THE j-MULTIPLICITY OF RATIONAL NORMAL SCROLLS

Matteo Varbaro

Joint with Jack Jeffries and Jonathan Montaño

Notation

Notation

Throughout the talk $R=\bigoplus_{i \geq 0} R_{i}$ will be a noetherian standard graded algebra over a field $K=R_{0}$ (i.e. $R=K\left[R_{1}\right]$).

Notation

Throughout the talk $R=\bigoplus_{i \geq 0} R_{i}$ will be a noetherian standard graded algebra over a field $K=R_{0}$ (i.e. $R=K\left[R_{1}\right]$). Also, set $d=\operatorname{dim} R, \mathfrak{m}=\bigoplus_{i>0} R_{i}$ the maximal irrelevant ideal

Notation

Throughout the talk $R=\bigoplus_{i \geq 0} R_{i}$ will be a noetherian standard graded algebra over a field $K=R_{0}$ (i.e. $R=K\left[R_{1}\right]$). Also, set $d=\operatorname{dim} R, \mathfrak{m}=\bigoplus_{i>0} R_{i}$ the maximal irrelevant ideal and take a homogeneous ideal $I \subseteq R$.

Notation

Throughout the talk $R=\bigoplus_{i \geq 0} R_{i}$ will be a noetherian standard graded algebra over a field $K=R_{0}$ (i.e. $R=K\left[R_{1}\right]$). Also, set $d=\operatorname{dim} R, \mathfrak{m}=\bigoplus_{i>0} R_{i}$ the maximal irrelevant ideal and take a homogeneous ideal $I \subseteq R$. We will deal with:
(i) $G(I)=\bigoplus_{s \geq 0} I^{s} / I^{s+1}$ the associated graded ring of I.

Notation

Throughout the talk $R=\bigoplus_{i \geq 0} R_{i}$ will be a noetherian standard graded algebra over a field $K=R_{0}$ (i.e. $R=K\left[R_{1}\right]$). Also, set $d=\operatorname{dim} R, \mathfrak{m}=\bigoplus_{i>0} R_{i}$ the maximal irrelevant ideal and take a homogeneous ideal $I \subseteq R$. We will deal with:
(i) $G(I)=\bigoplus_{s \geq 0} I^{s} / I^{s+1}$ the associated graded ring of I.
(ii) $F(I)=\bigoplus_{s \geq 0} I^{s} / \mathfrak{m} I^{s}$ the fiber cone of I.

Notation

Throughout the talk $R=\bigoplus_{i \geq 0} R_{i}$ will be a noetherian standard graded algebra over a field $K=R_{0}$ (i.e. $R=K\left[R_{1}\right]$). Also, set $d=\operatorname{dim} R, \mathfrak{m}=\bigoplus_{i>0} R_{i}$ the maximal irrelevant ideal and take a homogeneous ideal $I \subseteq R$. We will deal with:
(i) $G(I)=\bigoplus_{s \geq 0} I^{s} / I^{s+1}$ the associated graded ring of I.
(ii) $F(I)=\bigoplus_{s \geq 0} I^{s} / \mathfrak{m} I^{s}$ the fiber cone of I.

The analytic spread of I is by definition:

$$
\ell(I)=\operatorname{dim} F(I) \leq \operatorname{dim} G(I)=\operatorname{dim} R=d .
$$

Multiplicities

Multiplicities

If $/$ is \mathfrak{m}-primary, then the Hilbert-Samuel multiplicity is:

Multiplicities

If I is \mathfrak{m}-primary, then the Hilbert-Samuel multiplicity is:

$$
\mathrm{e}(I)=\lim _{s \rightarrow \infty} \frac{(d-1)!}{s^{d-1}} \lambda_{R}\left(I^{s} / I^{s+1}\right) \in \mathbb{N}
$$

Multiplicities

If I is \mathfrak{m}-primary, then the Hilbert-Samuel multiplicity is:

$$
\mathrm{e}(I)=\lim _{s \rightarrow \infty} \frac{(d-1)!}{s^{d-1}} \lambda_{R}\left(I^{s} / I^{s+1}\right) \in \mathbb{N}
$$

When $I=\mathfrak{m}$, the multiplicity above is also referred as the degree of R, and denoted by e (R).

