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ABSTRACT. The purpose of this note is to introduce a multiplication on the set of homogeneous poly-
nomials of fixed degree d, in a way to provide a duality theory between monomial ideals of K[x1, . . . ,xd ]
generated in degrees ≤ n and block stable ideals (a class of ideals containing the Borel fixed ones) of
K[x1, . . . ,xn] generated in degree d. As a byproduct we give a new proof of the characterization of Betti
tables of ideals with linear resolution given by Murai.

INTRODUCTION

Minimal free resolutions of modules over a polynomial ring are a classical and fascinating subject.
Let P = K[x1, . . . ,xn] denote the polynomial ring equipped with the standard grading in n variables over
a field K. For a Z-graded finitely generated P-module M, we consider its minimal graded free resolution:

. . .→
⊕
j∈Z

P(− j)βi, j(M)→ . . .→
⊕
j∈Z

P(− j)β0, j(M)→M→ 0,

where P(k) denotes the P-module P supplied with the new grading P(k)i = Pk+i. Hilbert’s Syzygy theo-
rem guarantees that the resolution above is finite: more precisely βi, j(M) = 0 whenever i> n. The natural
numbers βi, j = βi, j(M) are numerical invariants of M, and they are called the graded Betti numbers of
M. The coarser invariants βi = βi(M) = ∑ j∈Z βi, j are called the (total) Betti numbers of M. We will refer
to the matrix (βi,i+ j) as the Betti table of M:

...
...

... · · · · · ·
...

β0,d β1,1+d β2,2+d · · · · · · βn,n+d
...

...
... · · · · · ·

...

 .

It is a classical problem to inquire on the behavior of Betti tables, especially when M = P/I (equivalently
M = I) for a graded ideal I ⊂ P. Recently the point of view is substantially changed: Boij and Söderberg
in [BS] suggested to look at the set of Betti tables of modules M up to rational numbers. Eisenbud
and Schreyer confirmed this intuition in [ES], giving birth to a new theory that demonstrated extremely
powerful and is rapidly developing.

In some directions the original problem of determining the exact (not only up to rationals) possible
values of the Betti numbers of ideals has however been solved: For example, Murai characterized the
Betti tables of ideals with linear resolution (i.e. with only one nonzero row in the Betti table) in [Mu,
Proposition 3.8], and Crupi and Utano in [CU] and the three authors of this paper in [HSV] gave (different
in nature) characterizations of the possible extremal Betti numbers (nonzero top left corners in a block
of zeroes in the Betti table) that a graded ideal may achieve. The proof of Murai makes use of the
Kalai’s stretching of a monomial ideal and the Eagon-Reiner theorem. In this note we aim to give an
alternative proof of his result, introducing a structure of K-algebra on the set of the degree d polynomials
in a suitable way to yield a good duality theory between strongly stable ideals of K[x1, . . . ,xd ] generated
in degrees ≤ n and strongly stable ideals of K[x1, . . . ,xn] generated in degree d. Such a duality extends
to all monomial ideals of K[x1, . . . ,xd ] generated in degrees ≤ n, the counterpart being certain monomial
ideals of K[x1, . . . ,xn] generated in degree d, which we will call block stable ideals. Let us remark that
this construction is completely elementary.
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1. TERMINOLOGY

Throughout we denote by N the set of the natural numbers {0,1,2, . . .} and by n a positive natural
number. We will essentially work with the polynomial rings

S = K[xi : i ∈ N]
and

P = K[x1, . . . ,xn],

where the xi’s are variables over a field K. The reason why we consider a polynomial ring in infinite
variables is that it is more natural to deal with it in Section 2, when we will define the ∗-operation.
However, for the applications of the theory to the graded Betti numbers, P will be considered. The
following notions will be introduced just relatively to S, also if we will use them also for P.

