrt{J}=I$, so $\operatorname{depth}(R / J)=\operatorname{dim}(R / J)=3$, then $\operatorname{cd}(R, I)=\operatorname{cd}(R, J) \leq n-3$.

Actually a similar argument works to show the following:
Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}(\operatorname{char}(K)=0)$, where C is a projective smooth curve of genus >0 and X is any projective scheme. Then $\operatorname{depth}(R / J) \leq 2$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^{1} \subset \mathbb{P}^{5}$, where $E \subset \mathbb{P}^{2}$ is an elliptic curve defined over $\mathbb{Z}(\operatorname{char}(K)=0)$. Then R / J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J}=1$.

Their proof relies on the fact that such an R / I has F-pure type.
However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\operatorname{cd}(R, /)=4=6-2=n-2$. Thus if $J \subset R$ is a graded ideal such that R / J is CM and $\sqrt{J}=I$, so $\operatorname{depth}(R / J)=\operatorname{dim}(R / J)=3$, then $\operatorname{cd}(R, I)=\operatorname{cd}(R, J) \leq n-3$.

Actually a similar argument works to show the following:
Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}(\operatorname{char}(K)=0)$, where C is a projective smooth curve of genus >0 and X is any projective scheme. Then $\operatorname{depth}(R / J) \leq 2$ for all graded ideals such that $\sqrt{J}=\sqrt{I}$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Singh-Walther: Let $I \subset R$ be the ideal defining $E \times \mathbb{P}^{1} \subset \mathbb{P}^{5}$, where $E \subset \mathbb{P}^{2}$ is an elliptic curve defined over $\mathbb{Z}(\operatorname{char}(K)=0)$. Then R / J is not Cohen-Macaulay for all graded ideals such that $\sqrt{J}=1$.

Their proof relies on the fact that such an R / I has F-pure type.
However, this is a direct consequence of our result: Indeed, a well-known theorem of Hartshorne implies $\operatorname{cd}(R, /)=4=6-2=n-2$. Thus if $J \subset R$ is a graded ideal such that R / J is CM and $\sqrt{J}=I$, so $\operatorname{depth}(R / J)=\operatorname{dim}(R / J)=3$, then $\operatorname{cd}(R, I)=\operatorname{cd}(R, J) \leq n-3$.

Actually a similar argument works to show the following:
Let $I \subset R$ be the ideal defining of $C \times X \subset \mathbb{P}^{n-1}(\operatorname{char}(K)=0)$, where C is a projective smooth curve of genus >0 and X is any projective scheme. Then $\operatorname{depth}(R / J) \leq 2$ for all graded ideals such that $\sqrt{J}=\sqrt{I}$.

PROOF OF THE MAIN RESULT

PROOF OF THE MAIN RESULT

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The feomethic point of wiem

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 The foometric point of wiowLet $I \subset R=K\left[x_{1}, \ldots, x_{n}\right]$,

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 The geometric point of viewLet $I \subset R=K\left[x_{1}, \ldots, x_{n}\right], X=\operatorname{Proj}(R / I) \subset \mathbb{P}^{n-1}$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 The geometric point of viewLet $I \subset R=K\left[x_{1}, \ldots, x_{n}\right], X=\operatorname{Proj}(R / I) \subset \mathbb{P}^{n-1}$ and $U=\mathbb{P}^{n-1} \backslash X$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let $I \subset R=K\left[x_{1}, \ldots, x_{n}\right], X=\operatorname{Proj}(R / I) \subset \mathbb{P}^{n-1}$ and $U=\mathbb{P}^{n-1} \backslash X$. By the Grothendieck-Serre correspondence $\operatorname{cd}(R, I)-1$ is equal to:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let $I \subset R=K\left[x_{1}, \ldots, x_{n}\right], X=\operatorname{Proj}(R / I) \subset \mathbb{P}^{n-1}$ and $U=\mathbb{P}^{n-1} \backslash X$. By the Grothendieck-Serre correspondence $\operatorname{cd}(R, I)-1$ is equal to:

$$
\operatorname{cd}(U)=\inf \left\{s: H^{i}(U, \mathcal{F})=0 \quad \forall i>s \text { and } \mathcal{F} \text { coherent }\right\}
$$

Ogus: If $\operatorname{char}(K)=0$, then $\operatorname{cd}(U)<n-s$ is and only if:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let $I \subset R=K\left[x_{1}, \ldots, x_{n}\right], X=\operatorname{Proj}(R / I) \subset \mathbb{P}^{n-1}$ and $U=\mathbb{P}^{n-1} \backslash X$. By the Grothendieck-Serre correspondence $\operatorname{cd}(R, I)-1$ is equal to:

$$
\operatorname{cd}(U)=\inf \left\{s: H^{i}(U, \mathcal{F})=0 \quad \forall i>s \text { and } \mathcal{F} \text { coherent }\right\}
$$

Ogus: If $\operatorname{char}(K)=0$, then $\operatorname{cd}(U)<n-s$ is and only if:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let $I \subset R=K\left[x_{1}, \ldots, x_{n}\right], X=\operatorname{Proj}(R / I) \subset \mathbb{P}^{n-1}$ and $U=\mathbb{P}^{n-1} \backslash X$. By the Grothendieck-Serre correspondence $\operatorname{cd}(R, I)-1$ is equal to:

$$
\operatorname{cd}(U)=\inf \left\{s: H^{i}(U, \mathcal{F})=0 \quad \forall i>s \text { and } \mathcal{F} \text { coherent }\right\}
$$

Ogus: If $\operatorname{char}(K)=0$, then $\operatorname{cd}(U)<n-s$ is and only if:
Supp $\left(H_{i}^{i}(R)\right) \subset\{m\}$ for all $i>n-s$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let $I \subset R=K\left[x_{1}, \ldots, x_{n}\right], X=\operatorname{Proj}(R / I) \subset \mathbb{P}^{n-1}$ and $U=\mathbb{P}^{n-1} \backslash X$. By the Grothendieck-Serre correspondence $\operatorname{cd}(R, I)-1$ is equal to:

$$
\operatorname{cd}(U)=\inf \left\{s: H^{i}(U, \mathcal{F})=0 \quad \forall i>s \text { and } \mathcal{F} \text { coherent }\right\}
$$

