THE j-MULTIPLICITY OF RATIONAL NORMAL SCROLLS

Matteo Varbaro

Joint with Jack Jeffries and Jonathan Montaño

Throughout the talk $R = \bigoplus_{i \ge 0} R_i$ will be a noetherian standard

graded algebra over a field $K = R_0$ (i.e. $R = K[R_1]$).

Throughout the talk $R = \bigoplus_{i \ge 0} R_i$ will be a noetherian standard graded algebra over a field $K = R_0$ (i.e. $R = K[R_1]$). Also, set $d = \dim R$. $\mathbf{m} = \bigoplus R_i$ the maximal irrelevant ideal

$$\dim \mathcal{R}, \ \mathbf{m} = \bigoplus_{i>0} \mathcal{R}_i \ \text{the maximal if}$$

Throughout the talk $R = \bigoplus_{i \ge 0} R_i$ will be a noetherian standard

graded algebra over a field $K = R_0$ (i.e. $R = K[R_1]$). Also,

set
$$d = \dim R$$
, $\mathfrak{m} = \bigoplus_{i>0} R_i$ the maximal irrelevant ideal

and take a homogeneous ideal $I \subseteq R$.

Throughout the talk $R = \bigoplus_{i \ge 0} R_i$ will be a noetherian standard

graded algebra over a field $K = R_0$ (i.e. $R = K[R_1]$). Also,

set
$$d = \dim R$$
, $\mathfrak{m} = \bigoplus_{i>0} R_i$ the maximal irrelevant ideal

and take a homogeneous ideal $I \subseteq R$. We will deal with:

(i)
$$G(I) = \bigoplus_{s \ge 0} I^s / I^{s+1}$$
 the associated graded ring of I .

Throughout the talk $R = \bigoplus_{i \ge 0} R_i$ will be a noetherian standard

graded algebra over a field $K = R_0$ (i.e. $R = K[R_1]$). Also,

set
$$d = \dim R$$
, $\mathfrak{m} = \bigoplus_{i>0} R_i$ the maximal irrelevant ideal

and take a homogeneous ideal $I \subseteq R$. We will deal with:

(i)
$$G(I) = \bigoplus_{s \ge 0} I^s / I^{s+1}$$
 the associated graded ring of I
(ii) $F(I) = \bigoplus_{s \ge 0} I^s / \mathfrak{m} I^s$ the fiber cone of I .

•

Throughout the talk $R = \bigoplus_{i \ge 0} R_i$ will be a noetherian standard

graded algebra over a field $K = R_0$ (i.e. $R = K[R_1]$). Also,

set
$$d = \dim R$$
, $\mathfrak{m} = \bigoplus_{i>0} R_i$ the maximal irrelevant ideal

and take a homogeneous ideal $I \subseteq R$. We will deal with:

(i)
$$G(I) = \bigoplus_{s \ge 0} I^s / I^{s+1}$$
 the associated graded ring of I
(ii) $F(I) = \bigoplus_{s \ge 0} I^s / \mathfrak{m} I^s$ the fiber cone of I .

The analytic spread of *I* is by definition:

$$\ell(I) = \dim F(I) \leq \dim G(I) = \dim R = d.$$

•

If *I* is m-primary, then the Hilbert-Samuel multiplicity is:

If *I* is m-primary, then the Hilbert-Samuel multiplicity is:

$$\mathbf{e}(I) = \lim_{s \to \infty} \frac{(d-1)!}{s^{d-1}} \lambda_R(I^s/I^{s+1}) \in \mathbb{N}$$

If *I* is m-primary, then the Hilbert-Samuel multiplicity is:

$$\mathbf{e}(I) = \lim_{s \to \infty} \frac{(d-1)!}{s^{d-1}} \lambda_R(I^s/I^{s+1}) \in \mathbb{N}$$

When $I = \mathfrak{m}$, the multiplicity above is also referred as the degree of R, and denoted by e(R).