The ring S is graded on N, namely S =
⊕

d∈N Sd where

Sd = 〈xi1xi2 · · ·xid : i1 ≤ i2 ≤ . . .≤ id are natural numbers〉.
Given a monomial u ∈ Sd , with d ≥ 1, we set:

(1) m(u) = max{e ∈ N : xe divides u}.
A monomial space V ⊂ S is a K-vector subspace of S which has a K-basis consisting of monomials of S.
If V ⊂ Sd , we will refer to the complementary monomial space V c of V as the K-vector space generated
by the monomials of Sd which are not in V . Given a monomial space V ⊂ S and two natural numbers
i,d, such that d ≥ 1, we set:

wi,d(V ) = |{u monomials in V ∩Sd and m(u) = i}|.
Without taking in consideration the degrees,

wi(V ) = |{u monomials in V and m(u) = i}|.
We order the variables of S by the rule

xi > x j ⇐⇒ i < j,

so that x0 > x1 > x2 > .. .. On the monomials, unless we explicitly say differently, we use a degree
lexicographical order w.r.t. the above ordering of the variables. A monomial space V ⊂ S is called stable
if for any monomial u ∈ V , then (u/xm(u)) · xi ∈ V for all i < m(u). It is called strongly stable if for any
monomial u ∈V and for each j ∈ N such that x j divides u, then (u/x j) · xi ∈V for all i < j. Obviously a
strongly stable monomial space is stable.

The remaining definitions of this section will be given for P, since we do not need them for S. A
monomial space V ⊂ P is called lexsegment if, for all d ∈ N, there exists a monomial u ∈ Pd such that

V ∩Pd = 〈v ∈ Pd : v≥ u〉.
Clearly, a lexsegment monomial space is strongly stable. The celebrated theorem of Macaulay explains
when a lexsegment monomial space is an ideal. We recall that given a natural number a and a positive
integer d, the dth Macaulay representation of a is the unique writing:

a =
d

∑
i=1

(
k(i)

i

)
such that k(d)> k(d−1)> .. . > k(1)≥ 0,

see [BH, Lemma 4.2.6]. Then:

a〈d〉 =
d

∑
i=1

(
k(i)+1

i+1

)
.

A numerical sequence (hi)i∈N is called O-sequence if h0 = 1 and hd+1 ≤ h〈d〉d for all d ≥ 1. (The reader
should be careful because the definition of O-sequence depends on the numbering: A vector (m1, . . . ,mn)

will be a O-sequence if m1 = 1 and and mi+1 ≤ m〈i−1〉
i for all i ≥ 2). The theorem of Macaulay (for

example see [BH, Theorem 4.2.10]) says that, given a numerical sequence (hi)i∈N, the following are
equivalent:
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(i) (hi)i∈N is an O-sequence with h1 ≤ n.
(ii) There is a homogeneous ideal I ⊂ P such that (hi)i∈N is the Hilbert function of P/I.

(iii) The lexsegment monomial space L ⊂ P such that L∩Pd consists in the biggest
(n+d−1

d

)
− hd

monomials, is an ideal.
We already defined the Betti numbers of a Z-graded P-module M in the introduction. For an integer

d, the P-module M is said to have a d-linear resolution if βi, j(M) = 0 for every j 6= i+d; equivalently,
if βi(M) = βi,i+d(M) for all i. Notice that if M has d-linear resolution, then it is generated in degree d.
The P-module M is said componentwise linear if M〈d〉 has d-linear resolution for all d ∈ Z, where M〈d〉
means the P-submodule of M generated by the elements of degree d of M. It is not difficult to show that
if M has a linear resolution, then it is componentwise linear.

We introduce the following numerical invariants of a Z-graded finitely generated P-module M: For all
i = 1, . . . ,n+1 and d ∈ Z:

(2) mi,d(M) =
n

∑
k=0

(−1)k−i+1
(

k
i−1

)
βk,k+d(M).

The following lemma shows that to know the mi,d(M)’s is equivalent to know the Betti table of M.

Lemma 1.1. Let M be a Z-graded finitely generated P-module. Then:

(3) βi,i+d(M) =
n+1

∑
k=i

(
k−1

i

)
mk,d(M).

