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We can assume K = C. Let us denote X}, the analytic space
associated to X.

Hartshorne: Hjhs(X) =2 H'(Xp, C) (singular cohomology).
depth(R/l) > 3 = X is connected. Moreover it is well known:

X connected (Zariski) <= X} connected (euclidean)

Thus H3.(X) = HO(X,,C)=C ().

So it remains to show  , i.e. H} (X}, C) = 0.
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The proof of relies on the celebrated exponential sequence:

This is well known, but references can be found only if X is
reduced (/ radical), so | would like to explain it in the general case.
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First of all the problem is local. Therefore we can assume that
X C A" is affine. So we have the maps:

€XpPcn
O(C" O(Cn

! !

OXh ;h
where the vertical maps are the natural projections. Notice that all
the above maps are surjective! We want to show that:

eXPXh

Oxh OXh’

where expy, (f) = expea(f), is a well-defined map.
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To show that expy, is well-defined we can argue on the stalks. Let
P be a point of X;,. We can assume that P =0. Soleta C A=
C{x1,...,xn} be so that Ocng = A and Ox, o = A/a. Let

=> f"/ml

m>1

So it makes sense to write the commutative diagram:

Notice that expy, is surjective.
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0 — H%(Xp, Zx,) — H°(Xp, Ox,) — H°(Xn, O%,) —
HY(Xn, Zx,) — H*(Xp, Ox,) — H'(Xn, O%,) — - ..

By GAGA H°(Xp, Ox,) = H°(X,Ox), and the latter is an artinian
C-algebra. For such an algebra, it is easy to show that the exponential
map from the additive group to its multiplicative group of units is
surjective. So H(Xp, Ox,) — H°(Xh, O%, ) is surjective, and thus

H(Xn, Zx,) — H*(Xn, Ox,)

is injective.
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