If I is m-primary, then the Hilbert-Samuel multiplicity is:

$$\mathbf{e}(I) = \lim_{s \to \infty} \frac{(d-1)!}{s^{d-1}} \lambda_R(I^s/I^{s+1}) \in \mathbb{N}$$

When $I = \mathfrak{m}$, the multiplicity above is also referred as the degree of R, and denoted by e(R). Therefore, we have e(I) = e(G(I)).

If I is m-primary, then the Hilbert-Samuel multiplicity is:

$$\mathbf{e}(I) = \lim_{s \to \infty} \frac{(d-1)!}{s^{d-1}} \lambda_R(I^s/I^{s+1}) \in \mathbb{N}$$

When $I = \mathfrak{m}$, the multiplicity above is also referred as the degree of R, and denoted by e(R). Therefore, we have e(I) = e(G(I)).

One can easily realize that:
$$e(I) = \lim_{s \to \infty} \frac{d!}{s^d} \lambda_R(R/I^{s+1}).$$

If one applies the definition of the Hilbert-Samuel multiplicity to not $\mathfrak{m}\text{-primary}$ ideals he will get $\infty.$

If one applies the definition of the Hilbert-Samuel multiplicity to not m-primary ideals he will get ∞ . This lead, in 1993, Achilles and Manaresi to introduce the concept of j-multiplicity:

If one applies the definition of the Hilbert-Samuel multiplicity to not m-primary ideals he will get ∞ . This lead, in 1993, Achilles and Manaresi to introduce the concept of j-multiplicity:

$$\mathbf{j}(I) = \lim_{s \to \infty} \frac{(d-1)!}{s^{d-1}} \lambda_R(H^0_{\mathfrak{m}}(I^s/I^{s+1})) \in \mathbb{N}$$

If one applies the definition of the Hilbert-Samuel multiplicity to not m-primary ideals he will get ∞ . This lead, in 1993, Achilles and Manaresi to introduce the concept of j-multiplicity:

$$\mathbf{j}(I) = \lim_{s \to \infty} \frac{(d-1)!}{s^{d-1}} \lambda_R(H^0_{\mathfrak{m}}(I^s/I^{s+1})) \in \mathbb{N}$$

This time j(I) may differ from $\lim_{s\to\infty} \frac{d!}{s^d} \lambda_R(H^0_{\mathfrak{m}}(R/I^{s+1})).$

If one applies the definition of the Hilbert-Samuel multiplicity to not m-primary ideals he will get ∞ . This lead, in 1993, Achilles and Manaresi to introduce the concept of j-multiplicity:

$$\mathbf{j}(I) = \lim_{s \to \infty} \frac{(d-1)!}{s^{d-1}} \lambda_R(H^0_{\mathfrak{m}}(I^s/I^{s+1})) \in \mathbb{N}$$

This time j(I) may differ from $\lim_{s\to\infty} \frac{d!}{s^d} \lambda_R(H^0_{\mathfrak{m}}(R/I^{s+1}))$. Indeed, it is not even clear if the latter limit always exists.

If one applies the definition of the Hilbert-Samuel multiplicity to not m-primary ideals he will get ∞ . This lead, in 1993, Achilles and Manaresi to introduce the concept of j-multiplicity:

$$\mathbf{j}(I) = \lim_{s \to \infty} \frac{(d-1)!}{s^{d-1}} \lambda_R(H^0_{\mathfrak{m}}(I^s/I^{s+1})) \in \mathbb{N}$$

This time j(I) may differ from $\lim_{s\to\infty} \frac{d!}{s^d} \lambda_R(H^0_{\mathfrak{m}}(R/I^{s+1}))$. Indeed, it is not even clear if the latter limit always exists. However, Cutkosky proved recently its existence if R is reduced.