Proof. Set mk,d = mk,d(M) and βi, j = βi, j(M). By the definition of the mk,d’s we have the following
identity in Z[t]:

n+1

∑
k=1

mk,dtk−1 =
n

∑
i=0

βi,i+d(t−1)i.

Replacing t by s+1, we get the identity of Z[s]
n+1

∑
k=1

mk,d(s+1)k−1 =
n

∑
i=0

βi,i+dsi,

that implies the lemma. �

Let us define also the coarser invariants:

(4) mi(M) = ∑
d∈Z

mi,d(M) ∀ i = 1, . . . ,n+1.

If M = I is a homogeneous ideal of P, notice that mi,d = 0 if i = n+1 or d < 0. We say that a monomial
ideal I ⊂ P is stable (strongly stable) (lexsegment) if the underlying monomial space is. By G(I), we will
denote the unique minimal set of monomial generators of I. If I is a stable monomial ideal, we have the
following nice interpretation by the Eliahou-Kervaire formula [EK] (see also [HH2, Corollary 7.2.3]):

mi,d(I) = wi,d(〈G(I)〉) = |{u monomials in G(I)∩Pd and m(u) = i}|(5)
mi(I) = wi(〈G(I)〉) = |{u monomials in G(I) and m(u) = i}|.

From Lemma 1.1 and (5) follows that a stable ideal generated in degree d has a d-linear resolution.
Furthermore, if I is a stable ideal, then I〈d〉 is stable for all natural numbers d. So any stable ideal is
componentwise linear.

When M = I is a stable monomial ideal we will consider (5) the definition of the mi,d’s, and we will
refer to (3) as the Eliahou-Kervaire formula.

2. THE ∗-OPERATION ON MONOMIALS AND STRONGLY STABLE IDEALS

We are going to give a structure of associative commutative K-algebra to the K-vector space Sd ,
in the following way: Given two monomials u and v in Sd , we write them as u = xi1xi2 · · ·xid with
i1 ≤ i2 ≤ . . .≤ id and v = x j1x j2 · · ·x jd with j1 ≤ j2 ≤ . . .≤ jd . Then we define their product as

u∗ v = xi1+ j1xi2+ j2 · · ·xid+ jd .
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We can extend ∗ to the whole Sd by K-linearity. Clearly, ∗ is associative and commutative. We will
denote by Sd the K-vector space Sd supplied with such an algebra structure. Actually Sd has a natural
graded structure: In fact, we can write Sd =⊕e∈N(Sd)e where

(Sd)e = 〈u monomial of Sd and m(u) = e〉.

Notice that (Sd)0 = 〈xd
0〉 ∼= K and that (Sd)e is a finite dimensional K-vector space. Therefore, Sd is

actually a positively graded K-algebra. Moreover, if u = xa0
0 · · ·xae

e ∈Sd , with ae 6= 0 and e≥ 1. Then

u = (xa0
0 xa1+...+ae

1 )∗ (xa0+a1
0 xa2+...+ae

1 )∗ . . .∗ (xa0+...+ae−1
0 xae

1 ),

so Sd is a standard graded K-algebra, that is Sd = K[(Sd)1]. Particularly, Sd is Noetherian. Notice that
(Sd)1 is a K-vector space of dimension d, namely:

(Sd)1 = 〈xd−1
0 x1,xd−2

0 x2
1, . . . ,x

d
1〉.

Actually, we are going to prove that Sd is a polynomial ring in d variables over K.

Proposition 2.1. The ring Sd is isomorphic, as a graded K-algebra, to the polynomial ring in d variables
over K.

Proof. Let K[y1, . . . ,yd ] be the polynomial ring in d variables over K. Of course there is a graded surjec-
tive homomorphism of K-algebras φ from K[y1, . . . ,yd ] to Sd , by extending the rule:

(6) φ(yi) = xi−1
0 xd+1−i

1 .