Ogus: If $\operatorname{char}(K)=0$, then $\operatorname{cd}(U)<n-s$ is and only if:
(i) $\operatorname{Supp}\left(H_{l}^{i}(R)\right) \subset\{\mathfrak{m}\}$ for all $i>n-s$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let $I \subset R=K\left[x_{1}, \ldots, x_{n}\right], X=\operatorname{Proj}(R / I) \subset \mathbb{P}^{n-1}$ and $U=\mathbb{P}^{n-1} \backslash X$. By the Grothendieck-Serre correspondence $\operatorname{cd}(R, I)-1$ is equal to:

$$
\operatorname{cd}(U)=\inf \left\{s: H^{i}(U, \mathcal{F})=0 \quad \forall i>s \text { and } \mathcal{F} \text { coherent }\right\}
$$

Ogus: If $\operatorname{char}(K)=0$, then $\operatorname{cd}(U)<n-s$ is and only if:
(i) $\operatorname{Supp}\left(H_{l}^{i}(R)\right) \subset\{\mathfrak{m}\}$ for all $i>n-s$.
(ii) $\operatorname{dim}_{K} H_{D R}^{i}(X)=i+1(\bmod 2)$ for all $i<s-1$,

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let $I \subset R=K\left[x_{1}, \ldots, x_{n}\right], X=\operatorname{Proj}(R / I) \subset \mathbb{P}^{n-1}$ and $U=\mathbb{P}^{n-1} \backslash X$. By the Grothendieck-Serre correspondence $\operatorname{cd}(R, I)-1$ is equal to:

$$
\operatorname{cd}(U)=\inf \left\{s: H^{i}(U, \mathcal{F})=0 \quad \forall i>s \text { and } \mathcal{F} \text { coherent }\right\}
$$

Ogus: If $\operatorname{char}(K)=0$, then $\operatorname{cd}(U)<n-s$ is and only if:
(i) $\operatorname{Supp}\left(H_{l}^{i}(R)\right) \subset\{\mathfrak{m}\}$ for all $i>n-s$.
(ii) $\operatorname{dim}_{K} H_{D R}^{i}(X)=i+1(\bmod 2)$ for all $i<s-1$, where $H_{D R}^{i}$ denotes algebraic DeRham cohomology.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Let $I \subset R=K\left[x_{1}, \ldots, x_{n}\right], X=\operatorname{Proj}(R / I) \subset \mathbb{P}^{n-1}$ and $U=\mathbb{P}^{n-1} \backslash X$. By the Grothendieck-Serre correspondence $\operatorname{cd}(R, I)-1$ is equal to:

$$
\operatorname{cd}(U)=\inf \left\{s: H^{i}(U, \mathcal{F})=0 \quad \forall i>s \text { and } \mathcal{F} \text { coherent }\right\}
$$

Ogus: If $\operatorname{char}(K)=0$, then $\operatorname{cd}(U)<n-s$ is and only if:
(i) $\operatorname{Supp}\left(H_{l}^{i}(R)\right) \subset\{\mathfrak{m}\}$ for all $i>n-s$.
(ii) $\operatorname{dim}_{K} H_{D R}^{i}(X)=i+1(\bmod 2)$ for all $i<s-1$, where $H_{D R}^{i}$ denotes algebraic DeRham cohomology.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The geometric point of viow

Our goal is to prove $\operatorname{cd}(R, I) \leq n-3$ provided depth $(R / I) \geq 3$. So we need to show that $\operatorname{cd}(U)<n-3$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The gnomatric point of wiow

Our goal is to prove $\operatorname{cd}(R, I) \leq n-3$ provided depth $(R / I) \geq 3$.
So we need to show that $\operatorname{cd}(U)$
by Ogus' result we must prove:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Our goal is to prove $\operatorname{cd}(R, I) \leq n-3$ provided depth $(R / I) \geq 3$. So we need to show that $\operatorname{cd}(U)<n-3$.
by Ogus result we must prove:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Our goal is to prove $\operatorname{cd}(R, I) \leq n-3$ provided depth $(R / I) \geq 3$.
So we need to show that $\operatorname{cd}(U)<n-3$. Since $\operatorname{char}(K)=0$, by Ogus' result we must prove:
(i) $\operatorname{Supp}\left(H_{l}^{i}(R)\right) \subset\{m\}$ for all $i>n-3$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Our goal is to prove $\operatorname{cd}(R, I) \leq n-3$ provided depth $(R / I) \geq 3$.
So we need to show that $\operatorname{cd}(U)<n-3$. Since $\operatorname{char}(K)=0$, by Ogus' result we must prove:
(i) $\operatorname{Supp}\left(H_{l}^{i}(R)\right) \subset\{\mathfrak{m}\}$ for all $i>n-3$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Our goal is to prove $\operatorname{cd}(R, I) \leq n-3$ provided depth $(R / I) \geq 3$.
So we need to show that $\operatorname{cd}(U)<n-3$. Since $\operatorname{char}(K)=0$, by Ogus' result we must prove:
(i) $\operatorname{Supp}\left(H_{l}^{i}(R)\right) \subset\{\mathfrak{m}\}$ for all $i>n-3 . \sqrt{ }$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Our goal is to prove $\operatorname{cd}(R, I) \leq n-3$ provided depth $(R / I) \geq 3$.
So we need to show that $\operatorname{cd}(U)<n-3$. Since $\operatorname{char}(K)=0$, by Ogus' result we must prove:
(i) $\operatorname{Supp}\left(H_{l}^{i}(R)\right) \subset\{\mathfrak{m}\}$ for all $i>n-3 . \sqrt{ }$
(ii) $H_{D R}^{0}(X) \cong K$.
(ii) $H_{D R}^{1}(X)=0$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Our goal is to prove $\operatorname{cd}(R, I) \leq n-3$ provided depth $(R / I) \geq 3$.
So we need to show that $\operatorname{cd}(U)<n-3$. Since $\operatorname{char}(K)=0$, by Ogus' result we must prove:
(i) $\operatorname{Supp}\left(H_{l}^{i}(R)\right) \subset\{\mathfrak{m}\}$ for all $i>n-3 . \sqrt{ }$
(ii) $H_{D R}^{0}(X) \cong K$.
(iii) $H_{D R}^{1}(X)=0$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

We can assume $K=\mathbb{C}$. Let us denote X_{h} the analytic space associated to X.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Trascendental methods

We can assume $K=\mathbb{C}$. Let us denote X_{h} the analytic space associated to X. Hartshorne: $H_{D R}^{i}(X) \cong H^{i}\left(X_{h}, \mathbb{C}\right)$ (singular cohomology).

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 Trascendental methodsWe can assume $K=\mathbb{C}$. Let us denote X_{h} the analytic space associated to X.