If one applies the definition of the Hilbert-Samuel multiplicity to not m-primary ideals he will get ∞ . This lead, in 1993, Achilles and Manaresi to introduce the concept of j-multiplicity:

$$\mathbf{j}(I) = \lim_{s \to \infty} \frac{(d-1)!}{s^{d-1}} \lambda_R(H^0_{\mathfrak{m}}(I^s/I^{s+1})) \in \mathbb{N}$$

This time j(I) may differ from $\lim_{s\to\infty} \frac{d!}{s^d} \lambda_R(H^0_{\mathfrak{m}}(R/I^{s+1}))$. Indeed, it is not even clear if the latter limit always exists. However, Cutkosky proved recently its existence if R is reduced. Such a quantity was introduced and studied by Ulrich and Validashti under the name of ε -multiplicity:

$$\varepsilon(I) = \limsup_{s \to \infty} \frac{d!}{s^d} \lambda_R(H^0_{\mathfrak{m}}(R/I^{s+1})).$$

(i)
$$j(I) \neq 0 \Leftrightarrow \ell(I) = d$$
.

(i)
$$j(I) \neq 0 \Leftrightarrow \ell(I) = d$$
.
(ii) (FlennerMa): $f \in \overline{I} \Leftrightarrow j(I_p) = j((I, f)_p) \forall p \in \mathcal{V}(I)$.

(i)
$$j(I) \neq 0 \Leftrightarrow \ell(I) = d$$
.
(ii) (FlennerMa): $f \in \overline{I} \Leftrightarrow j(I_p) = j((I, f)_p) \forall p \in \mathcal{V}(I)$.
(iii) (AcMa, FIMa, NishidaUI). If a_1, \ldots, a_d are general in I , then

$$\begin{pmatrix} \mathsf{length} \\ \mathsf{formula} \end{pmatrix} \qquad \mathsf{j}(I) = \lambda_R \left(\frac{R}{(a_1, \dots, a_{d-1}) : I^\infty + (a_d)} \right)$$

(i)
$$j(I) \neq 0 \Leftrightarrow \ell(I) = d$$
.
(ii) (FlennerMa): $f \in \overline{I} \Leftrightarrow j(I_p) = j((I, f)_p) \forall p \in \mathcal{V}(I)$.
(iii) (AcMa, FIMa, NishidaUI). If a_1, \ldots, a_d are general in I , then

$$\begin{pmatrix} \mathsf{length} \\ \mathsf{formula} \end{pmatrix} \qquad \mathsf{j}(I) = \lambda_R \left(\frac{R}{(a_1, \dots, a_{d-1}) : I^\infty + (a_d)} \right)$$

(iv) (CuHàSrinivasanTheodorescu). Example of irrational ε -multiplicity (defining ideal of a smooth curve in \mathbb{P}^3).

Clearly if I is m-primary then $j(I) = \varepsilon(I) = e(I)$.

Clearly if *I* is m-primary then $j(I) = \varepsilon(I) = e(I)$.

When R is a polynomial ring and I is a monomial ideal, recent results of Jeffries and Montaño interpret j(I) and $\varepsilon(I)$ as volumes of suitable polytopal complexes in \mathbb{R}^d .

Clearly if *I* is m-primary then $j(I) = \varepsilon(I) = e(I)$.

When *R* is a polynomial ring and *I* is a monomial ideal, recent results of Jeffries and Montaño interpret j(I) and $\varepsilon(I)$ as volumes of suitable polytopal complexes in \mathbb{R}^d .

NiUl used ad hoc methods to compute the j-multiplicity of the ideals defining the rational normal curve in \mathbb{P}^4 and the rational normal scroll of block-sizes 2 and 3 in \mathbb{P}^7 .

Clearly if *I* is m-primary then $j(I) = \varepsilon(I) = e(I)$.

When R is a polynomial ring and I is a monomial ideal, recent results of Jeffries and Montaño interpret j(I) and $\varepsilon(I)$ as volumes of suitable polytopal complexes in \mathbb{R}^d .

NiUl used ad hoc methods to compute the j-multiplicity of the ideals defining the rational normal curve in \mathbb{P}^4 and the rational normal scroll of block-sizes 2 and 3 in \mathbb{P}^7 .

