
THE POSSIBLE EXTREMAL BETTI NUMBERS OF A HOMOGENEOUS IDEAL

JÜRGEN HERZOG, LEILA SHARIFAN, AND MATTEO VARBARO

ABSTRACT. We give a numerical characterization of the possible extremal Betti numbers (values as well
as positions) of any homogeneous ideal in a polynomial ring over a field of characteristic 0.

INTRODUCTION

The main purpose of this note is to characterize the possible extremal Betti numbers (values as well as
positions) of any homogeneous ideal in a polynomial ring over a field of characteristic 0. These special
graded Betti numbers were introduced by Bayer, Charalambous and Popescu in [BCP]: One reason
why they naturally arise is that they are equal to the dimensions of certain cohomology vector spaces
of the projective scheme associated to the ideal. We also investigate on the possible Betti tables of a
componentwise linear ideal: Such a problem seems to be very hard, indeed we could solve it just in
some special cases. We provide some examples illustrating the main obstructions to the issue.

After a preliminary section, in Section 2 we study the possible Betti tables of componentwise linear
ideals, introduced by Herzog and Hibi in [HH1]. This issue is equivalent to a characterization of the
graded Betti numbers of strongly stable ideals. We denote by I j the jth graded component of a strongly
stable ideal I, set µi j(I) equal to the number of the monomials in I j ∩K[x1, . . . ,xi] divisible by xi, and
define the matrix M (I) = (µi j(I)), which we call the matrix of generators of I. As explained in the
beginning of Section 2, the matrix M (I) and the graded Betti numbers of I determine each other. Thus
we are led to characterize the integer matrices (µi j) for which there exists a strongly stable ideal I such
that M (I) = (µi j). From a result obtained by Murai in [Mu], which yields the characterization of the
possible Betti numbers of ideals with linear resolution (see Proposition 2.3), one can deduce some nec-
essary conditions for (µi j) being the matrix of generators for some strongly stable ideal, Proposition 2.6.
Unfortunately these conditions are not sufficient to describe the matrices of generators of strongly stable
ideals, as shown in Example 2.7. The difficulty of the task of characterizing Betti tables of componen-
twise linear ideals is also shown by Example 2.8, where we exhibit a noncomponentwise linear ideal
(in three variables) with the same Betti table of a componentwise linear ideal, answering negatively a
question raised by Nagel and Römer in [NR]. After discussing the main obstruction to constructing
strongly stable ideals with a prescribed matrix of generators, we give sufficient conditions for a matrix
to be of the form M (I) where I is strongly stable in Proposition 2.9. As a consequence it is shown in
Corollary 2.10 that the necessary conditions given in Proposition 2.6 are also sufficient when dealing
with strongly stable ideals in three variables. Another instance for which the matrix of generators of a
particular class of strongly stable ideals can be described is given in Proposition 2.13, which gives the
possible matrices of generators of lexsegment ideals, and therefore, exploiting a result in [HH1], of Gotz-
mann ideals. Though a complete characterization of the possible Betti numbers of a strongly stable ideal
seems to be quite difficult, we succeed in Section 3 to characterize all possible extremal Betti numbers of
any homogeneous ideal I ⊂ S = K[x1, . . . ,xn], provided that K has characteristic 0. According to [BCP],
a Betti number βi,i+ j 6= 0 of I is called extremal if βk,k+l = 0 for all pairs (k, l) 6= (i, j) with k ≥ i and
l ≥ j. It is shown in [BCP] that the positions as well as the values of the extremal Betti numbers of a
graded ideal are preserved under taking the generic initial ideal with respect to the reverse lexicograph-
ical order. Thus, since K has characteristic 0, we may restrict our attention to characterize the extremal
Betti numbers of strongly stable ideals. More precisely, let i1 < i2 < · · · < ik < n, j1 > j2 > · · · > jk
and b1, . . . ,bk be sequences of positive integers. In Theorem 3.7 we give numerical conditions which are
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equivalent to the property that there exists a homogeneous ideal I ⊂ S whose extremal Betti numbers are
precisely βip,ip+ jp(I) = bp for p = 1, . . . ,k.

We are very grateful to the anonymous referee for suggesting us the point (iv) of Theorem 3.7 and the
last statement in Lemma 3.3.

1. PRELIMINARIES

Let n be a positive integer. We will essentially work with the polynomial ring

S = K[x1, . . . ,xn],

where the xi’s are variables over a field K. Given a monomial u ∈ S, we set:

(1) m(u) = max{e ∈ {1, . . . ,n} : xe divides u}.
A monomial space V ⊂ S is called stable if for any monomial u ∈ V , then (u/xm(u)) · xi ∈ V for all
i < m(u). It is called strongly stable if for any monomial u ∈ V and for each j ∈ {1, . . . ,n} such that x j
divides u, then (u/x j) · xi ∈ V for all i < j. Obviously a strongly stable monomial space is stable. By
a stable (strongly stable) monomial ideal I ⊆ S we mean that the underlying monomial space is stable
(strongly stable); or equivalently, that the monomial space 〈G(I)〉, where G(I) is the unique minimal set
of monomial generators of I, is stable (strongly stable).

On the monomials, unless we explicitly say differently, we use a degree lexicographical order with
respect to the ordering of the variables x1 > x2 > .. . > xn. A monomial space V ⊂ S is called lexsegment
if, for all d ∈ N, there exists a monomial u ∈ Sd (the degree d part of S) such that

V ∩Sd = 〈v ∈ Sd : v≥ u〉.
We will sometimes denote by:

L≥u = {v ∈ Sd : v≥ u}.
Clearly, a lexsegment monomial space is strongly stable. The celebrated theorem of Macaulay explains
when a lexsegment monomial space is an ideal. We remind that given a natural number a and a positive
integer d, the dth Macaulay representation of a is the unique writing:

a =
d

∑
i=1

(
k(i)

i

)
such that k(d)> k(d−1)> .. . > k(1)≥ 0,

see [BH, Lemma 4.2.6]. Then:

a〈d〉 =
d

∑
i=1

(
k(i)+1

i+1

)
.