Hartshorne: $H_{D R}^{i}(X) \cong H^{i}\left(X_{h}, \mathbb{C}\right)$ (singular cohomology).

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 Thasceendental methodsWe can assume $K=\mathbb{C}$. Let us denote X_{h} the analytic space associated to X.

Hartshorne: $H_{D R}^{i}(X) \cong H^{i}\left(X_{h}, \mathbb{C}\right)$ (singular cohomology).
$\operatorname{depth}(R / I) \geq 3 \Longrightarrow X$ is connected. Moreover it is well known:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

We can assume $K=\mathbb{C}$. Let us denote X_{h} the analytic space associated to X.

Hartshorne: $H_{D R}^{i}(X) \cong H^{i}\left(X_{h}, \mathbb{C}\right)$ (singular cohomology). $\operatorname{depth}(R / I) \geq 3 \Longrightarrow X$ is connected. Moreover it is well known:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

We can assume $K=\mathbb{C}$. Let us denote X_{h} the analytic space associated to X.

Hartshorne: $H_{D R}^{i}(X) \cong H^{i}\left(X_{h}, \mathbb{C}\right)$ (singular cohomology).
$\operatorname{depth}(R / I) \geq 3 \Longrightarrow X$ is connected. Moreover it is well known:
X connected (Zariski) $\Longleftrightarrow X_{h}$ connected (euclidean)

Thus $H_{D R}^{0}(X) \cong H^{0}\left(X_{h}, \mathbb{C}\right) \cong \mathbb{C}$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

We can assume $K=\mathbb{C}$. Let us denote X_{h} the analytic space associated to X.

Hartshorne: $H_{D R}^{i}(X) \cong H^{i}\left(X_{h}, \mathbb{C}\right)$ (singular cohomology).
$\operatorname{depth}(R / I) \geq 3 \Longrightarrow X$ is connected. Moreover it is well known:
X connected (Zariski) $\Longleftrightarrow X_{h}$ connected (euclidean)

Thus $H_{D R}^{0}(X) \cong H^{0}\left(X_{h}, \mathbb{C}\right) \cong \mathbb{C}$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

We can assume $K=\mathbb{C}$. Let us denote X_{h} the analytic space associated to X.

Hartshorne: $H_{D R}^{i}(X) \cong H^{i}\left(X_{h}, \mathbb{C}\right)$ (singular cohomology).
$\operatorname{depth}(R / I) \geq 3 \Longrightarrow X$ is connected. Moreover it is well known:
X connected (Zariski) $\Longleftrightarrow X_{h}$ connected (euclidean)

Thus $H_{D R}^{0}(X) \cong H^{0}\left(X_{h}, \mathbb{C}\right) \cong \mathbb{C}$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

We can assume $K=\mathbb{C}$. Let us denote X_{h} the analytic space associated to X.

Hartshorne: $H_{D R}^{i}(X) \cong H^{i}\left(X_{h}, \mathbb{C}\right)$ (singular cohomology).
$\operatorname{depth}(R / I) \geq 3 \Longrightarrow X$ is connected. Moreover it is well known:
X connected (Zariski) $\Longleftrightarrow X_{h}$ connected (euclidean)

Thus $H_{D R}^{0}(X) \cong H^{0}\left(X_{h}, \mathbb{C}\right) \cong \mathbb{C}((i i) \sqrt{ })$.
So it remains to show $(i i)$, i.e. $H^{1}\left(X_{h}, \mathbb{C}\right)=0$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

We can assume $K=\mathbb{C}$. Let us denote X_{h} the analytic space associated to X.

Hartshorne: $H_{D R}^{i}(X) \cong H^{i}\left(X_{h}, \mathbb{C}\right)$ (singular cohomology).
$\operatorname{depth}(R / I) \geq 3 \Longrightarrow X$ is connected. Moreover it is well known:
X connected (Zariski) $\Longleftrightarrow X_{h}$ connected (euclidean)

Thus $H_{D R}^{0}(X) \cong H^{0}\left(X_{h}, \mathbb{C}\right) \cong \mathbb{C}((i i) \sqrt{ })$.
So it remains to show (iii), i.e. $H^{1}\left(X_{h}, C\right)=0$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

We can assume $K=\mathbb{C}$. Let us denote X_{h} the analytic space associated to X.

Hartshorne: $H_{D R}^{i}(X) \cong H^{i}\left(X_{h}, \mathbb{C}\right)$ (singular cohomology).
$\operatorname{depth}(R / I) \geq 3 \Longrightarrow X$ is connected. Moreover it is well known:
X connected (Zariski) $\Longleftrightarrow X_{h}$ connected (euclidean)

Thus $H_{D R}^{0}(X) \cong H^{0}\left(X_{h}, \mathbb{C}\right) \cong \mathbb{C}((i i) \sqrt{ })$.
So it remains to show (iii), i.e. $H^{1}\left(X_{h}, \mathbb{C}\right)=0$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The
exponential sequence

The proof of (iii) relies on the celebrated exponential sequence:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 The exponential sequenceThe proof of (iii) relies on the celebrated exponential sequence:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 The exponential sequenceThe proof of (iii) relies on the celebrated exponential sequence:

$$
0 \rightarrow \mathbb{Z}_{x_{h}} \xrightarrow{-2 \pi i} \mathcal{O}_{x_{h}} \xrightarrow{\exp x_{h}} \mathcal{O}_{X_{h}}^{*} \rightarrow 0 .
$$

This is well known, but references can be found only if X is reduced (I radical), so I would like to explain it in the general case.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The proof of (iii) relies on the celebrated exponential sequence:

$$
0 \rightarrow \mathbb{Z}_{x_{h}} \xrightarrow{-2 \pi i} \mathcal{O}_{x_{h}} \xrightarrow{\exp _{x_{h}}} \mathcal{O}_{x_{h}}^{*} \rightarrow 0 .
$$

This is well known, but references can be found only if X is reduced (I radical), so I would like to explain it in the general case.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The proof of (iii) relies on the celebrated exponential sequence:

$$
0 \rightarrow \mathbb{Z}_{X_{h}} \xrightarrow{-2 \pi i} \mathcal{O}_{x_{h}} \xrightarrow{\exp _{x_{h}}} \mathcal{O}_{X_{h}}^{*} \rightarrow 0 .
$$

This is well known, but references can be found only if X is reduced (I radical), so I would like to explain it in the general case.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The
c. \times poncntial sequencec

First of all the problem is local. Therefore we can assume that is affine.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 The enporthal AndFirst of all the problem is local. Therefore we can assume that

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 The exponential sequenceFirst of all the problem is local. Therefore we can assume that $X \subset \mathbb{A}^{n}$ is affine. So we have the maps:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

expenentia! sequence

First of all the problem is local. Therefore we can assume that $X \subset \mathbb{A}^{n}$ is affine. So we have the maps:

$$
\begin{array}{cc}
\mathcal{O}_{\mathbb{C}^{n}} \xrightarrow{\exp _{\mathbb{C}^{n}}} & \mathcal{O}_{\mathbb{C}^{n}}^{*} \\
\downarrow & \downarrow \\
\mathcal{O}_{X_{h}} & \mathcal{O}_{X_{h}}^{*}
\end{array}
$$

where the vertical maps are the natural projections. Notice that all the above maps are surjective!