A part from these, few other cases are known.

Clearly if *I* is m-primary then $j(I) = \varepsilon(I) = e(I)$.

When R is a polynomial ring and I is a monomial ideal, recent results of Jeffries and Montaño interpret j(I) and $\varepsilon(I)$ as volumes of suitable polytopal complexes in \mathbb{R}^d .

NiUl used ad hoc methods to compute the j-multiplicity of the ideals defining the rational normal curve in \mathbb{P}^4 and the rational normal scroll of block-sizes 2 and 3 in \mathbb{P}^7 .

A part from these, few other cases are known. A computational implementation of the length formula yields the j-multiplicity with high probability, however it is quite slow.

Clearly if *I* is m-primary then $j(I) = \varepsilon(I) = e(I)$.

When R is a polynomial ring and I is a monomial ideal, recent results of Jeffries and Montaño interpret j(I) and $\varepsilon(I)$ as volumes of suitable polytopal complexes in \mathbb{R}^d .

NiUl used ad hoc methods to compute the j-multiplicity of the ideals defining the rational normal curve in \mathbb{P}^4 and the rational normal scroll of block-sizes 2 and 3 in \mathbb{P}^7 .

A part from these, few other cases are known. A computational implementation of the length formula yields the j-multiplicity with high probability, however it is quite slow.

In this talk, we will give a formula for the j-multiplicity of any ideal defining a rational normal scroll.

Thm (JeMo-): Suppose that R is a domain, I is generated in one degree t and $\ell(I) = d$.

Thm (JeMo-): Suppose that R is a domain, I is generated in one degree t and $\ell(I) = d$.

Thm (JeMo-): Suppose that R is a domain, I is generated in one degree t and $\ell(I) = d$. Then there is an integer $k \ge t$ such that:

 $\mathbf{j}(I) = \mathbf{k} \cdot \mathbf{e}(F(I)).$

Thm (JeMo-): Suppose that R is a domain, I is generated in one degree t and $\ell(I) = d$. Then there is an integer $k \ge t$ such that:

$$\mathbf{j}(I) = k \cdot \mathbf{e}(F(I)).$$

If furthermore $[(I^s)^{\text{sat}}]_r = [I^s]_r$ for all $s \gg 0$ and $r \ge st$, then

 $j(I) = t \cdot e(F(I)).$

From now on we will refer to the condition $[(I^s)^{sat}]_r = [I^s]_r$ for all $s \gg 0$ and $r \ge st$ as condition \diamondsuit .

From now on we will refer to the condition $[(I^s)^{sat}]_r = [I^s]_r$ for all $s \gg 0$ and $r \ge st$ as condition \diamondsuit .

From now on we will refer to the condition $[(I^s)^{sat}]_r = [I^s]_r$ for all $s \gg 0$ and $r \ge st$ as condition \diamondsuit . It is a rather strong condition, nevertheless interesting classes of ideals satisfy it.

From now on we will refer to the condition $[(I^s)^{\text{sat}}]_r = [I^s]_r$ for all $s \gg 0$ and $r \ge st$ as condition \diamondsuit . It is a rather strong condition, nevertheless interesting classes of ideals satisfy it. When this happens, the equality $j(I) = t \cdot e(F(I))$ supplies us an easier way to compute the j-multiplicity of I!

From now on we will refer to the condition $[(I^s)^{\text{sat}}]_r = [I^s]_r$ for all $s \gg 0$ and $r \ge st$ as condition \diamondsuit . It is a rather strong condition, nevertheless interesting classes of ideals satisfy it. When this happens, the equality $j(I) = t \cdot e(F(I))$ supplies us an easier way to compute the j-multiplicity of I!