Multiplicities

If I is \mathfrak{m}-primary, then the Hilbert-Samuel multiplicity is:

$$
\mathrm{e}(I)=\lim _{s \rightarrow \infty} \frac{(d-1)!}{s^{d-1}} \lambda_{R}\left(I^{s} / I^{s+1}\right) \in \mathbb{N}
$$

When $I=\mathfrak{m}$, the multiplicity above is also referred as the degree of R, and denoted by $\mathrm{e}(R)$. Therefore, we have $\mathrm{e}(I)=\mathrm{e}(G(I))$.

Multiplicities

If I is \mathfrak{m}-primary, then the Hilbert-Samuel multiplicity is:

$$
\mathrm{e}(I)=\lim _{s \rightarrow \infty} \frac{(d-1)!}{s^{d-1}} \lambda_{R}\left(I^{s} / I^{s+1}\right) \in \mathbb{N}
$$

When $I=\mathfrak{m}$, the multiplicity above is also referred as the degree of R, and denoted by $\mathrm{e}(R)$. Therefore, we have $\mathrm{e}(I)=\mathrm{e}(G(I))$.

One can easily realize that: $\quad \mathrm{e}(I)=\lim _{s \rightarrow \infty} \frac{d!}{s^{d}} \lambda_{R}\left(R / I^{s+1}\right)$.

Multiplicities

If one applies the definition of the Hilbert-Samuel multiplicity to not \mathfrak{m}-primary ideals he will get ∞.

Multiplicities

If one applies the definition of the Hilbert-Samuel multiplicity to not \mathfrak{m}-primary ideals he will get ∞. This lead, in 1993, Achilles and Manaresi to introduce the concept of j -multiplicity:

Multiplicities

If one applies the definition of the Hilbert-Samuel multiplicity to not \mathfrak{m}-primary ideals he will get ∞. This lead, in 1993, Achilles and Manaresi to introduce the concept of j-multiplicity:

$$
\mathrm{j}(I)=\lim _{s \rightarrow \infty} \frac{(d-1)!}{s^{d-1}} \lambda_{R}\left(H_{\mathfrak{m}}^{0}\left(I^{s} / I^{s+1}\right)\right) \in \mathbb{N}
$$

Multiplicities

If one applies the definition of the Hilbert-Samuel multiplicity to not \mathfrak{m}-primary ideals he will get ∞. This lead, in 1993, Achilles and Manaresi to introduce the concept of j-multiplicity:

$$
\mathrm{j}(I)=\lim _{s \rightarrow \infty} \frac{(d-1)!}{s^{d-1}} \lambda_{R}\left(H_{\mathfrak{m}}^{0}\left(I^{s} / I^{s+1}\right)\right) \in \mathbb{N}
$$

This time $\mathrm{j}(I)$ may differ from $\lim _{s \rightarrow \infty} \frac{d!}{s^{d}} \lambda_{R}\left(H_{\mathfrak{m}}^{0}\left(R / I^{s+1}\right)\right)$.

Multiplicities

If one applies the definition of the Hilbert-Samuel multiplicity to not \mathfrak{m}-primary ideals he will get ∞. This lead, in 1993, Achilles and Manaresi to introduce the concept of j -multiplicity:

$$
\mathrm{j}(I)=\lim _{s \rightarrow \infty} \frac{(d-1)!}{s^{d-1}} \lambda_{R}\left(H_{\mathfrak{m}}^{0}\left(I^{s} / I^{s+1}\right)\right) \in \mathbb{N}
$$

This time $\mathrm{j}(I)$ may differ from $\lim _{s \rightarrow \infty} \frac{d!}{s^{d}} \lambda_{R}\left(H_{\mathfrak{m}}^{0}\left(R / I^{s+1}\right)\right)$. Indeed, it is not even clear if the latter limit always exists.