A numerical sequence (hi)i∈N is called an O-sequence if h0 = 1 and hd+1 ≤ h〈d〉d for all d ≥ 1. (The reader
should be careful because the definition of O-sequence depends on the numbering: A vector (m1, . . . ,mn)

will be an O-sequence if m1 = 1 and and mi+1 ≤ m〈i−1〉
i for all i ≥ 2). The theorem of Macaulay (for

example see [BH, Theorem 4.2.10]) says that, given a numerical sequence (hi)i∈N, the following are
equivalent:

(i) (hi)i∈N is an O-sequence with h1 ≤ n.
(ii) There is a homogeneous ideal I ⊂ S such that (hi)i∈N is the Hilbert function of S/I.

(iii) The lexsegment monomial space L ⊂ S such that L∩ Sd consists in the biggest
(n+d−1

d

)
− hd

monomials, is an ideal.
For any Z-graded finitely generated S-module M, there is a minimal graded free resolution:

0→
⊕
j∈Z

S(− j)βp, j(M)→
⊕
j∈Z

S(− j)βp−1, j(M)→ . . .→
⊕
j∈Z

S(− j)β0, j(M)→M→ 0,

where S(k) denotes the S-module S supplied with the new grading S(k)i = Sk+i. The celebrated Hilbert’s
Syzygy theorem (for example see [BH, Corollary 2.2.14 (a)]) guarantees p ≤ n. The natural numbers
βi, j = βi, j(M) are numerical invariants of M, and they are called the graded Betti numbers of M. The
coarser invariants βi = βi(M) = ∑ j∈Z βi, j are called the (total) Betti numbers of M. A graded Betti
number βi,i+d is said to be extremal if βi,i+d 6= 0 and for all (p,q) 6= (i,d) such that p ≥ i and q ≥ d,
βp,p+q = 0. We will refer to the matrix (βi, j) as the Betti table of M. Actually, in the situations we will
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consider in this paper M = I is a homogeneous ideal of S. In this case βi, j = 0 whenever i ≥ n or j ≤ i
(unless I = S). We will present the Betti table of I as follows:

β0,1 β1,2 β2,3 · · · · · · βn−1,n
β0,2 β1,3 β2,4 · · · · · · βn−1,n+1
β0,3 β1,4 β2,5 · · · · · · βn−1,n+2

...
...

... · · · · · ·
...

 .

Also if the definition of the Betti table of M predicts infinite many rows, only a finite number of entries
are not zero (because M is finitely generated). Consequently, only a finite number of rows are significant,
and in the examples we will present throughout the paper we will draw just the significant rows. Notice
that a graded Betti number is extremal if and only if it is the nonzero top left “corner” in a block of zeroes
of the Betti table.

For an integer d, the S-module M is said to have a d-linear resolution if βi, j(M) = 0 for every i =
0, . . . , p and j 6= i+ d; equivalently, if βi(M) = βi,i+d(M) for any i = 0, . . . , p. Notice that if M has d-
linear resolution, then it is generated in degree d. The S-module M is said componentwise linear if M〈d〉
has d-linear resolution for all d ∈ Z, where M〈d〉 means the S-submodule of M generated by the elements
of degree d of M. It is not difficult to show that if M has a linear resolution, then it is componentwise
linear.

Let I be a stable monomial ideal. For all i ∈ {1, . . . ,n} and d ∈ N we set:

mi,d(I) = |{u monomials in G(I)∩Sd : m(u) = i}|(2)
mi(I) = |{u monomials in G(I) : m(u) = i}|.

By the Eliahou-Kervaire formula [EK] (see also [HH2, Corollary 7.2.3]) we have:

(3) βi,i+d(I) =
n

∑
k=i

(
k−1

i

)
mk,d(I).

It is convenient to introduce the analog of the mi,d’s for all Z-graded finitely generated S-module M: To
this aim, for all i ∈ {1, . . . ,n+1} and d ∈ Z we set:

(4) mi,d(M) =
n

∑
k=0

(−1)k−i+1
(

k
i−1

)
βk,k+d(M).

The following lemma shows that knowing the mi,d(M)’s is equivalent to knowing the Betti table of M,
and that the two definitions agree when M = I is a stable ideal.

Lemma 1.1. Let M be a Z-graded finitely generated S-module. Then:

(5) βi,i+d(M) =
n+1

∑
k=i

(
k−1

i

)
mk,d(M).

Proof. Set mk,d = mk,d(M) and βi, j = βi, j(M). By the definition of the mk,d’s we have the following
identity in Z[t]:

n+1

∑
k=1

mk,dtk−1 =
n

∑
i=0

βi,i+d(t−1)i.

Replacing t by s+1, we get the identity of Z[s]
n+1

∑
k=1

mk,d(s+1)k−1 =
n

∑
i=0

βi,i+dsi,

that implies the lemma. �

Let us define also the coarser invariants:

(6) mi(M) = ∑
d∈Z

mi,d(M) ∀ i = 1, . . . ,n+1.
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2. GRADED BETTI NUMBERS OF COMPONENTWISE LINEAR IDEALS

In this section we want to discuss the problem of characterizing the graded Betti numbers of a com-
ponentwise linear ideal I ⊂ S = K[x1, . . . ,xn]. This is a difficult task, in fact we are not going to solve the
problem, rather we are going to explain why it is problematic. Such an issue is equivalent to characterize
the possible graded Betti numbers of a strongly stable monomial ideal of S. In fact, in characteristic 0 this
is true because the generic initial ideal of any ideal I is strongly stable [Ei, Theorem 15.23]. Moreover, if
I is componentwise linear and the term order is degree reverse lexicographic, then the graded Betti num-
bers of I are the same of those of Gin(I) by a result of Aramova, Herzog and Hibi in [AHH]. In positive
characteristic it is still true that for a degree reverse lexicographic order the graded Betti numbers of I are
the same of those of Gin(I), provided that I is componentwise linear. But in this case Gin(I) might be
not strongly stable. However, it is known that, if we start from a componentwise linear ideal, it is stable
(see Conca, Herzog and Hibi [CHH, Lemma 1.4]). The graded Betti numbers of a stable ideal do not
depend from the characteristic, because of the Eliahou-Kervaire formula (3). So to compute the graded
Betti numbers of Gin(I) we can consider it in characteristic 0. Let us call J the ideal Gin(I) viewed in
characteristic 0. The ideal J, being stable, is componentwise linear, so we are done by what said above.
Summarizing, we showed:

Proposition 2.1. The following sets coincide:
(1) {Betti tables (βi, j(I)) where I ⊂ S is componentwise linear};
(2) {Betti tables (βi, j(I)) where I ⊂ S is strongly stable};

Before beginning the discussion on graded Betti numbers, it is worthwhile to notice that to characterize
the total Betti numbers of a componentwise linear ideal is an easy task. Indeed, together with Proposition
2.1, the following remark of Murai yields the answer:

Remark 2.2. (Murai). Let (m1, . . . ,mn) be a sequence of natural numbers. The following are equivalent:
(i) m1 = 1 and mi+1 = 0 whenever mi = 0.

(ii) There exists a strongly stable ideal I ⊂ S such that mi(I) = mi for any i = 1, . . . ,n.
That (ii) =⇒ (i) is very easy to show. For the reverse implication, given a sequence (m1, . . . ,mn)
satisfying (i), set k = max`{m` 6= 0}. By assumption we have mi ≥ 1 for all i = 1, . . . ,k, therefore it
makes sense to define the following monomial spaces for each j = 1, . . . ,k−1:

Vj =

〈 j−2

∏
i=1

xmi+1−1
i · xm j−1

j−1 xm j+1
j ,

j−2

∏
i=1

xmi+1−1
i · xm j−2

j−1 xm j+1+1
j , . . . ,

j−2

∏
i=1

xmi+1−1
i · xm j+m j+1−1

j

〉
.

We also define:

Vk =

〈 k−2

∏
i=1

xmi+1−1
i · xmk−1

k−1 xk,
k−2

∏
i=1

xmi+1−1
i · xmk−2

k−1 x2
k , . . . ,

k2

∏
i=1

xmi+1−1
i · xmk

k

〉
.

Clearly, for all j = 1, . . . ,k, we have wi(Vj) = m j if i = j and wi(Vj) = 0 otherwise. Set:

I =
( k⊕

j=1

Vk

)
⊂ S.

It is easy to see that I is a strongly stable monomial ideal and that 〈G(I)〉=
⊕k

j=1Vk, so we get (ii).

Actually, also the possible Betti numbers of an ideal with linear resolution are known. Proposition 2.1
and [Mu, Proposition 3.8] yield the following:

Proposition 2.3. Let m1, . . . ,mn be a sequence of natural numbers. Then the following are equivalent:
(1) There exists a homogeneous ideal I ⊂ S with d-linear resolution such that mk(I) = mk for all

k = 1, . . . ,n;
(2) (m1, . . . ,mn) is an O-sequence such that m2 ≤ d, that is:

(a) m1 = 1;
(b) m2 ≤ d;
(c) mi+1 ≤ m〈i−1〉

i for any i = 2, . . . ,n−1.
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Discussion 2.4. In [Mu, Proposition 3.8] is shown the equivalence between point (2) of Proposition
2.3 and the existence of a strongly stable ideal I ⊂ S generated in degree d such that mk(I) = mk for all
k = 1, . . . ,n. Looking carefully at the proof, one can see that, given an O-sequence (m1, . . . ,mn), a special
strongly stable ideal I ⊂ S such that mk(I) = mk shows up. This special strongly stable ideal, which we
are going to define more explicitly, will play a crucial role throughout the paper.

Given an O-sequence (m1, . . . ,mn) such that m2 ≤ d, set:

Vi = {biggest mi monomials u ∈ Sd such that m(u) = i}
for all i = 1, . . . ,n. Then the discussed ideal is:

I = (
n⋃

i=1

Vi)⊂ S.

We will refer to I as the piecewise lexsegment monomial ideal (of type (d,(m1, . . . ,mn))). From what
said above, it follows that the piecewise lexsegment of type (d,(m1, . . . ,mn)) is strongly stable if and
only if (m1, . . . ,mn) is a O-sequence such that m2 ≤ d.

Let I⊂ S be a strongly stable monomial ideal. Notice that both I〈 j〉 and mI, where j is a natural number
and m= (x1, . . . ,xn) is the graded maximal ideal of S, are strongly stable. For all j ∈ N and i = 1, . . . ,n,
we define:

µi, j(I) = mi(I〈 j〉).
To know the matrix (mi, j(I)) or (µi, j(I)) are equivalent issues: Indeed, if J ⊂ S is a strongly stable
monomial ideal, then for all i = 1, . . . ,n:

mi(mJ) =
i

∑
q=1

mq(J).

Therefore we have the formula:

(7) mi, j(I) = mi(I〈 j〉)−mi(mI〈 j−1〉) = µi, j(I)−
i

∑
q=1

µq, j−1(I)

that implies that we can pass from the µi, j’s to the mi, j’s. It also follows from this formula that we can do
the converse path by induction on j, because µi,d(I) = mi,d(I) if d is the smallest degree in which I is not
zero. Therefore, using Proposition 2.1, to characterize the possible Betti tables of the componentwise
linear ideals is equivalent to answer the following question:

Question 2.5. What are the possible matrices M (I) = (µi, j(I)) where I ⊂ S is a strongly stable ideal?

We will refer to M = M (I) as the matrix of generators of the strongly stable ideal I. We will feature
M as follows:

M =


µ1,1 µ2,1 µ3,1 · · · · · · µn,1
µ1,2 µ2,2 µ3,2 · · · · · · µn,2
µ1,3 µ2,3 µ3,3 · · · · · · µn,3

...
...