In order to show that φ is an isomorphism, it suffices to exhibit an isomorphism of K-vector spaces
between the graded components of Sd and K[y1, . . . ,yd ]. To this aim pick a monomial u ∈ (Sd)e:

u = xa0
0 · · ·x

ae
e , ai ∈ N, ae > 0 and

e

∑
i=0

ai = d.

To such a monomial we associate the monomial of K[y1, . . . ,yd ]e

ya0+1ya0+a1+1 · · ·ya0+...+ae−1+1.

It is easy to see that the above application is one-to-one, so the proposition follows. �

Remark 2.2. For the sequel it is useful to familiarize with the map φ . For instance, one can easily verify
that:

(7) φ(yb1
1 yb2

2 · · ·y
bd
d ) = xb1xb1+b2 · · ·xb1+...+bd .

Proposition 2.1 guarantees that φ has an inverse, that we will denote by ψ = φ−1 : Sd → K[y1, . . . ,yd ].
As one can show:

(8) ψ(xa0
0 xa1

1 · · ·x
ae
e ) = ya0+1ya0+a1+1 · · ·ya0+...+ae−1+1.

Given a monomial space V of course we have an isomorphism of K-vector spaces

V ∼= Sd/V c.

However in general the above isomorphism does not yield a structure of K-algebra to V , because V c may
be not an ideal of Sd . We are interested to characterize those monomials spaces V ⊂ Sd such that V c is
an ideal of Sd . For what follows it is convenient to introduce the following definition.

Definition 2.3. Let V ⊂ S be a monomial space. We will call it block stable if for any u = xa0
0 · · ·xae

e ∈V
and for any i = 1, . . . ,e, we have that

u
xai

i · · ·x
ae
e
· xai

i−1 · · ·x
ae
e−1 ∈V.

Remark 2.4. Notice that a strongly stable monomial space is also stable and block stable. On the other
side block stable monomial spaces might be not stable (it is enough to consider 〈x2

0, x2
1〉). There are also

stable monomial spaces which are not block stable: Consider the monomial space:

V = 〈x3
0, x2

0x1, x0x2
1, x0x1x2, x0x1x3〉 ⊂ S3.
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It turns out that V is stable, but not block stable, because
x0x1x3

x1x3
· x0x2 = x2

0x2 /∈V.

Finally, the monomial space 〈x3
0, x2

0x1, x0x2
1, x0x1x2〉 ⊂ S3 is both stable and block stable, but is not

strongly stable.

Lemma 2.5. Let V ⊂ Sd be a monomial space. Then V is block stable if and only if V c is an ideal of Sd .

Proof. “Only if”-part. Consider a monomial u ∈V c. By contradiction there is an i ∈ {1, . . . ,d−1} such
that

w = u∗ (xi
0xd−i

1 ) /∈V c.

If u = xp1 · · ·xpd with p1 ≤ . . .≤ pd , then

w = xp1 · · ·xpi · xpi+1+1 · · ·xpd+1.

Since V is block stable and w is a monomial of V , then

u =
w

xpi+1+1 · · ·xpd+1
· xpi+1 · · ·xpd ∈V,

a contradiction.
“If”-part. Pick u = xa0

0 · · ·xae
e ∈V . By contradiction there is i ∈ {1, . . . ,e} such that

w =
u

xai
i · · ·x

ae
e
· xai

i−1 · · ·x
ae
e−1 /∈V.

Since V c is an ideal of Sd and w ∈V c, we have

u = w∗ (xa1+...+ai−1
0 xai+...+ae

1 ) ∈V c.

This contradicts the fact that we took u ∈V . �

The following corollary, essentially, is why we introduced Sd .

Corollary 2.6. Let (wi)i∈N be a sequence of natural numbers. If there exists a strongly stable monomial
space V ⊂ Sd (actually it is enough that V is block stable) such that wi(V ) = wi for any i ∈ N, then
(wi)i∈N is an O-sequence such that w1 ≤ d.