It might be helpful to remark that, if R is a polynomial ring and I is minimally generated by degree t polynomials f_1, \ldots, f_r , then:

 $F(I) \cong K[f_1,\ldots,f_r].$

Fixed integers $1 \leq a_1 \leq \ldots \leq a_r$, consider the vector bundle on \mathbb{P}^1

$$\mathcal{E} = igoplus_{i=1}^r \mathcal{O}_{\mathbb{P}^1}(a_i)$$

Fixed integers $1 \leq a_1 \leq \ldots \leq a_r$, consider the vector bundle on \mathbb{P}^1

$$\mathcal{E} = igoplus_{i=1}^r \mathcal{O}_{\mathbb{P}^1}(\mathsf{a}_i)$$

and its projectivized vector bundle $\mathbb{P}(\mathcal{E}) = \operatorname{Proj}(\operatorname{Sym} \mathcal{E}) \to \mathbb{P}^1$.

Fixed integers $1 \leq a_1 \leq \ldots \leq a_r$, consider the vector bundle on \mathbb{P}^1

$$\mathcal{E} = igoplus_{i=1}^r \mathcal{O}_{\mathbb{P}^1}(\mathsf{a}_i)$$

and its projectivized vector bundle $\mathbb{P}(\mathcal{E}) = \operatorname{Proj}(\operatorname{Sym} \mathcal{E}) \to \mathbb{P}^1$. The tautological line bundle $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ supplies a morphism

$$\mathbb{P}(\mathcal{E})\longrightarrow\mathbb{P}^{N},$$

where $N = \sum_{i} a_i + r$.

Fixed integers $1 \leq a_1 \leq \ldots \leq a_r$, consider the vector bundle on \mathbb{P}^1

$$\mathcal{E} = igoplus_{i=1}^r \mathcal{O}_{\mathbb{P}^1}(a_i)$$

and its projectivized vector bundle $\mathbb{P}(\mathcal{E}) = \operatorname{Proj}(\operatorname{Sym} \mathcal{E}) \to \mathbb{P}^1$. The tautological line bundle $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ supplies a morphism

$$\mathbb{P}(\mathcal{E})\longrightarrow\mathbb{P}^{N},$$

where $N = \sum_{i} a_i + r$. The image of the above map is denoted by $S(\mathbf{a})$ and is the rational normal scroll associated to the sequence $\mathbf{a} = a_1, \ldots, a_r$.

Fixed integers $1 \leq a_1 \leq \ldots \leq a_r$, consider the vector bundle on \mathbb{P}^1

$$\mathcal{E} = igoplus_{i=1}^r \mathcal{O}_{\mathbb{P}^1}(a_i)$$

and its projectivized vector bundle $\mathbb{P}(\mathcal{E}) = \operatorname{Proj}(\operatorname{Sym} \mathcal{E}) \to \mathbb{P}^1$. The tautological line bundle $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ supplies a morphism

$$\mathbb{P}(\mathcal{E})\longrightarrow \mathbb{P}^{N},$$

where $N = \sum_{i} a_{i} + r$. The image of the above map is denoted by $S(\mathbf{a})$ and is the rational normal scroll associated to the sequence $\mathbf{a} = a_{1}, \ldots, a_{r}$. Notice that $S(\mathbf{a})$ has dimension r and codimension $c = \sum_{i} a_{i}$.

The ideal *I* defining the rational normal scroll $S(\mathbf{a})$ has a nice determinantal description:

The ideal *I* defining the rational normal scroll $S(\mathbf{a})$ has a nice determinantal description: Let *R* be the polynomial ring in the variables $x_{i,j}$ over *K* where $(i,j) \in \{1, \ldots, r\} \times \{0, \ldots, a_i\}$.