Multiplicities

If one applies the definition of the Hilbert-Samuel multiplicity to not \mathfrak{m}-primary ideals he will get ∞. This lead, in 1993, Achilles and Manaresi to introduce the concept of j-multiplicity:

$$
\mathrm{j}(I)=\lim _{s \rightarrow \infty} \frac{(d-1)!}{s^{d-1}} \lambda_{R}\left(H_{\mathfrak{m}}^{0}\left(I^{s} / I^{s+1}\right)\right) \in \mathbb{N}
$$

This time $\mathrm{j}(I)$ may differ from $\lim _{s \rightarrow \infty} \frac{d!}{s^{d}} \lambda_{R}\left(H_{\mathfrak{m}}^{0}\left(R / I^{s+1}\right)\right)$. Indeed, it is not even clear if the latter limit always exists. However, Cutkosky proved recently its existence if R is reduced.

Multiplicities

If one applies the definition of the Hilbert-Samuel multiplicity to not \mathfrak{m}-primary ideals he will get ∞. This lead, in 1993, Achilles and Manaresi to introduce the concept of j-multiplicity:

$$
\mathrm{j}(I)=\lim _{s \rightarrow \infty} \frac{(d-1)!}{s^{d-1}} \lambda_{R}\left(H_{\mathfrak{m}}^{0}\left(I^{s} / I^{s+1}\right)\right) \in \mathbb{N}
$$

This time $\mathrm{j}(I)$ may differ from $\lim _{s \rightarrow \infty} \frac{d!}{s^{d}} \lambda_{R}\left(H_{\mathfrak{m}}^{0}\left(R / I^{s+1}\right)\right)$. Indeed, it is not even clear if the latter limit always exists. However, Cutkosky proved recently its existence if R is reduced. Such a quantity was introduced and studied by Ulrich and Validashti under the name of ε-multiplicity:

$$
\varepsilon(I)=\limsup _{s \rightarrow \infty} \frac{d!}{s^{d}} \lambda_{R}\left(H_{\mathfrak{m}}^{0}\left(R / I^{s+1}\right)\right)
$$

Some known results

Some known results

(i) $\mathrm{j}(I) \neq 0 \Leftrightarrow \ell(I)=d$.

Some known results

(i) $\mathrm{j}(I) \neq 0 \Leftrightarrow \ell(I)=d$.
(ii) $\left(\right.$ FlennerMa): $f \in \bar{I} \Leftrightarrow \mathrm{j}\left(I_{\mathfrak{p}}\right)=\mathrm{j}\left((I, f)_{\mathfrak{p}}\right) \forall \mathfrak{p} \in \mathcal{V}(I)$.

Some known results

(i) $\mathrm{j}(I) \neq 0 \Leftrightarrow \ell(I)=d$.
(ii) (FlennerMa): $f \in \bar{I} \Leftrightarrow \mathrm{j}\left(I_{\mathfrak{p}}\right)=\mathrm{j}\left((I, f)_{\mathfrak{p}}\right) \forall \mathfrak{p} \in \mathcal{V}(I)$.
(iii) $\left(\mathrm{AcMa}, \mathrm{FIMa}\right.$, NishidaUI). If a_{1}, \ldots, a_{d} are general in I, then

$$
\binom{\text { length }}{\text { formula }} \quad \mathrm{j}(I)=\lambda_{R}\left(\frac{R}{\left(a_{1}, \ldots, a_{d-1}\right): I^{\infty}+\left(a_{d}\right)}\right)
$$

Some known results

(i) $\mathrm{j}(I) \neq 0 \Leftrightarrow \ell(I)=d$.
(ii) (FlennerMa): $f \in \bar{I} \Leftrightarrow \mathrm{j}\left(I_{\mathfrak{p}}\right)=\mathrm{j}\left((I, f)_{\mathfrak{p}}\right) \forall \mathfrak{p} \in \mathcal{V}(I)$.
(iii) $\left(\mathrm{AcMa}, \mathrm{FIMa}\right.$, NishidaUI). If a_{1}, \ldots, a_{d} are general in I, then

$$
\binom{\text { length }}{\text { formula }} \quad \mathrm{j}(I)=\lambda_{R}\left(\frac{R}{\left(a_{1}, \ldots, a_{d-1}\right): I^{\infty}+\left(a_{d}\right)}\right)
$$

(iv) (CuHàSrinivasanTheodorescu). Example of irrational ε-multiplicity (defining ideal of a smooth curve in \mathbb{P}^{3}).