... · · · · · ·
...


We can immediately state the following:

Proposition 2.6. Let M = (µi, j) be the matrix of generators of a strongly stable monomial ideal I ⊂ S.
Then the following conditions hold:

(i) Each non-zero row vector (µ1, j,µ2, j, . . . ,µn, j) of M is an O-sequence such that µ2, j ≤ j.
(ii) For all i and j one has µi, j ≥ ∑

i
q=1 µq, j−1.

Proof. Condition (i) follows from Proposition 2.3 since I〈 j〉 has a j-linear resolution for all j greater than
or equal to the lower degree in which I is not zero. Condition (ii) follows from (7). �

Notice that the Noetherianity of S (or if you prefer conditions (i) and (ii) of Proposition 2.6) implies
that there exists m ∈N such that µi, j(I) = ∑

i
q=1 µq, j−1(I) for all j > m and i ∈ {1, . . . ,n}. So, though M

has infinitely many rows, the relevant ones are just a finite number, and in the examples we will write
just them.
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One may expect that the conditions described in Proposition 2.6 are sufficient. But this is not the case
at all:

Example 2.7. One obstruction is illustrated already by Remark 2.2: Consider the matrix

M =


0 0 0 0
...

...
...

...
0 0 0 0
1 d 0 0
1 d +1 d +1 k


where the first nonzero row from the top is the dth and d + 1 < k ≤ (d + 1)〈2〉. Such a matrix clearly
satisfies the necessary conditions of Proposition 2.6. However, if there existed a strongly stable ideal
I ⊂ K[x1,x2,x3,x4] with matrix of generators M , then it would satisfy m1(I) = 1, m2(I) = d, m3(I) = 0
and m4(I) = k−d−1 > 0, a contradiction to Remark 2.2. The first matrix of this kind is:

M =

 0 0 0 0
1 2 0 0
1 3 3 4

 .

The explained obstruction gives rise to a class of counterexamples. However, such a class does not fill
the gap between the existence of a strongly stable ideal with matrix of generators M and the necessary
conditions of Proposition 2.6. Let us look at the following matrix.

M =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 3 2 2
1 4 6 9

 .

One can check that the necessary conditions described in Proposition 2.6 hold. However one can show
that there is no strongly stable monomial ideal I ⊂ K[x1, . . . ,x4] with M as matrix of generators. Notice
that such an ideal would have m1(I) = 1, m2(I) = 3, m3(I) = 2 and m4(I) = 3, which does not contradict
Remark 2.2.

Example 2.8. Obviously the property of having linear resolution can be detected looking at the graded
Betti numbers. In the following example we show that this is not anymore true for componentwise linear
ideals, and this strengthens the impression that to give a complete characterization of the possible graded
Betti numbers of a componentwise linear ideal is probably a hard task. More precisely, we are going
to exhibit two ideals I and J, one componentwise linear and one not, with the same Betti tables. This
answers negatively a question raised in [NR, Question 1.1].

Consider the ideals of K[x1,x2,x3]:

I = (x4
1, x3

1x2, x2
1x2

2, x1x3
2, x4

2, x3
1x3, x2

1x2x2
3, x2

1x3
3, x1x2

2x2
3)

and
J = (x4

1, x3
1x2, x2

1x2
2, x3

1x3, x1x2
2x3, x1x2x2

3, x1x4
2, x2

1x3
3, x4

2x3).

Notice that I and J are generated in degrees 4 and 5. By CoCoA [Co] one can check that I and J have
the same Betti table, namely: 

0 0 0
0 0 0
0 0 0
6 6 1
3 6 3

 .

One can easily check that I is strongly stable, so in particular it is componentwise linear. On the contrary
J is not componentwise linear, since J〈4〉 = (x4

1,x
3
1x2,x2

1x2
2,x

3
1x3,x1x2

2x3,x1x2x2
3), as one can check by

CoCoA, has not a 4-linear resolution.
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We are going to explain some reasons why the conditions of Proposition 2.6 for a matrix M are
in general not sufficient to have a strongly stable ideal corresponding to it. By the discussion after
Proposition 2.3, we know that for a given sequence (m1, . . . ,mn) of integers, there exists a strongly stable
monomial ideal J generated in degree d such that mi(J) = mi if and only if the piecewise lexsegment
ideal of type (d,(m1, . . . ,mn)) is strongly stable. Unfortunately, even if J is a piecewise lexsegment, the
ideal mJ is not necessarily a piecewise lexsegment. For instance, keeping in mind the last matrix in
Example 2.7, the piecewise lexsegment ideal of type (5,(1,3,2,2)) is:

J = (x5
1,x

4
1x2,x3

1x2
2,x

2
1x3

2,x
4
1x3,x3

1x2x3,x4
1x4,x3

1x2x4).

However u = x3
1x3

3 /∈ mJ, whereas v = x2
1x3

2x3 ∈ mJ. Since v is lexicographically smaller than u and
m(u) = m(v) = 3, mJ is not a piecewise lexsegment ideal. This fact does not make any troubles when the
number of variables is at most three, as we can see later. To see this, we need the following more general
proposition.

Proposition 2.9. Let M = (µi, j) be a matrix. Then M is the matrix of generators of a strongly stable
monomial ideal I ⊂ S, provided that the following conditions hold:

(1) Each nonzero row vector (µ1, j, . . . ,µn, j) of M is an O-sequence with µ2, j ≤ j.
(2) For all i ∈ {1, . . . ,n} one has µi, j ≥ ∑

i
q=1 µq, j−1.

(3) If m ∈ N is the least number such that µi,h = ∑
i
q=1 µq,h−1 for each h > m, then for each j ≤ m

there exists a strongly stable ideal B( j) ⊂ S generated in degree j such that mi(B( j)) = µi, j for
all i = 1, . . . ,n and B( j)∩K[x1, . . . ,xn−1] j+1 is a piecewise lexsegment monomial space.