Proof. That w0 = 1 and w1 ≤ d is clear. By Lemma 2.5 V c is an ideal of Sd . So, Proposition 2.1 implies
that Sd/V c is a standard graded K-algebra. Clearly we have

HFSd/V c(i) = wi(V ) = wi ∀ i ∈ N,
(HF denotes the Hilbert function) so we get the conclusion by the theorem of Macaulay. �

The above corollary can be reversed. To this aim we need to understand the meaning of “strongly
stable” in Sd . By Proposition 2.1 Sd ∼= K[y1, . . . ,yd ], so we already have a notion of “strongly stable”
in Sd . However, we want to describe it in terms of the multiplication ∗.

Lemma 2.7. Let W be a monomial space of K[y1, . . . ,yd ]. We recall the isomorphism φ : K[y1, . . . ,yd ]→
Sd of (6). The following are equivalent:

(i) W is a strongly stable monomial space.
(ii) If xa0

0 · · ·xae
e ∈ φ(W ) with ae > 0, then xa0

0 · · ·x
ai−1
i ·xai+1+1

i+1 · · ·xae
e ∈ φ(W ) for all i ∈ {0, . . . ,e−1}

such that ai > 0.

Proof. (i) =⇒ (ii). If u = xa0
0 xa1

1 · · ·xae
e ∈ φ(W ) with ae > 0, then

ψ(u) = ya0+1ya0+a1+1 · · ·ya0+...+ae−1+1 ∈W,

see (8). Since W is strongly stable, then for all i ∈ {0, . . . ,e−1}:
w = ya0+1 · · ·ya0+...+(ai−1)+1 · ya0+...+(ai−1)+(ai+1+1)+1 · · ·ya0+...+ae−1+1 ∈W.

Therefore, if ai > 0, we get v = xa0
0 · · ·x

ai−1
i · xai+1+1

i+1 · · ·xae
e = φ(w), so v ∈ φ(W ).

(ii) =⇒ (i). Let w = yb1
1 yb2

2 · · ·y
bd
d ∈W . Then, using (7),

φ(w) = xb1xb1+b2 · · ·xb1+...+bd ∈ φ(W ).



6 JÜRGEN HERZOG, LEILA SHARIFAN, AND MATTEO VARBARO

By contradiction there exist p and q in {1, . . . ,d} such that bp > 0, q < p and
w
yp
· yq = yb1

1 · · ·y
bq+1
q · · ·ybp−1

p · · ·ybd
d /∈W.

Of course we can suppose that q = p−1, so we get a contradiction, because the assumptions yield:

φ

(
w
yp
· yp−1

)
= xb1 · · ·xb1+...+(bp−1+1)xb1+...+(bp−1+1)+(bp−1) · · ·xb1+...+bd ∈ φ(W ).

�

Thanks to Lemma 2.7, therefore, it will be clear what we mean for a monomial space of Sd being
strongly stable.

Proposition 2.8. Let V ⊂ Sd be a monomial space. The following are equivalent:
(i) V c is a strongly stable monomial subspace of Sd;

(ii) V is a strongly stable monomial subspace of Sd .

Proof. First we prove (i) =⇒ (ii). Pick u = xa0
0 · · ·xae

e ∈ V . By contradiction, assume that there exists
i ∈ {1, . . . ,e} such that w = xa0

0 · · ·x
ai−1+1
i−1 xai−1

i · · ·xae
e /∈ V . So w ∈ V c, and since V c is a strongly stable

monomial ideal of Sd , by Lemma 2.7 we get u ∈V c, which is a contradiction.
(ii) =⇒ (i). By Lemma 2.5 we have that V c is an ideal of Sd . Consider u= xa0

0 · · ·xae
e ∈V c with ae > 0

and i ∈ {0, . . . ,e−1}. If w = xa0
0 · · ·x

ai−1
i · xai+1+1

i+1 · · ·xae
e were not in V c, then u would be in V because V

is a strongly stable monomial space. Thus V c has to be strongly stable once again using Lemma 2.7. �

Theorem 2.9. Let (wi)i∈N be a sequence of natural numbers. Then the following are equivalent:
(i) There exists a strongly stable monomial space V ⊂ Sd such that wi(V ) = wi for any i ∈ N.