Lack of examples

Lack of examples

Clearly if I is \mathfrak{m}-primary then $\mathrm{j}(I)=\varepsilon(I)=\mathrm{e}(I)$.

Lack of examples

Clearly if I is \mathfrak{m}-primary then $\mathrm{j}(I)=\varepsilon(I)=\mathrm{e}(I)$.
When R is a polynomial ring and I is a monomial ideal, recent results of Jeffries and Montaño interpret $\mathrm{j}(I)$ and $\varepsilon(I)$ as volumes of suitable polytopal complexes in \mathbb{R}^{d}.

Lack of examples

Clearly if I is \mathfrak{m}-primary then $\mathrm{j}(I)=\varepsilon(I)=\mathrm{e}(I)$.
When R is a polynomial ring and I is a monomial ideal, recent results of Jeffries and Montaño interpret $\mathrm{j}(I)$ and $\varepsilon(I)$ as volumes of suitable polytopal complexes in \mathbb{R}^{d}.

NiUl used ad hoc methods to compute the j-multiplicity of the ideals defining the rational normal curve in \mathbb{P}^{4} and the rational normal scroll of block-sizes 2 and 3 in \mathbb{P}^{7}.

Lack of examples

Clearly if I is \mathfrak{m}-primary then $\mathrm{j}(I)=\varepsilon(I)=\mathrm{e}(I)$.
When R is a polynomial ring and I is a monomial ideal, recent results of Jeffries and Montaño interpret $\mathrm{j}(I)$ and $\varepsilon(I)$ as volumes of suitable polytopal complexes in \mathbb{R}^{d}.

NiUl used ad hoc methods to compute the j-multiplicity of the ideals defining the rational normal curve in \mathbb{P}^{4} and the rational normal scroll of block-sizes 2 and 3 in \mathbb{P}^{7}.

A part from these, few other cases are known.

Lack of examples

Clearly if I is \mathfrak{m}-primary then $\mathrm{j}(I)=\varepsilon(I)=\mathrm{e}(I)$.
When R is a polynomial ring and I is a monomial ideal, recent results of Jeffries and Montaño interpret $\mathrm{j}(I)$ and $\varepsilon(I)$ as volumes of suitable polytopal complexes in \mathbb{R}^{d}.
NiUl used ad hoc methods to compute the j-multiplicity of the ideals defining the rational normal curve in \mathbb{P}^{4} and the rational normal scroll of block-sizes 2 and 3 in \mathbb{P}^{7}.

A part from these, few other cases are known. A computational implementation of the length formula yields the j-multiplicity with high probability, however it is quite slow.

Lack of examples

Clearly if I is \mathfrak{m}-primary then $\mathrm{j}(I)=\varepsilon(I)=\mathrm{e}(I)$.
When R is a polynomial ring and I is a monomial ideal, recent results of Jeffries and Montaño interpret $\mathrm{j}(I)$ and $\varepsilon(I)$ as volumes of suitable polytopal complexes in \mathbb{R}^{d}.

NiUl used ad hoc methods to compute the j-multiplicity of the ideals defining the rational normal curve in \mathbb{P}^{4} and the rational normal scroll of block-sizes 2 and 3 in \mathbb{P}^{7}.

A part from these, few other cases are known. A computational implementation of the length formula yields the j-multiplicity with high probability, however it is quite slow.

In this talk, we will give a formula for the j-multiplicity of any ideal defining a rational normal scroll.

The j-multiplicity vs the degree of the fiber

The j-multiplicity vs the degree of the fiber

Thm (JeMo-): Suppose that R is a domain, $/$ is generated in one degree t and $\ell(I)=d$.

The j-multiplicity vs the degree of the fiber

Thm (JeMo-): Suppose that R is a domain, $/$ is generated in one degree t and $\ell(I)=d$.