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

First of all the problem is local. Therefore we can assume that $X \subset \mathbb{A}^{n}$ is affine. So we have the maps:

$$
\begin{array}{cc}
\mathcal{O}_{\mathbb{C}^{n}} \xrightarrow{\exp _{\mathbb{C}^{n}}} & \mathcal{O}_{\mathbb{C}^{n}}^{*} \\
\downarrow & \downarrow \\
\mathcal{O}_{X_{h}} & \mathcal{O}_{X_{h}}^{*}
\end{array}
$$

where the vertical maps are the natural projections.
the above maps are surjective! We want to show that:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

First of all the problem is local. Therefore we can assume that $X \subset \mathbb{A}^{n}$ is affine. So we have the maps:

where the vertical maps are the natural projections. Notice that all the above maps are surjective! We want to show that:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

First of all the problem is local. Therefore we can assume that $X \subset \mathbb{A}^{n}$ is affine. So we have the maps:

where the vertical maps are the natural projections. Notice that all the above maps are surjective! We want to show that:

$$
\mathcal{O}_{X_{h}} \xrightarrow{\exp _{x_{h}}} \mathcal{O}_{X_{h}}^{*}
$$

where $\exp _{x_{h}}(\bar{f})=\overline{\exp _{\mathbb{C}^{n}}(f)}$, is a well-defined map.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

First of all the problem is local. Therefore we can assume that $X \subset \mathbb{A}^{n}$ is affine. So we have the maps:

where the vertical maps are the natural projections. Notice that all the above maps are surjective! We want to show that:

$$
\mathcal{O}_{X_{h}} \xrightarrow{\exp _{x_{h}}} \mathcal{O}_{X_{h}}^{*}
$$

where $\exp _{X_{h}}(\bar{f})=\overline{\exp _{\mathbb{C}^{n}}(f)}$, is a well-defined map.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

First of all the problem is local. Therefore we can assume that $X \subset \mathbb{A}^{n}$ is affine. So we have the maps:

where the vertical maps are the natural projections. Notice that all the above maps are surjective! We want to show that:

$$
\mathcal{O}_{X_{h}} \xrightarrow{\exp _{X_{h}}} \mathcal{O}_{X_{h}}^{*},
$$

where $\exp _{X_{h}}(\bar{f})=\overline{\exp _{\mathbb{C}^{n}}(f)}$, is a well-defined map.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The expenential secuuence
To show that $\exp x_{h}$ is well-defined we can argue on the stalks. Let P be a point of X_{h}.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 The arporatial AND PROATo show that $\exp _{X_{h}}$ is well-defined we can argue on the stalks.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 The axponatial And pratTo show that $\exp _{X_{h}}$ is well-defined we can argue on the stalks. Let P be a point of X_{h}.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 Tha exponential AND PROCTo show that $\exp _{X_{h}}$ is well-defined we can argue on the stalks. Let P be a point of X_{h}. We can assume that $P=0$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 The expollatial And proteTo show that $\exp _{X_{h}}$ is well-defined we can argue on the stalks. Let P be a point of X_{h}. We can assume that $P=0$. So let $\mathfrak{a} \subset A=$ $\mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

To show that $\exp _{X_{h}}$ is well-defined we can argue on the stalks. Let P be a point of X_{h}. We can assume that $P=0$. So let $\mathfrak{a} \subset A=$ $\mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}$ be so that $\mathcal{O}_{\mathbb{C}^{n}, 0} \cong A$ and $\mathcal{O}_{x_{n}, 0} \cong A / \mathfrak{a}$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

To show that $\exp _{X_{h}}$ is well-defined we can argue on the stalks. Let P be a point of X_{h}. We can assume that $P=0$. So let $\mathfrak{a} \subset A=$ $\mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}$ be so that $\mathcal{O}_{\mathbb{C}^{n}, 0} \cong A$ and $\mathcal{O}_{x_{h}, 0} \cong A / \mathfrak{a}$. Let $f \in \mathfrak{a}$:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

To show that $\exp _{X_{h}}$ is well-defined we can argue on the stalks. Let P be a point of X_{h}. We can assume that $P=0$. So let $\mathfrak{a} \subset A=$ $\mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}$ be so that $\mathcal{O}_{\mathbb{C}^{n}, 0} \cong A$ and $\mathcal{O}_{x_{n}, 0} \cong A / \mathfrak{a}$. Let $f \in \mathfrak{a}$:

$$
\exp _{\mathbb{C}^{n}, 0}(f)-1=\sum_{m \geq 1} f^{m} / m!
$$

So it makes sense to write the commutative diagram:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

To show that $\exp _{X_{h}}$ is well-defined we can argue on the stalks. Let P be a point of X_{h}. We can assume that $P=0$. So let $\mathfrak{a} \subset A=$ $\mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}$ be so that $\mathcal{O}_{\mathbb{C}^{n}, 0} \cong A$ and $\mathcal{O}_{x_{n}, 0} \cong A / \mathfrak{a}$. Let $f \in \mathfrak{a}$:

$$
\exp _{\mathbb{C}^{n}, 0}(f)-1=\sum_{m \geq 1} f^{m} / m!\in a .
$$

So it makes sense to write the commutative diagram:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

To show that $\exp _{X_{h}}$ is well-defined we can argue on the stalks. Let P be a point of X_{h}. We can assume that $P=0$. So let $\mathfrak{a} \subset A=$ $\mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}$ be so that $\mathcal{O}_{\mathbb{C}^{n}, 0} \cong A$ and $\mathcal{O}_{x_{n}, 0} \cong A / \mathfrak{a}$. Let $f \in \mathfrak{a}$:

$$
\exp _{\mathbb{C}^{n}, 0}(f)-1=\sum_{m \geq 1} f^{m} / m!\in a .
$$

So it makes sense to write the commutative diagram:

Notice that expx, is surjective.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