(ii) There exists a block stable monomial space V ⊂ Sd such that wi(V ) = wi for any i ∈ N.
(iii) (wi)i∈N is an O-sequence such that w1 ≤ d.

Proof. (i) =⇒ (ii) is obvious and (ii) =⇒ (iii) is Corollary 2.6. So (iii) =⇒ (i) is the only thing we
still have to prove. If the sequence (wi)i∈N satisfies the conditions of (iii), then the theorem of Macaulay
guarantees that there exists a lexsegment ideal J ⊂ K[y1, . . . ,yd ] such that

HFK[y1,...,yd ]/J(i) = wi ∀ i ∈ N

Being a lexsegment ideal, J is strongly stable. So φ(J)c is a strongly stable monomial subspace of Sd by
Proposition 2.8. Clearly we have:

mi(φ(J)c) = HFK[y1,...,yd ]/J(i) = wi ∀ i ∈ N,

thus we conclude. �

Discussion 2.10. Theorem 2.17 implies [Mu, Proposition 3.8]. Let us briefly discuss the proof of Murai,
comparing it with ours.

Let u = xi1xi2 · · ·xid be a monomial with i1 ≤ i2 ≤ . . . ≤ id . Following Kalai, the stretched monomial
arising from u is

uσ = xi1xi2+1 · · ·xid+(d−1).

Notice that uσ is a squarefree monomial. The compress operator τ is the inverse to σ . If v = x j1x j2 · · ·x jd
is a squarefree monomial, we define the compressed monomial arising from v to be

vτ = x j1x j2−1 · · ·x jd−(d−1).

Let I ⊂ K[x1, . . . ,xn] be a strongly stable ideal generated in degree d with G(I) = {u1, . . . ,ur}. We set

Iσ = (uσ
1 ,u

σ
2 , . . . ,u

σ
r )⊂ K[x1, . . . ,xn+m−1].

As shown in [HH2, Lemma 11.2.5], one has that Iσ is a squarefree strongly stable ideal. Recall that a
squarefree monomial ideal J is called squarefree strongly stable, if for all squarefree generators u of I
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and all i < j for which x j divides u and xi does not divides u, one has that (u/x j) · xi ∈ J. Denoting by ∨

the Alexander dual of a squarefree monomial ideal, given a strongly stable ideal I we set

Idual = ((Iσ )∨)τ ,

where for a squarefree monomial ideal J with G(J) = {u1, . . . ,um} we set Jτ = (uτ
1, . . . ,u

τ
m). Murai

showed his result using a formula relating the Betti numbers of a squarefree monomial ideal with linear
resolution and the h-vector of the quotient by its Alexander dual, that is Cohen-Macaulay by the Eagon-
Reiner theorem.

Starting with a strongly stable monomial ideal is necessary, otherwise the stretching operator changes
the Betti numbers. However, one can show that on strongly stable ideals this duality actually coincides
with the one discussed in this note: If J′ ⊂ K[x1, · · · ,xn] is a strongly stable ideal generated in degree d
and J ⊂ S is the ideal J′S under the transformation xi 7→ xi+1, then

ψ(〈G(J)c〉) = J′dual

up to degree n (J′dual has not minimal generators of degree bigger than n). To show this, it is enough to
notice that J′dual ⊂ ψ(〈G(J)c〉) because the graded rings K[x1, · · · ,xd ]/J′dual and K[x1, · · · ,xd ]/〈G(J)c〉
share the same Hilbert function up to n.