Proof. Let d be the least natural number such that the row vector (µ1,d , . . . ,µn,d) is nonzero. We claim
to have built a strongly stable ideal I( j) ⊂ S such that µi,k(I( j)) = µi,k for any k ≤ j and I( j)〈 j〉 ∩
K[x1, . . . ,xn−1] = B( j)∩K[x1, . . . ,xn−1]. If j = m, then the desired ideal is I = I(m). If not, however we
can assume j ≥ d (I(d) = B(d)). We set

mi, j+1 = µi, j+1−
i

∑
q=1

µq, j.

Let L( j+ 1) be the ideal generated by the biggest mi, j+1 (i = 1, . . . ,n) monomials u ∈ S j+1 \ I( j) such
that m(u) = i (they exist thanks to condition (1)). Set I( j+ 1) = I( j)+L( j+ 1). Clearly the first j+ 1
rows of the matrix of generators of I( j+1) coincide with the ones of M . Then notice that I( j+1)〈 j+1〉∩
K[x1, . . . ,xn−1] is the piecewise lexsegment of type ( j+ 1,(µ1, j+1, · · · ,µn−1, j+1)) by construction. Be-
cause B( j+1)∩K[x1, . . . ,xn−1] j+2 is a piecewise lexsegment monomial space, B( j+1)∩K[x1, . . . ,xn−1]
is forced to be the piecewise lexsegment of type ( j+1,(µ1, j+1, · · · ,µn−1, j+1)). So we get the equality:

I( j+1)〈 j+1〉∩K[x1, . . . ,xn−1] = B( j+1)∩K[x1, . . . ,xn−1].

To conclude the proof, we have to show that I( j + 1) is strongly stable. This reduces to show that, if
u ∈ I( j + 1) is a monomial of degree j + 1 with m(u) = n, then (u/xi)xk belongs to I( j + 1) for all
1≤ k < i≤ n such that xi | u. We consider two cases. If u ∈ I( j) we are done, because I( j)⊂ I( j+1) is
strongly stable. If u ∈ L( j+1), then we consider the monomial ideal

T ( j+1) = (v ∈ G(I( j+1)〈 j+1〉) : m(v)< n or v≥ u)⊂ I( j+1).

Observe that T ( j + 1) is a piecewise lexsegment ideal of type ( j + 1,(µ1, j+1, . . . ,µn−1, j+1,a)), where
a≤ µn, j+1. Since (µ1, j+1, . . . ,µn−1, j+1,a) is an O-sequence with µ2, j+1 ≤ j+1, it follows that T ( j+1)
is strongly stable by the discussion after Proposition 2.3. Thus for each 1≤ k < i≤ n such that xi|u, we
have that (u/xi)xk ∈ T ( j+1)⊂ I( j+1). �

Corollary 2.10. Let M = (µi, j) be a matrix with 3 columns. Then M is the matrix of generators of a
strongly stable monomial ideal I ⊂ K[x1,x2,x3] if and only if the following conditions hold:

(1) Each non-zero row vector (µ1, j,µ2, j,µ3, j) of M is an O-sequence with µ2, j ≤ j.
(2) For all j ∈ N one has µ2, j ≥ µ1, j−1 +µ2, j−1 and µ3, j ≥ µ1, j−1 +µ2, j−1 +µ3, j−1.

Proof. The conditions are necessary from Proposition 2.6. Furthermore, since an ideal I ⊂ K[x1,x2]
generated in one degree is piecewise lexsegment if and only if it is strongly stable, we automatically
have condition (3) of Proposition 2.9. �
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Although the complete characterization of the matrix of generators of an arbitrary strongly stable ideal
seems to be very complicated, based on the fact that the lexsegment property of an ideal is preserved un-
der multiplication by the maximal ideal m, one may expect a characterization for the matrix of generators
of lexsegment ideals. For answering this question, first we define the concept of a d-lex sequence.

Definition 2.11. A sequence of non-negative integers m1, · · · ,mn is called a d-lex sequence, if there
exists a lexsegment ideal L⊂ S generated in degree d such that mi(L) = mi for all i.

Because if I ⊂ S is a lexsegment ideal, then mI is still a lexsegment ideal, we clearly have that M =
(µi, j) is the matrix of generators of a lexsegment ideal if and only if the following conditions hold:

(1) Each non-zero row vector (µ1, j,µ2, j, . . . ,µn, j) of M is a j-lex sequence.
(2) For all i and j one has µi, j ≥ ∑

i
q=1 µq, j−1.

Therefore to characterize the matrix of generators of lexsegment ideals we need to characterize arbitrary
d-lex sequences. To do this, we have to recall the definition of the natural decomposition of the comple-
ment set of monomials belonging to a lexsegment ideal generated in a fixed degree. In what follows we
denote by [xt , . . . ,xn]r (1≤ t ≤ n) the set of all monomials of degree r in the variables xt , . . . ,xn.

Definition 2.12. Let u = x j(1) . . .x j(d) ∈ Sd (1 ≤ j(1) ≤ ·· · ≤ j(d) ≤ n) be a monomial and set L<u =
{v ∈ Sd | v < u}. Following the method described in [BH, page 159] (where L<u is denoted by Lu) we
can partition the set L<u as:

L<u =
d⋃

i=1

[x j(i)+1, . . . ,xn]d−i+1 · x j(1) · · ·x j(i−1),

which is called the natural decomposition of L<u.

Before proving the next result, notice that the powers of the maximal ideal are lexsegment ideals, and
the following formula holds for their d-lex sequences:

(8) mi(m
d) =

(
i+d−2

d−1

)
.

Proposition 2.13. Let m1, . . . ,mn be a sequence of natural numbers and let µ = ∑
n
i=1 mi. Suppose that

`=

(
n+d−1

d

)
−µ =

d

∑
j=1

(
k( j)

j

)
is the d-th Macaulay representation of `. Then m1, · · · ,mn is a d-lex sequence, if and only if

mi =

(
i+d−2

d−1

)
−

d

∑
j=1

(
k( j)−n+ i−1

j−1

)
.