To show that $\exp _{X_{h}}$ is well-defined we can argue on the stalks. Let P be a point of X_{h}. We can assume that $P=0$. So let $\mathfrak{a} \subset A=$ $\mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}$ be so that $\mathcal{O}_{\mathbb{C}^{n}, 0} \cong A$ and $\mathcal{O}_{x_{n}, 0} \cong A / \mathfrak{a}$. Let $f \in \mathfrak{a}$:

$$
\exp _{\mathbb{C}^{n}, 0}(f)-1=\sum_{m \geq 1} f^{m} / m!\in a .
$$

So it makes sense to write the commutative diagram:

$$
\begin{array}{cc}
\mathcal{O}_{\mathbb{C}^{n}} \xrightarrow{\text { exp }_{\mathbb{C}^{n}}} \mathcal{O}_{\mathbb{C}^{n}}^{*} \\
\downarrow & \downarrow \\
\mathcal{O}_{X_{h}} \xrightarrow{\operatorname{expx}_{\mathrm{x}}} & \mathcal{O}_{X_{h}}^{*}
\end{array}
$$

Notice that $\exp x_{h}$ is surjective.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

To show that $\exp _{X_{h}}$ is well-defined we can argue on the stalks. Let P be a point of X_{h}. We can assume that $P=0$. So let $\mathfrak{a} \subset A=$ $\mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}$ be so that $\mathcal{O}_{\mathbb{C}^{n}, 0} \cong A$ and $\mathcal{O}_{x_{n}, 0} \cong A / \mathfrak{a}$. Let $f \in \mathfrak{a}$:

$$
\exp _{\mathbb{C}^{n}, 0}(f)-1=\sum_{m \geq 1} f^{m} / m!\in a .
$$

So it makes sense to write the commutative diagram:

$$
\begin{gathered}
\mathcal{O}_{\mathbb{C}^{n}} \xrightarrow{\text { exp }_{\mathbb{C}^{n}}} \mathcal{O}_{\mathbb{C}^{n}}^{*} \\
\downarrow \\
\mathcal{O}_{X_{h}} \xrightarrow{\text { expxx }_{\mathrm{h}}} \mathcal{O}_{X_{h}}^{*}
\end{gathered}
$$

Notice that $\exp _{X_{h}}$ is surjective.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The
exponential sequence

Now we want to show that:

is exact. For the discussion above we have just to show exactness in the middle.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 The exponential sequenceNow we want to show that:

$$
0 \rightarrow \mathbb{Z}_{X_{h}} \xrightarrow{2 \pi i} \mathcal{O}_{X_{h}} \xrightarrow{\exp _{X_{n}}} \mathcal{O}_{X_{h}}^{*} \rightarrow 0
$$

is exact. For the discussion above we have just to show exactness in the
middle.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Now we want to show that:

$$
0 \rightarrow \mathbb{Z}_{X_{h}} \xrightarrow{-2 \pi i} \mathcal{O}_{X_{h}} \xrightarrow{\exp _{X_{n}}} \mathcal{O}_{X_{h}}^{*} \rightarrow 0
$$

is exact. For the discussion above we have just to show exactness in the middle.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Now we want to show that:

$$
0 \rightarrow \mathbb{Z}_{X_{h}} \xrightarrow{-2 \pi i} \mathcal{O}_{X_{h}} \xrightarrow{\exp _{X_{n}}} \mathcal{O}_{X_{h}}^{*} \rightarrow 0
$$

is exact. For the discussion above we have just to show exactness in the middle. Let $f \in A$ such that $\exp _{\mathbb{C}^{n}, 0}(f)-1 \in \mathfrak{a}$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Now we want to show that:

$$
0 \rightarrow \mathbb{Z}_{X_{h}} \xrightarrow{2 \pi i} \mathcal{O}_{X_{h}} \xrightarrow{\exp _{X_{n}}} \mathcal{O}_{X_{h}}^{*} \rightarrow 0
$$

is exact. For the discussion above we have just to show exactness in the middle. Let $f \in A$ such that $\exp _{\mathbb{C}^{n}, 0}(f)-1 \in \mathfrak{a}$. Then $\exp _{\mathbb{C}^{n}, 0}(f)-1$ $\in \sqrt{\mathfrak{a}}$. Since the above sequence is exact if X is reduced

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Now we want to show that:

$$
0 \rightarrow \mathbb{Z}_{X_{h}} \xrightarrow{2 \pi i} \mathcal{O}_{X_{h}} \xrightarrow{\exp _{X_{n}}} \mathcal{O}_{X_{h}}^{*} \rightarrow 0
$$

is exact. For the discussion above we have just to show exactness in the middle. Let $f \in A$ such that $\exp _{\mathbb{C}^{n}, 0}(f)-1 \in \mathfrak{a}$. Then $\exp _{\mathbb{C}^{n}, 0}(f)-1$ $\in \sqrt{\mathfrak{a}}$. Since the above sequence is exact if X is reduced,

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Now we want to show that:

$$
0 \rightarrow \mathbb{Z}_{X_{h}} \xrightarrow{-2 \pi i} \mathcal{O}_{X_{h}} \xrightarrow{\exp _{X_{n}}} \mathcal{O}_{X_{h}}^{*} \rightarrow 0
$$

is exact. For the discussion above we have just to show exactness in the middle. Let $f \in A$ such that $\exp _{\mathbb{C}^{n}, 0}(f)-1 \in \mathfrak{a}$. Then $\exp _{\mathbb{C}^{n}, 0}(f)-1$ $\in \sqrt{\mathfrak{a}}$. Since the above sequence is exact if X is reduced, there exist $k \in \mathbb{Z}$ such that $f^{\prime}=f-2 \pi i k \in \sqrt{\mathfrak{a}}$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Now we want to show that:

$$
0 \rightarrow \mathbb{Z}_{X_{h}} \xrightarrow{-2 \pi i} \mathcal{O}_{X_{h}} \xrightarrow{\exp _{X_{n}}} \mathcal{O}_{X_{h}}^{*} \rightarrow 0
$$

is exact. For the discussion above we have just to show exactness in the middle. Let $f \in A$ such that $\exp _{\mathbb{C}^{n}, 0}(f)-1 \in \mathfrak{a}$. Then $\exp _{\mathbb{C}^{n}, 0}(f)-1$ $\in \sqrt{\mathfrak{a}}$. Since the above sequence is exact if X is reduced, there exist $k \in \mathbb{Z}$ such that $f^{\prime}=f-2 \pi i k \in \sqrt{\mathfrak{a}}$. But