Actually, a careful reading of the proof of Theorem 2.9 shows that, given a O-sequence, we can give
explicitly a strongly stable monomial subspace V ⊂ Sd such that wi(V ) = wi for any i ∈N. The reason is
that to any Hilbert function is associated a unique lexsegment ideal: Let (wi)i∈N be a sequence of natural
numbers. For any i ∈ N, set

Vi = {biggest wi monomials u ∈ Sd such that m(u) = i}.
Then we call V = 〈∪i∈NVi〉 ⊂ Sd the piecewise lexsegment monomial space (of type (d,(wi)N)). The
proof of Theorem 2.9 yields:

Corollary 2.11. The piecewise lexsegment of type (d,(wi)N) is strongly stable if and only if (wi)N is an
O-sequence such that w1 ≤ d.

Remark 2.12. The notion of piecewise lexsegment was successfully used in [HSV] to characterize the
possible extremal Betti numbers of a homogeneous ideal. We wish to point out that, even if [HSV,
Theorem 3.7] is stated in characteristic 0, actually the same conclusion holds true in any characteristic,
by exploiting a construction given by Caviglia and Sbarra in [CS] (see Proposition 2.2(vi) of that paper).

Notice that the established interaction between Sd and K[y1, . . . ,yd ] can be also formulated between

K[x0, . . . ,xm] and K[y1, . . . ,yd ]/(y1, . . . ,yd)
m+1 ∀ m≥ 1.

Therefore, an interesting corollary of Proposition 2.8 is the following.

Corollary 2.13. Let us define the sets

A = {strongly stable monomial ideals of K[x0, . . . ,xm] generated in degree d}
and

B = {strongly stable monomial ideals of K[y1, . . . ,yd ] with height d and generated in degrees ≤ m+1}.
Then the assignation V 7→ ψ(V c) establishes a 1-1 correspondence between A and B.

Proof. Notice that if I ⊂ K[y1, . . . ,yd ] is of height d, then (y1, . . . ,yd)
k ⊂ I for all k ≥ reg(I). Since I

is generated in degrees ≤ m+1 and componentwise linear, we have reg(I) ≤ m+1, so we are done by
what said before the corollary. �

It is worth to rest a bit on the properties of block stable ideals, since by Lemma 2.5 they seem to arise
naturally by studying strongly stable ideals. Let us consider the Borel subgroup of GL∞(K) consisting of
∞×∞ upper diagonal matrices with entries in K and 1’s on the diagonal. In characteristic 0 Borel fixed
(w.r.t. the obvious action) monomial spaces are strongly stable, so in particular block stable. However
in positive characteristic the situation is quite different, for example the space 〈x2

0,x
2
1〉 is Borel fixed in

characteristic 2 but not strongly stable.
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Proposition 2.14. Regardless to char(K), a Borel fixed monomial space is block stable.

Proof. Let V ⊂ S be a Borel fixed vector space. If u = xa0
0 · · ·xae

e ∈ V , then for any i = 1, . . . ,e we have
that (u/xai

i ) · x
ai
i−1 ∈ V since

(ai
ai

)
= 1 is different from 0 modulo char(K), whatever the latter is (see [Ei,

Theorem 15.23]). Recursively one gets
u

xai
i · · ·x

ae
e
· xai

i−1 · · ·x
ae
e−1 ∈V.

�

One might be induced to look for an analog of the Eliahou-Kervaire formula for block stable ideals.
Such a formula, however, would be not purely combinatorial, in the sense that the graded Betti numbers
of block stable ideals depend on the characteristic of the field K: In fact even the Betti numbers of a Borel
fixed ideal depend on the characteristic, as recently shown (indeed while they were at MSRI for the 2012
“Commutative Algebra” program) by Caviglia and Kummini in [CM, Theorem 3.2], solving negatively a
conjecture of Pardue. Their method gives rise to a Borel fixed ideal generated in many degrees. However
Caviglia pointed out to us that we can even get a Borel fixed ideal generated in a single degree as follows:

Example 2.15. There is an ideal I ⊂ R = Z[x1, . . . ,x6] generated in a single degree 2726 such that it is
Borel fixed in characteristic 2 but its Betti numbers depend on the characteristic.