The j-multiplicity vs the degree of the fiber

Thm (JeMo-): Suppose that R is a domain, I is generated in one degree t and $\ell(I)=d$. Then there is an integer $k \geq t$ such that:

$$
\mathrm{j}(I)=k \cdot \mathrm{e}(F(I)) .
$$

The j-multiplicity vs the degree of the fiber

Thm (JeMo-): Suppose that R is a domain, I is generated in one degree t and $\ell(I)=d$. Then there is an integer $k \geq t$ such that:

$$
\mathrm{j}(I)=k \cdot \mathrm{e}(F(I)) .
$$

If furthermore $\left[\left(I^{s}\right)^{\text {sat }}\right]_{r}=\left[I^{s}\right]_{r}$ for all $s \gg 0$ and $r \geq s t$, then

$$
\mathrm{j}(I)=t \cdot \mathrm{e}(F(I))
$$

The j-multiplicity vs the degree of the fiber

From now on we will refer to the condition $\left[\left(I^{s}\right)^{\text {sat }}\right]_{r}=\left[I^{s}\right]_{r}$ for all $s \gg 0$ and $r \geq s t$ as condition \diamond.

The j-multiplicity vs the degree of the fiber

From now on we will refer to the condition $\left[\left(I^{s}\right)^{\text {sat }}\right]_{r}=\left[I^{s}\right]_{r}$ for all $s \gg 0$ and $r \geq s t$ as condition \diamond.

The j-multiplicity vs the degree of the fiber

From now on we will refer to the condition $\left[\left(I^{s}\right)^{\text {sat }}\right]_{r}=\left[I^{s}\right]_{r}$ for all $s \gg 0$ and $r \geq s t$ as condition \diamond. It is a rather strong condition, nevertheless interesting classes of ideals satisfy it.

The j-multiplicity vs the degree of the fiber

From now on we will refer to the condition $\left[\left(I^{s}\right)^{\text {sat }}\right]_{r}=\left[I^{s}\right]_{r}$ for all $s \gg 0$ and $r \geq s t$ as condition \diamond. It is a rather strong condition, nevertheless interesting classes of ideals satisfy it. When this happens, the equality $\mathrm{j}(I)=t \cdot \mathrm{e}(F(I))$ supplies us an easier way to compute the j-multiplicity of I !

The j-multiplicity vs the degree of the fiber

From now on we will refer to the condition $\left[\left(I^{s}\right)^{\mathrm{sat}}\right]_{r}=\left[I^{s}\right]_{r}$ for all $s \gg 0$ and $r \geq s t$ as condition \diamond. It is a rather strong condition, nevertheless interesting classes of ideals satisfy it. When this happens, the equality $\mathrm{j}(I)=t \cdot \mathrm{e}(F(I))$ supplies us an easier way to compute the j-multiplicity of I !

It might be helpful to remark that, if R is a polynomial ring and I is minimally generated by degree t polynomials f_{1}, \ldots, f_{r}, then:

$$
F(I) \cong K\left[f_{1}, \ldots, f_{r}\right] .
$$

Rational normal scrolls

Rational normal scrolls

Fixed integers $1 \leq a_{1} \leq \ldots \leq a_{r}$, consider the vector bundle on \mathbb{P}^{1}

$$
\mathcal{E}=\bigoplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right)
$$

Rational normal scrolls

Fixed integers $1 \leq a_{1} \leq \ldots \leq a_{r}$, consider the vector bundle on \mathbb{P}^{1}

$$
\mathcal{E}=\bigoplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right)
$$

and its projectivized vector bundle $\mathbb{P}(\mathcal{E})=\operatorname{Proj}(\operatorname{Sym} \mathcal{E}) \rightarrow \mathbb{P}^{1}$.