Proof. The sequence m1, . . . ,mn is a d-lex sequence if and only if Iu = (L≥u) satisfies mi(Iu) = mi for all
i = 1, . . . ,n, where u is the µth biggest monomial of degree d. Let us write u = x j(1) · · ·x j(d),1≤ j(1)≤
·· · ≤ j(d)≤ n. By the natural decomposition of L<u we have:

`= |L<u|=
d

∑
p=1

dimK [x j(i)+1, . . . ,xn]d−p+1 =
d

∑
p=1

(
n− j(p)+d− p

d− p+1

)
.

Setting t = d− i+ 1 and k(t) = n− j(d− t + 1)+ t − 1, we have that ∑
d
t=1
(k(t)

t

)
is the dth Macaulay

representation of `. The natural decomposition of L<u and (8) show that

mi((L<u)) =
d

∑
t=1

mi(x j(d−t+1)+1, . . . ,xn)
t =

d

∑
t=1

(
i− j(d− t +1)+ t−2

t−1

)
=

d

∑
t=1

(
k(t)−n+ i−1

t−1

)
.

Because
mi(Iu) = mi(m

d)−mi((L<u)),

we get the conclusion thanks to (8). �
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We recall that a homogeneous ideal I ⊂ S is said to be Gotzmann if the number of minimal generators
of mI〈 j〉 is the smallest possible for every j ∈ N, namely is equal to:(

n+ j
j+1

)
−
((

n+ j−1
j

)
−µ j

)〈 j〉
,

where µ j is the number of minimal generators of I〈 j〉. The graded Betti numbers of a Gotzmann ideal
coincide with its associated lexsegment ideal, see [HH1]. Therefore Proposition 2.13 characterizes also
the graded Betti numbers of Gotzmann ideals.

3. THE POSSIBLE EXTREMAL BETTI NUMBERS OF A GRADED IDEAL

For a fixed ` ∈ {1, . . . ,n}, d ∈ N and k ≤
(
`+d−2
`−1

)
, we denote by u(`,k,d) the kth biggest monomial

u ∈ Sd such that m(u) = `. Or, equivalently, x` times the kth biggest monomial in K[x1, . . . ,x`]d−1. By
U(`,k,d) we denote the ideal of S generated by the set L≥u(`,k,d) ∩K[x1, . . . ,x`]. Notice that U(`,k,d)
is not a lexsegment in S. However, it is the extension of a lexsegment in K[x1, . . . ,x`]. Furthermore,
U(`,k,d) is obviously a piecewise lexsegment in S. In this section we need to introduce the following
definition: A monomial ideal I ⊂ S generated in one degree is called piecewise lexsegment up to ` if
I∩K[x1, . . . ,x`]⊂ K[x1, . . . ,x`] is piecewise lexsegment.

Remark 3.1. Notice that, for all q ∈ N, denoting by m⊂ S the maximal irrelevant ideal, mqU(`,k,d)∩
K[x1, . . . ,x`] is equal to U(`,m`(m

qU(`,k,d)),d + q))∩K[x1, . . . ,x`]. In particular, mqU(`,k,d) is a
piecewise lexsegment up to `.

Lemma 3.2. The ideal U(`,k,d)⊂ S is the smallest strongly stable ideal containing the biggest k mono-
mials ui ∈ Sd such that m(ui) = ` for all i = 1, . . . ,k.

Proof. Let J ⊂ S be the smallest strongly stable ideal containing the biggest k monomials ui ∈ Sd such
that m(ui) = ` for all i = 1, . . . ,k. Being the extension of a lexsegment, U(`,k,d) is strongly stable, so
that J ⊂U(`,k,d). Therefore, let us show the inclusion U(`,k,d) ⊂ J. Let u be a minimal monomial
generator of U(`,k,d). So u has degree d and m(u) ≤ `. Actually, we can assume m(u) < `, otherwise
there is nothing to prove. So let us write:

u = xa1
1 . . .xa`−1

`−1 .

By definition u > u(`,k,d) = xb1
1 . . .xb`

` . Set F = {i : ai > bi}. Because u > u(`,k,d), we have F 6= /0
and a j = b j for all j < i0 = min{i : i ∈ F}. If |F | = 1, then ai = bi for all i0 < i < ` and b` = ai0 − bi0 ,

so that u = x
ai0−bi0
i0 · (u(`,k,d)/x

ai0−bi0
` ) ∈ J. If |F | > 1, take j > i0 such that a j > b j. The monomial

u′ = x` · (u/x j) is such that u′ > u(`,k,d) and m(u′) = `. Therefore u′ ∈ J, so that u = x j · (u′/x`) belongs
to J too. �

The above lemma allows us to characterize the possible extremal Betti numbers of a homogeneous
ideal in a polynomial ring. To this aim, we start with a discussion. To U(`,k,d) we can associate
the numerical sequence (m1, . . . ,m`) where mi = mi(U(`,k,d)). Notice that m` = k. By the discussion
done after Proposition 2.3, if V is a strongly stable monomial ideal generated in degree d such that
m`(V ) = k, then there must exist a strongly stable piecewise lexsegment ideal U such that mi(U) = mi(V )
and containing the k biggest monomials u ∈ Sd such that m(u) = `. By Lemma 3.2 U(`,k,d) ⊂U , so
that mi ≤ mi(V ) for all i. It is possible to characterize the possible numerical sequences like these. To
this purpose, we need to introduce a notion. Given a natural number a and a positive integer d, consider
the dth Macaulay representation of a, say a = ∑

d
i=1
(k(i)

i

)
. For all integer numbers j, we set:

a〈d, j〉 =
d

∑
i=1

(
k(i)+ j

i+ j

)
,

where we put
(p

q

)
= 0 whenever p or q are negative, and

(0
0

)
= 1. Notice that a〈d,0〉 = a and a〈d,1〉 = a〈d〉.