$$
\exp _{\mathbb{C}^{n}, 0}\left(f^{\prime}\right)-1=\sum_{m \geq 1} f^{\prime m} / m!=f \cdot\left(1+\sum_{m \geq 1} f^{\prime m} /(m+1)!\right)
$$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Now we want to show that:

$$
0 \rightarrow \mathbb{Z}_{X_{h}} \xrightarrow{-2 \pi i} \mathcal{O}_{X_{h}} \xrightarrow{\exp _{X_{n}}} \mathcal{O}_{X_{h}}^{*} \rightarrow 0
$$

is exact. For the discussion above we have just to show exactness in the middle. Let $f \in A$ such that $\exp _{\mathbb{C}^{n}, 0}(f)-1 \in \mathfrak{a}$. Then $\exp _{\mathbb{C}^{n}, 0}(f)-1$ $\in \sqrt{\mathfrak{a}}$. Since the above sequence is exact if X is reduced, there exist $k \in \mathbb{Z}$ such that $f^{\prime}=f-2 \pi i k \in \sqrt{\mathfrak{a}}$. But

$$
\exp _{\mathbb{C}^{n}, 0}\left(f^{\prime}\right)-1=\sum_{m \geq 1} f^{\prime m} / m!=f^{\prime} \cdot\left(1+\sum_{m \geq 1} f^{\prime m} /(m+1)!\right)
$$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Now we want to show that:

$$
0 \rightarrow \mathbb{Z}_{X_{h}} \xrightarrow{-2 \pi i} \mathcal{O}_{X_{h}} \xrightarrow{\exp _{X_{n}}} \mathcal{O}_{X_{h}}^{*} \rightarrow 0
$$

is exact. For the discussion above we have just to show exactness in the middle. Let $f \in A$ such that $\exp _{\mathbb{C}^{n}, 0}(f)-1 \in \mathfrak{a}$. Then $\exp _{\mathbb{C}^{n}, 0}(f)-1$ $\in \sqrt{\mathfrak{a}}$. Since the above sequence is exact if X is reduced, there exist $k \in \mathbb{Z}$ such that $f^{\prime}=f-2 \pi i k \in \sqrt{\mathfrak{a}}$. But

$$
\exp _{\mathbb{C}^{n}, 0}\left(f^{\prime}\right)-1=\sum_{m \geq 1} f^{\prime m} / m!=f^{\prime} \cdot\left(1+\sum_{m \geq 1} f^{\prime m} /(m+1)!\right) \in \mathfrak{a} .
$$

The element $g=\sum_{m \geq 1} f^{\prime m} /(m+1)!\in \sqrt{a}$. This means that $1+g$ is

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Now we want to show that:

$$
0 \rightarrow \mathbb{Z}_{X_{h}} \xrightarrow{-2 \pi i} \mathcal{O}_{X_{h}} \xrightarrow{\exp _{X_{n}}} \mathcal{O}_{X_{h}}^{*} \rightarrow 0
$$

is exact. For the discussion above we have just to show exactness in the middle. Let $f \in A$ such that $\exp _{\mathbb{C}^{n}, 0}(f)-1 \in \mathfrak{a}$. Then $\exp _{\mathbb{C}^{n}, 0}(f)-1$ $\in \sqrt{\mathfrak{a}}$. Since the above sequence is exact if X is reduced, there exist $k \in \mathbb{Z}$ such that $f^{\prime}=f-2 \pi i k \in \sqrt{\mathfrak{a}}$. But

$$
\exp _{\mathbb{C}^{n}, 0}\left(f^{\prime}\right)-1=\sum_{m \geq 1} f^{\prime m} / m!=f^{\prime} \cdot\left(1+\sum_{m \geq 1} f^{\prime m} /(m+1)!\right) \in a .
$$

The element $g=\sum_{m \geq 1} f^{\prime m} /(m+1)!\in \sqrt{\mathfrak{a}}$. invertible in A anctis antull

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Now we want to show that:

$$
0 \rightarrow \mathbb{Z}_{X_{h}} \xrightarrow{-2 \pi i} \mathcal{O}_{X_{h}} \xrightarrow{\exp _{X_{n}}} \mathcal{O}_{X_{h}}^{*} \rightarrow 0
$$

is exact. For the discussion above we have just to show exactness in the middle. Let $f \in A$ such that $\exp _{\mathbb{C}^{n}, 0}(f)-1 \in \mathfrak{a}$. Then $\exp _{\mathbb{C}^{n}, 0}(f)-1$ $\in \sqrt{\mathfrak{a}}$. Since the above sequence is exact if X is reduced, there exist $k \in \mathbb{Z}$ such that $f^{\prime}=f-2 \pi i k \in \sqrt{\mathfrak{a}}$. But

$$
\exp _{\mathbb{C}^{n}, 0}\left(f^{\prime}\right)-1=\sum_{m \geq 1} f^{\prime m} / m!=f^{\prime} \cdot\left(1+\sum_{m \geq 1} f^{\prime m} /(m+1)!\right) \in \mathfrak{a} .
$$

The element $g=\sum_{m \geq 1} f^{\prime m} /(m+1)!\in \sqrt{\mathfrak{a}}$. This means that $1+g$ is invertible in A,

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Now we want to show that:

$$
0 \rightarrow \mathbb{Z}_{X_{h}} \xrightarrow{-2 \pi i} \mathcal{O}_{X_{h}} \xrightarrow{\exp _{X_{n}}} \mathcal{O}_{X_{h}}^{*} \rightarrow 0
$$

is exact. For the discussion above we have just to show exactness in the middle. Let $f \in A$ such that $\exp _{\mathbb{C}^{n}, 0}(f)-1 \in \mathfrak{a}$. Then $\exp _{\mathbb{C}^{n}, 0}(f)-1$ $\in \sqrt{\mathfrak{a}}$. Since the above sequence is exact if X is reduced, there exist $k \in \mathbb{Z}$ such that $f^{\prime}=f-2 \pi i k \in \sqrt{\mathfrak{a}}$. But

$$
\exp _{\mathbb{C}^{n}, 0}\left(f^{\prime}\right)-1=\sum_{m \geq 1} f^{\prime m} / m!=f^{\prime} \cdot\left(1+\sum_{m \geq 1} f^{\prime m} /(m+1)!\right) \in \mathfrak{a} .
$$