Rational normal scrolls

Fixed integers $1 \leq a_{1} \leq \ldots \leq a_{r}$, consider the vector bundle on \mathbb{P}^{1}

$$
\mathcal{E}=\bigoplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right)
$$

and its projectivized vector bundle $\mathbb{P}(\mathcal{E})=\operatorname{Proj}(\operatorname{Sym} \mathcal{E}) \rightarrow \mathbb{P}^{1}$. The tautological line bundle $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ supplies a morphism

$$
\mathbb{P}(\mathcal{E}) \longrightarrow \mathbb{P}^{N}
$$

where $N=\sum_{i} a_{i}+r$.

Rational normal scrolls

Fixed integers $1 \leq a_{1} \leq \ldots \leq a_{r}$, consider the vector bundle on \mathbb{P}^{1}

$$
\mathcal{E}=\bigoplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right)
$$

and its projectivized vector bundle $\mathbb{P}(\mathcal{E})=\operatorname{Proj}(\operatorname{Sym} \mathcal{E}) \rightarrow \mathbb{P}^{1}$. The tautological line bundle $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ supplies a morphism

$$
\mathbb{P}(\mathcal{E}) \longrightarrow \mathbb{P}^{N}
$$

where $N=\sum_{i} a_{i}+r$. The image of the above map is denoted by $\mathcal{S}(\mathbf{a})$ and is the rational normal scroll associated to the sequence $\mathbf{a}=a_{1}, \ldots, a_{r}$.

Rational normal scrolls

Fixed integers $1 \leq a_{1} \leq \ldots \leq a_{r}$, consider the vector bundle on \mathbb{P}^{1}

$$
\mathcal{E}=\bigoplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right)
$$

and its projectivized vector bundle $\mathbb{P}(\mathcal{E})=\operatorname{Proj}(\operatorname{Sym} \mathcal{E}) \rightarrow \mathbb{P}^{1}$. The tautological line bundle $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ supplies a morphism

$$
\mathbb{P}(\mathcal{E}) \longrightarrow \mathbb{P}^{N}
$$

where $N=\sum_{i} a_{i}+r$. The image of the above map is denoted by $\mathcal{S}(\mathbf{a})$ and is the rational normal scroll associated to the sequence $\mathbf{a}=a_{1}, \ldots, a_{r}$. Notice that $\mathcal{S}(\mathbf{a})$ has dimension r and codimension $c=\sum_{i} a_{i}$.

Rational normal scrolls

Rational normal scrolls

The ideal I defining the rational normal scroll $\mathcal{S}(\mathbf{a})$ has a nice determinantal description:

Rational normal scrolls

The ideal I defining the rational normal scroll $\mathcal{S}(\mathbf{a})$ has a nice determinantal description: Let R be the polynomial ring in the variables $x_{i, j}$ over K where $(i, j) \in\{1, \ldots, r\} \times\left\{0, \ldots, a_{i}\right\}$.

Rational normal scrolls

The ideal I defining the rational normal scroll $\mathcal{S}(\mathbf{a})$ has a nice determinantal description: Let R be the polynomial ring in the variables $x_{i, j}$ over K where $(i, j) \in\{1, \ldots, r\} \times\left\{0, \ldots, a_{i}\right\}$. The ideal $I \subseteq R$ is generated by the 2 -minors of the matrix:

$$
\left(\begin{array}{cccccccccc}
x_{1,0} & \cdots & x_{1, a_{1}-1} & x_{2,0} & \cdots & x_{2, a_{2}-1} & \cdots & x_{r, 0} & \cdots & x_{r, a_{r}-1} \\
x_{1,1} & \cdots & x_{1, a_{1}} & x_{2,1} & \cdots & x_{2, a_{2}} & \cdots & x_{r, 1} & \cdots & x_{r, a_{r}}
\end{array}\right)
$$

Rational normal scrolls

The ideal I defining the rational normal scroll $\mathcal{S}(\mathbf{a})$ has a nice determinantal description: Let R be the polynomial ring in the variables $x_{i, j}$ over K where $(i, j) \in\{1, \ldots, r\} \times\left\{0, \ldots, a_{i}\right\}$. The ideal $I \subseteq R$ is generated by the 2 -minors of the matrix:

$$
\left(\begin{array}{cccccccccc}
x_{1,0} & \cdots & x_{1, a_{1}-1} & x_{2,0} & \cdots & x_{2, a_{2}-1} & \cdots & x_{r, 0} & \cdots & x_{r, a_{r}-1} \\
x_{1,1} & \cdots & x_{1, a_{1}} & x_{2,1} & \cdots & x_{2, a_{2}} & \cdots & x_{r, 1} & \cdots & x_{r, a_{r}}
\end{array}\right)
$$

We will denote such an ideal by $I(\mathbf{a})$.