Proof: Let J ⊂ R the Borel fixed ideal (in characteristic 2) of [CM, Example 3.7]. If d = 2729, we
have that β2,d(J(R⊗Z K)) is 0 or not according to char(K) being different or equal to 2. By computing
the Betti numbers in terms of Koszul homology w.r.t. (x1, . . . ,x6), it is clear that

β2,d(J(R⊗Z K)) = β2,d((Jd−2 + Jd−3)(R⊗Z K)).

However the minimal generator of maximal degree of J has degree 2568, that is less than d− 3. So
(Jd−3) = (Jd−2 + Jd−3). In particular I = (Jd−3) is a Borel fixed ideal (in characteristic 2) generated in
degree 2726 whose Betti numbers are sensible to the characteristic.

2.1. The possible Betti numbers of an ideal with linear resolution. In this subsection we will see
how Theorem 2.9 yields a characterization of the Betti tables with just one row. Such an issue, in
fact, is equivalent to characterize the possible graded Betti numbers of a strongly stable monomial ideal
of P generated in one degree. Actually, more generally, to characterize the possible Betti tables of a
componentwise linear ideal of P is equivalent to characterize the possible Betti tables of a strongly stable
monomial ideal of P. In fact, in characteristic 0 this is true because the generic initial ideal of any ideal
I is strongly stable [Ei, Theorem 15.23]. Moreover, if I is componentwise linear and the term order is
degree reverse lexicographic, then the graded Betti numbers of I are the same of those of Gin(I) by a
result of Aramova, Herzog and Hibi in [AHH]. In positive characteristic it is still true that for a degree
reverse lexicographic order the graded Betti numbers of I are the same of those of Gin(I), provided that
I is componentwise linear. But in this case Gin(I) might be not strongly stable. However, it is known
that, at least for componentwise linear ideals, it is stable [CHH, Lemma 1.4]. The graded Betti numbers
of a stable ideal do not depend from the characteristic, because the Elihaou-Kervaire formula (3). So to
compute the graded Betti numbers of Gin(I) we can consider it in characteristic 0. Let us call J the ideal
Gin(I) viewed in characteristic 0. The ideal J, being stable, is componentwise linear, so we are done by
what said above. Summarizing, we showed:

Proposition 2.16. The following sets coincide:
(1) {Betti tables (βi, j(I)) where I ⊂ P is componentwise linear};
(2) {Betti tables (βi, j(I)) where I ⊂ P is strongly stable};

So, we get the following:

Theorem 2.17. Let m1, . . . ,mn be a sequence of natural numbers. Then the following are equivalent:
(1) There exists a homogeneous ideal I ⊂ P with d-linear resolution such that mk(I) = mk for all

k = 1, . . . ,n;
(2) There exists a strongly stable monomial ideal I ⊂ P generated in degree d such that mk(I) = mk

for all k = 1, . . . ,n;
(3) (m1, . . . ,mn) is an O-sequence such that m2 ≤ d, that is:
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(a) m1 = 1;
(b) m2 ≤ d;
(c) mi+1 ≤ m〈i−1〉

i for any i = 2, . . . ,n−1.

Proof. By virtue of Proposition 2.16, (1) ⇐⇒ (2). Moreover, if I is strongly stable, then mi(I) =
wi(〈G(I)〉) for all i = 1, . . . ,n, see (5). Since the monomial space 〈G(I)〉 is strongly stable, Theorem 2.9
yields the equivalence (2) ⇐⇒ (3). �

Example 2.18. Let us see an example: Theorem 2.17 assures that we will never find a homogeneous
ideal I ⊂ R = K[x1,x2,x3,x4] with minimal free resolution:

0−→ R(−6)6 −→ R(−5)22 −→ R(−4)29 −→ R(−3)14 −→ I −→ 0.

In fact I, using (2), should satisfy m1(I) = 1, m2(I) = 3, m3(I) = 4 and m4(I) = 6. This is not an
O-sequence, thus the existence of I would contradict Theorem 2.17.
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