The element $g=\sum_{m \geq 1} f^{\prime m} /(m+1)!\in \sqrt{\mathfrak{a}}$. This means that $1+g$ is invertible in A, so f^{\prime} is actually an element of \mathfrak{a}.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Now we want to show that:

$$
0 \rightarrow \mathbb{Z}_{X_{h}} \xrightarrow{-2 \pi i} \mathcal{O}_{X_{h}} \xrightarrow{\exp _{X_{n}}} \mathcal{O}_{X_{h}}^{*} \rightarrow 0
$$

is exact. For the discussion above we have just to show exactness in the middle. Let $f \in A$ such that $\exp _{\mathbb{C}^{n}, 0}(f)-1 \in \mathfrak{a}$. Then $\exp _{\mathbb{C}^{n}, 0}(f)-1$ $\in \sqrt{\mathfrak{a}}$. Since the above sequence is exact if X is reduced, there exist $k \in \mathbb{Z}$ such that $f^{\prime}=f-2 \pi i k \in \sqrt{\mathfrak{a}}$. But

$$
\exp _{\mathbb{C}^{n}, 0}\left(f^{\prime}\right)-1=\sum_{m \geq 1} f^{\prime m} / m!=f^{\prime} \cdot\left(1+\sum_{m \geq 1} f^{\prime m} /(m+1)!\right) \in \mathfrak{a} .
$$

The element $g=\sum_{m \geq 1} f^{\prime m} /(m+1)!\in \sqrt{\mathfrak{a}}$. This means that $1+g$ is invertible in A, so f^{\prime} is actually an element of \mathfrak{a}.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The conclusion

The exponential sequence yields a long exact sequence of abelian groups:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

 The conctusionThe exponential sequence yields a long exact sequence of abelian groups:

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The exponential sequence yields a long exact sequence of abelian groups:

$$
\begin{array}{r}
0 \rightarrow H^{0}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \rightarrow H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \rightarrow H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}^{*}\right) \rightarrow \\
H^{1}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \rightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \rightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}^{*}\right) \rightarrow \ldots
\end{array}
$$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The exponential sequence yields a long exact sequence of abelian groups:

$$
\begin{array}{r}
0 \rightarrow H^{0}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \rightarrow H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \rightarrow H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}^{*}\right) \rightarrow \\
H^{1}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \rightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \rightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}^{*}\right) \rightarrow \ldots
\end{array}
$$

By GAGA $H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \cong H^{0}\left(X, \mathcal{O}_{X}\right)$, and the latter is an artinian

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The exponential sequence yields a long exact sequence of abelian groups:

$$
\begin{array}{r}
0 \rightarrow H^{0}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \rightarrow H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \rightarrow H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}^{*}\right) \rightarrow \\
H^{1}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \rightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \rightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}^{*}\right) \rightarrow \ldots
\end{array}
$$

By GAGA $H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \cong H^{0}\left(X, \mathcal{O}_{X}\right)$, and the latter is an artinian \mathbb{C}-algebra.
map from the additive group to its multiplicative group of units is

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The exponential sequence yields a long exact sequence of abelian groups:

$$
\begin{array}{r}
0 \rightarrow H^{0}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \rightarrow H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \rightarrow H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}^{*}\right) \rightarrow \\
H^{1}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \rightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \rightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}^{*}\right) \rightarrow \ldots
\end{array}
$$

By GAGA $H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \cong H^{0}\left(X, \mathcal{O}_{X}\right)$, and the latter is an artinian \mathbb{C}-algebra. For such an algebra, it is easy to show that the exponential map from the additive group to its multiplicative group of units

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The exponential sequence yields a long exact sequence of abelian groups:

$$
\begin{array}{r}
0 \rightarrow H^{0}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \rightarrow H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \rightarrow H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}^{*}\right) \rightarrow \\
H^{1}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \rightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \rightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}^{*}\right) \rightarrow \ldots
\end{array}
$$

By GAGA $H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \cong H^{0}\left(X, \mathcal{O}_{X}\right)$, and the latter is an artinian \mathbb{C}-algebra. For such an algebra, it is easy to show that the exponential map from the additive group to its multiplicative group of units is surjective.
is injective.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The exponential sequence yields a long exact sequence of abelian groups:

$$
\begin{array}{r}
0 \rightarrow H^{0}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \rightarrow H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \rightarrow H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}^{*}\right) \rightarrow \\
H^{1}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \rightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \rightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}^{*}\right) \rightarrow \ldots
\end{array}
$$

By GAGA $H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \cong H^{0}\left(X, \mathcal{O}_{X}\right)$, and the latter is an artinian \mathbb{C}-algebra. For such an algebra, it is easy to show that the exponential map from the additive group to its multiplicative group of units is surjective. So $H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \rightarrow H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}^{*}\right)$ is surjective,
$H^{1}\left(X_{h}, \mathbb{Z}_{X_{n}}\right) \rightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right)$
is injective.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The exponential sequence yields a long exact sequence of abelian groups:

$$
\begin{array}{r}
0 \rightarrow H^{0}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \rightarrow H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \rightarrow H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}^{*}\right) \rightarrow \\
H^{1}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \rightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \rightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}^{*}\right) \rightarrow \ldots
\end{array}
$$

By GAGA $H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \cong H^{0}\left(X, \mathcal{O}_{X}\right)$, and the latter is an artinian \mathbb{C}-algebra. For such an algebra, it is easy to show that the exponential map from the additive group to its multiplicative group of units is surjective. So $H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \rightarrow H^{0}\left(X_{h}, \mathcal{O}_{X_{h}}^{*}\right)$ is surjective, and thus

$$
H^{1}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \rightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right)
$$

is injective.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

The conctusion

Using again GAGA, $H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \cong H^{1}\left(X, \mathcal{O}_{X}\right)$. Moreover