Rational normal scrolls

The ideal I defining the rational normal scroll $\mathcal{S}(\mathbf{a})$ has a nice determinantal description: Let R be the polynomial ring in the variables $x_{i, j}$ over K where $(i, j) \in\{1, \ldots, r\} \times\left\{0, \ldots, a_{i}\right\}$. The ideal $I \subseteq R$ is generated by the 2 -minors of the matrix:

$$
\left(\begin{array}{cccccccccc}
x_{1,0} & \cdots & x_{1, a_{1}-1} & x_{2,0} & \cdots & x_{2, a_{2}-1} & \cdots & x_{r, 0} & \cdots & x_{r, a_{r}-1} \\
x_{1,1} & \cdots & x_{1, a_{1}} & x_{2,1} & \cdots & x_{2, a_{2}} & \cdots & x_{r, 1} & \cdots & x_{r, a_{r}}
\end{array}\right)
$$

We will denote such an ideal by $I(\mathbf{a})$. By definition $I(\mathbf{a})$ has generators in degree 2 , so either $\mathrm{j}(I(\mathbf{a}))=0$, or there is an integer $k \geq 2$ such that:

$$
\mathrm{j}(I(\mathbf{a}))=k \cdot \mathrm{e}(F(I(\mathbf{a}))) .
$$

Rational normal scrolls

Thm (BrunsConca-): (A) Any power $I(\mathbf{a})^{s}$ has $2 s$-linear resolution.

Rational normal scrolls

Thm (BrunsConca-): (A) Any power $I(\mathbf{a})^{s}$ has $2 s$-linear resolution.

Rational normal scrolls

Thm (BrunsConca-): (A) Any power $I(\mathbf{a})^{s}$ has $2 s$-linear resolution.
In other words the Castelnuovo-Mumford regularity of $I(\mathbf{a})^{s}$ is $2 s$, which thereby implies that all the $I(\mathbf{a})$ satisfiy condition \diamond.

Rational normal scrolls

Thm (BrunsConca-): (A) Any power $I(\mathbf{a})^{s}$ has $2 s$-linear resolution.
In other words the Castelnuovo-Mumford regularity of $I(\mathbf{a})^{s}$ is $2 s$, which thereby implies that all the $I(\mathbf{a})$ satisfiy condition \diamond. So, either $\mathrm{j}(I(\mathbf{a}))=0$, or $\mathrm{j}(I(\mathbf{a}))=2 \cdot \mathrm{e}(F(I(\mathbf{a})))$.

Rational normal scrolls

Thm (BrunsConca-): (A) Any power $I(\mathbf{a})^{s}$ has 2 s-linear resolution.
In other words the Castelnuovo-Mumford regularity of $I(\mathbf{a})^{s}$ is $2 s$, which thereby implies that all the $I(\mathbf{a})$ satisfiy condition \diamond. So, either $\mathrm{j}(I(\mathbf{a}))=0$, or $\mathrm{j}(I(\mathbf{a}))=2 \cdot \mathrm{e}(F(I(\mathbf{a})))$.

However, to determine directly the degree of $F(I(\mathbf{a}))$ is not easy: for example, the equations defining these algebras are not known in general.

Rational normal scrolls

Thm (BrunsConca-): (A) Any power $I(\mathbf{a})^{s}$ has $2 s$-linear resolution.
In other words the Castelnuovo-Mumford regularity of $I(\mathbf{a})^{s}$ is $2 s$, which thereby implies that all the $I(\mathbf{a})$ satisfiy condition \diamond. So, either $\mathrm{j}(I(\mathbf{a}))=0$, or $\mathrm{j}(I(\mathbf{a}))=2 \cdot \mathrm{e}(F(I(\mathbf{a})))$.