Lemma 3.3. If k ≤
(
`+d−2
`−1

)
, then:

mi(U(`,k,d)) = k〈`−1,i−`〉 ∀ i = 1, . . . , `.
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Furthermore, if i≥ 2, then k〈`−1,i−`〉 = min{a : k ≤ a〈i−1,`−i〉}.

Proof. First we will show that, if i≥ 2, then:

k〈`−1,i−`〉 = min{a : k ≤ a〈i−1,`−i〉}.

Let us consider the (`−1)th Macaulay representation of k, namely k = ∑
`−1
j=1

(k( j)
j

)
. So

b = k〈`−1,i−`〉 =
`−1

∑
j=`−i

(
k( j)+ i− `

j+ i− `

)
.

If max{ j : k( j)< j}≥ `− i, then the above one is the (i−1)th Macaulay representation of b: Therefore
b〈i−1,`−i〉 = k, so the statement is obvious in this case.

So we can assume that max{ j : k( j) < j} < `− i. In particular, k(`− i) ≥ `− i, so that the (i− 1)th
Macaulay representation of b−1 is

b−1 =
`−1

∑
j=`−i+1

(
k( j)+ i− `

j+ i− `

)
.

Thus (b−1)〈i−1,`−i〉=∑
`−1
j=`−i+1

(k( j)
j

)
, which in this case is smaller than k. So b≤min{a : k≤ a〈i−1,`−i〉}.

On the other hand, let us consider the (i−1)th Macaulay representation of b, namely b = ∑
i−1
j=1

(h( j)
j

)
. By

[BH, Lemma 4.2.7], we infer the inequality

(h(i−1), . . . ,h(1))> (k(`−1)+ i− `, . . . ,k(`− i+1)+ i− `)

in the lexicographical order. Of course the inequality keeps to be true when shifting of `− i, namely

(h(i−1)+ `− i, . . . ,h(1)+ `− i)> (k(`−1), . . . ,k(`− i+1))

in the lexicographical order. Again using [BH, Lemma 4.2.7], we deduce that b〈i−1,`−i〉 > k. So b ≥
min{a : k ≤ a〈i−1,`−i〉}, that lets us conclude this part.

Let us prove that
mi(U(`,k,d)) = k〈`−1,i−`〉 ∀ i = 1, . . . , `.

The condition k ≤
(
`+d−1

`

)
assures that we can construct V = U(`,k,d). The equality is true for i = 1,

because k〈`−1,1−`〉 = 1. From Proposition 2.3 we have, for all i = 2, . . . , `:

mi+1(V )≤ mi(V )〈i−1〉 , mi+2(V )≤ mi+1(V )〈i〉 , . . . , k = m`(V )≤ m`−1(V )〈`−2〉.

Putting together the above inequalities, we get:

k ≤ mi(V )〈i−1,`−i〉.

From this and what proved above we deduce that:

mi(V )≥ k〈`−1,i−`〉.

From the above argument and the discussion following Proposition 2.3, it is clear that a piecewise lexseg-
ment monomial space W ⊂ Sd with mi(W ) = k〈`−1,i−`〉 ∀ i = 1, . . . , ` must exist. We have V ⊂W by
Lemma 3.2, so we get also the inequality:

mi(V )≤ k〈`−1,i−`〉.

�

We introduce the function T : Nr → Nr such that T(v) = (v1, v1 + v2, . . . , v1 + v2 + . . .+ vr), where
v = (v1, . . . ,vr). Furthermore, we define Sq(v) as the last entry of Tq(v).

Remark 3.4. The significance of the above definition is the following: Let I ⊂ S = K[x1, . . . ,xn] be a
stable ideal generated in one degree. One can easily show that, for all q ∈ N and i ∈ {1, . . . ,n},

Sq((m1(I),m2(I), . . . ,mi(I))) = mi(m
qI).

Notice that we can also rephrase the second condition of Proposition 2.6 as

µi, j ≥ S1((µ1, j−1,µ2, j−1, . . . ,µi, j−1)).
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Example 3.5. In the next theorem the functions Sq will play a crucial role. Especially, using Remark
3.4, Lemma 3.3 and Remark 3.1, one has:

Sq((k〈`−1,1−`〉,k〈`−1,2−`〉, . . . ,k〈`−1,i−`〉)) = Sq((m1(U(`,k,d)),m2(U(`,k,d)), . . . ,mi(U(`,k,d))))
= mi(m

qU(`,k,d)))
= mi(U(`,m`(m

qU(`,k,d)),d +q)))

= Sq((k〈`−1,1−`〉,k〈`−1,2−`〉, . . . ,k))〈`−1,i−`〉.

Notice that the first time Sq is applied to a vector in Ni, whereas the last time to a vector in N`.

Let I be a homogeneous ideal of S and βi, j = βi, j(I) its graded Betti numbers. Let the extremal Betti
numbers of I be

βi1,i1+ j1 ,βi2,i2+ j2 , . . . ,βik,ik+ jk .

Notice that k < n, and up to a reordering, we can assume 0 < i1 < i2 < .. . < ik < n and j1 > j2 > .. . >
jk ≥ 0. If I is a stable ideal then, exploiting the Eliahou-Kervaire formula, one can check that βi,i+ j(I) is
extremal if and only if mi+1, j(I) 6= 0 and mp+1,q(I) = 0 for all (p,q) 6= (i, j) such that p ≥ i and q ≥ j.
In this case, moreover, we have βi,i+ j(I) = mi+1, j(I). Before showing the main result of the paper, we
introduce the following concept.

Definition 3.6. Let i = (i1, . . . , ik) and j = ( j1, . . . , jk) be such that 0 < i1 < i2 < .. . < ik < n, j1 > j2 >
.. . > jk > 0. We say that I ⊂ S is a (i, j)-lex ideal if I = ∑

k
p=1(Lp), where Lp is a lexsegment ideal

generated in degree jp in K[x1, . . . ,xip+1].