The ideal *I* defining the rational normal scroll $S(\mathbf{a})$ has a nice determinantal description: Let *R* be the polynomial ring in the variables $x_{i,j}$ over *K* where $(i,j) \in \{1, \ldots, r\} \times \{0, \ldots, a_i\}$. The ideal $I \subseteq R$ is generated by the 2-minors of the matrix:

 $\begin{pmatrix} x_{1,0} & \cdots & x_{1,a_1-1} & x_{2,0} & \cdots & x_{2,a_2-1} & \cdots & x_{r,0} & \cdots & x_{r,a_r-1} \\ x_{1,1} & \cdots & x_{1,a_1} & x_{2,1} & \cdots & x_{2,a_2} & \cdots & x_{r,1} & \cdots & x_{r,a_r} \end{pmatrix}$

The ideal *I* defining the rational normal scroll $S(\mathbf{a})$ has a nice determinantal description: Let *R* be the polynomial ring in the variables $x_{i,j}$ over *K* where $(i,j) \in \{1, \ldots, r\} \times \{0, \ldots, a_i\}$. The ideal $I \subseteq R$ is generated by the 2-minors of the matrix:

$$\begin{pmatrix} x_{1,0} & \cdots & x_{1,a_1-1} & x_{2,0} & \cdots & x_{2,a_2-1} & \cdots & x_{r,0} & \cdots & x_{r,a_r-1} \\ x_{1,1} & \cdots & x_{1,a_1} & x_{2,1} & \cdots & x_{2,a_2} & \cdots & x_{r,1} & \cdots & x_{r,a_r} \end{pmatrix}$$

We will denote such an ideal by I(a).

The ideal *I* defining the rational normal scroll $S(\mathbf{a})$ has a nice determinantal description: Let *R* be the polynomial ring in the variables $x_{i,j}$ over *K* where $(i,j) \in \{1, \ldots, r\} \times \{0, \ldots, a_i\}$. The ideal $I \subseteq R$ is generated by the 2-minors of the matrix:

$$\begin{pmatrix} x_{1,0} & \cdots & x_{1,a_1-1} & x_{2,0} & \cdots & x_{2,a_2-1} & \cdots & x_{r,0} & \cdots & x_{r,a_r-1} \\ x_{1,1} & \cdots & x_{1,a_1} & x_{2,1} & \cdots & x_{2,a_2} & \cdots & x_{r,1} & \cdots & x_{r,a_r} \end{pmatrix}$$

We will denote such an ideal by $I(\mathbf{a})$. By definition $I(\mathbf{a})$ has generators in degree 2, so either $j(I(\mathbf{a})) = 0$, or there is an integer $k \ge 2$ such that:

$$j(I(\mathbf{a})) = k \cdot e(F(I(\mathbf{a}))).$$

Thm (BrunsConca–): (A) Any power $I(\mathbf{a})^s$ has 2*s*-linear resolution.

Thm (BrunsConca–): (A) Any power $I(\mathbf{a})^s$ has 2*s*-linear resolution.

Thm (BrunsConca–): (A) Any power $I(\mathbf{a})^s$ has 2*s*-linear resolution.

In other words the Castelnuovo-Mumford regularity of $I(\mathbf{a})^s$ is 2s, which thereby implies that all the $I(\mathbf{a})$ satisfiy condition \diamondsuit .

Thm (BrunsConca–): (A) Any power $I(\mathbf{a})^s$ has 2*s*-linear resolution.

In other words the Castelnuovo-Mumford regularity of $I(\mathbf{a})^s$ is 2s, which thereby implies that all the $I(\mathbf{a})$ satisfy condition \diamondsuit . So, either $j(I(\mathbf{a})) = 0$, or $j(I(\mathbf{a})) = 2 \cdot e(F(I(\mathbf{a})))$.

Thm (BrunsConca–): (A) Any power $I(\mathbf{a})^s$ has 2s-linear resolution.

In other words the Castelnuovo-Mumford regularity of $I(\mathbf{a})^s$ is 2s, which thereby implies that all the $I(\mathbf{a})$ satisfy condition \diamondsuit . So, either $j(I(\mathbf{a})) = 0$, or $j(I(\mathbf{a})) = 2 \cdot e(F(I(\mathbf{a})))$.

However, to determine directly the degree of $F(I(\mathbf{a}))$ is not easy: for example, the equations defining these algebras are not known in general.