However, to determine directly the degree of $F(I(\mathbf{a}))$ is not easy: for example, the equations defining these algebras are not known in general. They are known, and they even form a quadratic Gröbner basis, when the scroll is balanced, i. e. $a_{r} \leq a_{1}-1$, thanks to a result of Co, Herzog and Valla,

Rational normal scrolls

Thm (BrunsConca-): (A) Any power $I(\mathbf{a})^{s}$ has $2 s$-linear resolution.
In other words the Castelnuovo-Mumford regularity of $I(\mathbf{a})^{s}$ is $2 s$, which thereby implies that all the $I(\mathbf{a})$ satisfiy condition \diamond. So, either $\mathrm{j}(I(\mathbf{a}))=0$, or $\mathrm{j}(I(\mathbf{a}))=2 \cdot \mathrm{e}(F(I(\mathbf{a})))$.

However, to determine directly the degree of $F(I(\mathbf{a}))$ is not easy: for example, the equations defining these algebras are not known in general. They are known, and they even form a quadratic Gröbner basis, when the scroll is balanced, i. e. $a_{r} \leq a_{1}-1$, thanks to a result of Co, Herzog and Valla, who as a byproduct computed the degree of $F(I(\mathbf{a}))$ in the balanced case.

Rational normal scrolls

Thm (BrCo-): (B) Moreover, the Betti numbers of $I(\mathbf{a})^{s}$ depend only on s, the dimension r and the codimension $c=\sum_{i} a_{i}$ of $\mathcal{S}(\mathbf{a})$.

Rational normal scrolls

Thm (BrCo-): (B) Moreover, the Betti numbers of $I(\mathbf{a})^{s}$ depend only on s, the dimension r and the codimension $c=\sum_{i} a_{i}$ of $\mathcal{S}(\mathbf{a})$.

Rational normal scrolls

Thm ($\mathrm{BrCo}-$): (B) Moreover, the Betti numbers of $I(\mathbf{a})^{s}$ depend only on s, the dimension r and the codimension $c=\sum_{i} a_{i}$ of $\mathcal{S}(\mathbf{a})$.

Notice that $\operatorname{dim}_{K}[F(I(\mathbf{a}))]_{s}=\beta_{0}\left(I(\mathbf{a})^{s}\right)$, and that for any rational normal scroll there is a balanced one with same dimension and codimension.

Rational normal scrolls

Thm ($\mathrm{BrCo}-$): (B) Moreover, the Betti numbers of $I(\mathbf{a})^{s}$ depend only on s, the dimension r and the codimension $c=\sum_{i} a_{i}$ of $\mathcal{S}(\mathbf{a})$.

Notice that $\operatorname{dim}_{K}[F(I(\mathbf{a}))]_{s}=\beta_{0}\left(I(\mathbf{a})^{s}\right)$, and that for any rational normal scroll there is a balanced one with same dimension and codimension. Putting all together we get:

Cor (JeMo-):

Rational normal scrolls

Thm ($\mathrm{BrCo}-$): (B) Moreover, the Betti numbers of $I(\mathbf{a})^{s}$ depend only on s, the dimension r and the codimension $c=\sum_{i} a_{i}$ of $\mathcal{S}(\mathbf{a})$.

Notice that $\operatorname{dim}_{K}[F(I(\mathbf{a}))]_{s}=\beta_{0}\left(I(\mathbf{a})^{s}\right)$, and that for any rational normal scroll there is a balanced one with same dimension and codimension. Putting all together we get:

Cor (JeMo-): The j-multiplicity of the ideal defining a rational normal scroll of dimension r and codimension c is:

$$
\begin{cases}0 & \text { if } c<r+3 \\ 2\left(\binom{2 c-4}{c-2}-\binom{2 c-4}{c-1}\right) & \text { if } c=r+3 \\ 2\left(\sum_{j=2}^{c-r-1}\binom{c+r-1}{c-j}-\binom{c+r-1}{c-1}(c-r-2)\right) & \text { if } c>r+3\end{cases}
$$