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Using again GAGA, $H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \cong H^{1}\left(X, \mathcal{O}_{X}\right)$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Using again GAGA, $H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \cong H^{1}\left(X, \mathcal{O}_{X}\right)$. Moreover

$$
H^{1}\left(X, \mathcal{O}_{X}\right) \cong H_{m}^{2}(R / I)_{0}
$$

where $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right], I \subset R$ is such that $X \cong \operatorname{Proj}(R / I)$ and m
is the maximal irrelevant.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Using again GAGA, $H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \cong H^{1}\left(X, \mathcal{O}_{X}\right)$. Moreover

$$
H^{1}\left(X, \mathcal{O}_{X}\right) \cong H_{\mathfrak{m}}^{2}(R / I)_{0}
$$

where $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right], I \subset R$ is such that $X \cong \operatorname{Proj}(R / I)$ and \mathfrak{m} is the maximal irrelevant.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Using again GAGA, $H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \cong H^{1}\left(X, \mathcal{O}_{X}\right)$. Moreover

$$
H^{1}\left(X, \mathcal{O}_{X}\right) \cong H_{\mathfrak{m}}^{2}(R / I)_{0}
$$

where $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right], I \subset R$ is such that $X \cong \operatorname{Proj}(R / I)$ and \mathfrak{m} is the maximal irrelevant. Our assumption was $\operatorname{depth}(R / I) \geq 3$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Using again GAGA, $H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \cong H^{1}\left(X, \mathcal{O}_{X}\right)$. Moreover

$$
H^{1}\left(X, \mathcal{O}_{X}\right) \cong H_{\mathfrak{m}}^{2}(R / I)_{0}
$$

where $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right], I \subset R$ is such that $X \cong \operatorname{Proj}(R / I)$ and \mathfrak{m} is the maximal irrelevant. Our assumption was $\operatorname{depth}(R / I) \geq 3$. In particular $H_{\mathrm{m}}^{2}(R / I)=0$,

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Using again GAGA, $H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \cong H^{1}\left(X, \mathcal{O}_{X}\right)$. Moreover

$$
H^{1}\left(X, \mathcal{O}_{X}\right) \cong H_{\mathrm{m}}^{2}(R / I)_{0}
$$

where $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right], I \subset R$ is such that $X \cong \operatorname{Proj}(R / I)$ and \mathfrak{m} is the maximal irrelevant. Our assumption was $\operatorname{depth}(R / I) \geq 3$. In particular $H_{\mathrm{m}}^{2}(R / I)=0$, so $H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right)=0$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Using again GAGA, $H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \cong H^{1}\left(X, \mathcal{O}_{X}\right)$. Moreover

$$
H^{1}\left(X, \mathcal{O}_{X}\right) \cong H_{\mathrm{m}}^{2}(R / I)_{0}
$$

where $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right], I \subset R$ is such that $X \cong \operatorname{Proj}(R / I)$ and \mathfrak{m} is the maximal irrelevant. Our assumption was $\operatorname{depth}(R / I) \geq 3$. In particular $H_{\mathfrak{m}}^{2}(R / I)=0$, so $H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right)=0$. Eventually, by the injection $H^{1}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \hookrightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{k}}\right)$

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Using again GAGA, $H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \cong H^{1}\left(X, \mathcal{O}_{X}\right)$. Moreover

$$
H^{1}\left(X, \mathcal{O}_{X}\right) \cong H_{\mathrm{m}}^{2}(R / I)_{0}
$$

where $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right], I \subset R$ is such that $X \cong \operatorname{Proj}(R / I)$ and \mathfrak{m} is the maximal irrelevant. Our assumption was $\operatorname{depth}(R / I) \geq 3$. In particular $H_{\mathfrak{m}}^{2}(R / I)=0$, so $H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right)=0$. Eventually, by the injection $H^{1}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \hookrightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{k}}\right)$ we deduce $H^{1}\left(X_{h}, \mathbb{Z}\right) \cong$ $H^{1}\left(X_{h}, \mathbb{Z}_{X_{h}}\right)=0$.
and this was the missing piece

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Using again GAGA, $H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \cong H^{1}\left(X, \mathcal{O}_{X}\right)$. Moreover

$$
H^{1}\left(X, \mathcal{O}_{X}\right) \cong H_{\mathrm{m}}^{2}(R / I)_{0}
$$

where $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right], I \subset R$ is such that $X \cong \operatorname{Proj}(R / I)$ and \mathfrak{m} is the maximal irrelevant. Our assumption was $\operatorname{depth}(R / I) \geq 3$. In particular $H_{\mathfrak{m}}^{2}(R / I)=0$, so $H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right)=0$. Eventually, by the injection $H^{1}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \hookrightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{k}}\right)$ we deduce $H^{1}\left(X_{h}, \mathbb{Z}\right) \cong$ $H^{1}\left(X_{h}, \mathbb{Z}_{X_{h}}\right)=0$. By the universal coefficient theorem

$$
H^{1}\left(X_{h}, \mathbb{C}\right)=0,
$$

and this was the missing piece
to infer $\operatorname{cd}(R, I) \leq n-3$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Using again GAGA, $H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \cong H^{1}\left(X, \mathcal{O}_{X}\right)$. Moreover

$$
H^{1}\left(X, \mathcal{O}_{X}\right) \cong H_{\mathrm{m}}^{2}(R / I)_{0}
$$

where $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right], I \subset R$ is such that $X \cong \operatorname{Proj}(R / I)$ and \mathfrak{m} is the maximal irrelevant. Our assumption was $\operatorname{depth}(R / I) \geq 3$. In particular $H_{\mathfrak{m}}^{2}(R / I)=0$, so $H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right)=0$. Eventually, by the injection $H^{1}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \hookrightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{k}}\right)$ we deduce $H^{1}\left(X_{h}, \mathbb{Z}\right) \cong$ $H^{1}\left(X_{h}, \mathbb{Z}_{X_{h}}\right)=0$. By the universal coefficient theorem

$$
H^{1}\left(X_{h}, \mathbb{C}\right)=0,
$$

and this was the missing piece (iii) to infer $\operatorname{cd}(R, I) \leq n-3$.

COHOMOLOGICAL AND PROJECTIVE DIMENSIONS

Using again GAGA, $H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right) \cong H^{1}\left(X, \mathcal{O}_{X}\right)$. Moreover

$$
H^{1}\left(X, \mathcal{O}_{X}\right) \cong H_{\mathrm{m}}^{2}(R / I)_{0}
$$

where $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right], I \subset R$ is such that $X \cong \operatorname{Proj}(R / I)$ and \mathfrak{m} is the maximal irrelevant. Our assumption was $\operatorname{depth}(R / I) \geq 3$. In particular $H_{\mathfrak{m}}^{2}(R / I)=0$, so $H^{1}\left(X_{h}, \mathcal{O}_{X_{h}}\right)=0$. Eventually, by the injection $H^{1}\left(X_{h}, \mathbb{Z}_{X_{h}}\right) \hookrightarrow H^{1}\left(X_{h}, \mathcal{O}_{X_{k}}\right)$ we deduce $H^{1}\left(X_{h}, \mathbb{Z}\right) \cong$ $H^{1}\left(X_{h}, \mathbb{Z}_{X_{h}}\right)=0$. By the universal coefficient theorem

$$
H^{1}\left(X_{h}, \mathbb{C}\right)=0,
$$

and this was the missing piece (iii) to infer $\operatorname{cd}(R, I) \leq n-3$. \square