Theorem 3.7. Let i = (i1, . . . , ik) and j = ( j1, . . . , jk) be such that 0 < i1 < i2 < .. . < ik < n and j1 >
j2 > .. . > jk > 0, and let b1, . . . ,bk be positive integers. For all p = 1, . . . ,k let :

vp = (b〈ip,−ip〉
p ,b〈ip,1−ip〉

p , . . . ,b〈ip,ip−1−ip〉
p ) ∈ Nip−1+1.

If K has characteristic 0, then the following are equivalent:
(i) There is a homogeneous ideal I ⊂ S with extremal Betti numbers βip,ip+ jp(I) = bp for all p =

1, . . . ,k.
(ii) There is a strongly stable ideal I ⊂ S with extremal Betti numbers βip,ip+ jp(I) = bp for all p =

1, . . . ,k.
(iii) bk ≤

(ik+ jk−1
ik

)
and S jp− jp+1(vp+1)+bp ≤

(ip+ jp−1
ip

)
for all p = 1, . . . ,k−1.

(iv) There is an (i, j)-lex ideal I ⊂ S with extremal Betti numbers βip,ip+ jp(I) = bp for all p = 1, . . . ,k.

Proof. (i) ⇐⇒ (ii) follows by by [BCP, Theorem 1.6]. (iv) =⇒ (i) is obvious.
(ii) =⇒ (iii). By what said before the theorem, we can replace βip,ip+ jp(I) by mip+1, jp(I) with

mr+1,s(I) = 0 for all (r,s) 6= (ip, jp) such that r ≥ ip and s≥ jp. Since mik+1, jk(I) = bk, we have

bk ≤
(

ik + jk−1
ik

)
.

We must have that:

mik−1+1
(
m jk−1− jk(I〈 jk〉)

)
+bk−1 = |{monomials u ∈ I〈 jk〉∩S jk−1 with m(u) = ik−1 +1}|

+|{monomials u ∈ I jk−1 \ I〈 jk−1−1〉 with m(u) = ik−1 +1}|
≤ |{monomials u ∈ S jk−1 with m(u) = ik−1 +1}|

=

(
ik−1 + jk−1−1

ik−1

)
From the discussion before the theorem, we also have:

mi
(
I〈 jk〉
)
≥ b〈ik,i−ik−1〉

k ∀ i≤ ik.

We eventually get:
mik−1+1

(
m jk−1− jk(I〈 jk〉)

)
≥ S jk−1− jk(v

k).
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Putting together the above inequalities we obtain, for p = k−1,

S jp− jp+1(v
p+1)+bp ≤

(
ip + jp−1

ip

)
,

and we can go on in the same way to show this for all p = 1, . . . ,k−1.
(iii) =⇒ (iv). If bk ≤

(ik+ jk−1
ik

)
, then we can form U(ik +1,bk, jk). Let us call kI =U(ik +1,bk, jk).

We have that:

mik−1+1

(
(kI)〈 jk−1〉

)
= S jk−1− jk(v

k).

From Remark 3.1, we deduce that

(kI)〈 jk−1〉∩K[x1, . . . ,xik−1+1] =U(ik−1 +1,S jk−1− jk(v
k), jk−1)∩K[x1, . . . ,xik−1+1].

By the assumed numerical conditions, U(ik−1 +1,S jk−1− jk(vk)+bk−1, jk−1) exists and contains exactly
bk−1 new monomials u such that m(u) = ik−1 +1. Therefore set:

k−1I′ = (U(ik−1 +1,S jk−1− jk(v
k)+bk−1, jk−1)).

and
k−1I = kI + k−1I′.

By construction k−1I is a ((ik−1, ik),( jk−1, jk))-lex ideal with extremal Betti numbers βik−1,ik−1+ jk−1(
k−1I)=

bk−1 and βik,ik+ jk(
k−1I) = bk. Keeping on with the recursion we will end up with the desired (i, j)-lex

ideal I = 1I. �

Remark 3.8. A different characterization of the extremal Betti numbers was also given by Crupi and
Utano in [CU].

Remark 3.9. For the reader who likes more the language of algebraic geometry, Theorem 3.7 can be
used in the following setting: Let X ⊂ Pn−1 be a projective scheme over a field of characteristic 0 and
IX its ideal sheaf. Then, by the graded version of the Grothendieck’s local duality, βi,i+d is an extremal
Betti number of the ideal

⊕
m∈N Γ(X ,IX(m))⊂ S if and only if, setting p = n− i−1 and q = d−1:

(1) p≥ 1;
(2) dimK(H p(X ,IX(q− p))) = βi,i+d 6= 0.
(3) Hr(X ,IX(s− r)) = 0 for all (r,s) 6= (p,q) with 1≤ r ≤ p and s≥ q.

Example 3.10. Let us consider the following Betti table:
∗ ∗ ∗ ∗ ∗ ∗ · · ·
∗ ∗ ∗ a 0 0 · · ·
∗ ∗ ∗ 0 0 0 · · ·
∗ ∗ b 0 0 0 · · ·
0 0 0 0 0 0 · · ·

 .

Theorem 3.7 implies that there exists a homogeneous ideal in a polynomial ring (of characteristic 0)
whose Betti table looks like the above one (where a and b are extremal) if and only if we are in one of
the following cases:

(i) a = 2 and b = 1,2;
(ii) a = 1 and b = 1,2,3,4.

In fact, we have b = β2,6 and a = β3,5. Theorem 3.7 implies a≤ 4.
If a = 2, then the vector v2 ∈ N3 is:

v2 = (1,2,2).

Therefore S2(v2) = 8, and Theorem 3.7 gives 8+b≤ 10. So we get b = 1,2 as desired.
If a = 1, then the vector v2 ∈ N3 is:

v2 = (1,1,1).

So S2(v2) = 6, and Theorem 3.7 yields b = 1,2,3,4 as desired.
Eventually, if a > 2, a positive integer b satisfying the conditions of Theorem 3.7 does not exist.
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