Thm (BrunsConca–): (A) Any power $I(\mathbf{a})^s$ has 2s-linear resolution.

In other words the Castelnuovo-Mumford regularity of $I(\mathbf{a})^s$ is 2s, which thereby implies that all the $I(\mathbf{a})$ satisfy condition \diamondsuit . So, either $j(I(\mathbf{a})) = 0$, or $j(I(\mathbf{a})) = 2 \cdot e(F(I(\mathbf{a})))$.

However, to determine directly the degree of $F(I(\mathbf{a}))$ is not easy: for example, the equations defining these algebras are not known in general. They are known, and they even form a quadratic Gröbner basis, when the scroll is balanced, i. e. $a_r \leq a_1 - 1$, thanks to a result of Co, Herzog and Valla,

Thm (BrunsConca–): (A) Any power $I(\mathbf{a})^s$ has 2s-linear resolution.

In other words the Castelnuovo-Mumford regularity of $I(\mathbf{a})^s$ is 2s, which thereby implies that all the $I(\mathbf{a})$ satisfy condition \diamondsuit . So, either $j(I(\mathbf{a})) = 0$, or $j(I(\mathbf{a})) = 2 \cdot e(F(I(\mathbf{a})))$.

However, to determine directly the degree of $F(I(\mathbf{a}))$ is not easy: for example, the equations defining these algebras are not known in general. They are known, and they even form a quadratic Gröbner basis, when the scroll is balanced, i. e. $a_r \leq a_1 - 1$, thanks to a result of Co, Herzog and Valla, who as a byproduct computed the degree of $F(I(\mathbf{a}))$ in the balanced case.

Thm (BrCo-): (B) Moreover, the Betti numbers of $I(\mathbf{a})^s$ depend only on *s*, the dimension *r* and the codimension $c = \sum_i a_i$ of $S(\mathbf{a})$.

Thm (BrCo-): (B) Moreover, the Betti numbers of $I(\mathbf{a})^s$ depend only on *s*, the dimension *r* and the codimension $c = \sum_i a_i$ of $S(\mathbf{a})$.

Thm (BrCo-): (B) Moreover, the Betti numbers of $I(\mathbf{a})^s$ depend only on *s*, the dimension *r* and the codimension $c = \sum_i a_i$ of $S(\mathbf{a})$.

Notice that $\dim_{\mathcal{K}}[F(I(\mathbf{a}))]_s = \beta_0(I(\mathbf{a})^s)$, and that for any rational normal scroll there is a balanced one with same dimension and codimension.

Thm (BrCo-): (B) Moreover, the Betti numbers of $I(\mathbf{a})^s$ depend only on *s*, the dimension *r* and the codimension $c = \sum_i a_i$ of $S(\mathbf{a})$.

Notice that $\dim_{\mathcal{K}}[F(I(\mathbf{a}))]_s = \beta_0(I(\mathbf{a})^s)$, and that for any rational normal scroll there is a balanced one with same dimension and codimension. Putting all together we get:

Cor (JeMo-):

Thm (BrCo-): (B) Moreover, the Betti numbers of $I(\mathbf{a})^s$ depend only on s, the dimension r and the codimension $c = \sum_i a_i$ of $S(\mathbf{a})$.

Notice that $\dim_{\mathcal{K}}[F(I(\mathbf{a}))]_s = \beta_0(I(\mathbf{a})^s)$, and that for any rational normal scroll there is a balanced one with same dimension and codimension. Putting all together we get:

Cor (JeMo–): The j-multiplicity of the ideal defining a rational normal scroll of dimension r and codimension c is:

$$\begin{cases} 0 & \text{if } c < r+3, \\ 2\left(\binom{2c-4}{c-2} - \binom{2c-4}{c-1}\right) & \text{if } c = r+3, \\ 2\left(\sum_{j=2}^{c-r-1} \binom{c+r-1}{c-j} - \binom{c+r-1}{c-1}(c-r-2)\right) & \text{if } c > r+3. \end{cases}$$