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Notation
Throughout the talk R = € R; will be a noetherian standard
i>0

graded algebra over a field K = Ry (i.e. R = K[R1]). Also,

set d =dimR, m = @ R; the maximal irrelevant ideal
i>0
and take a homogeneous ideal /| C R. We will deal with:

(i) G(I) = @ I5/15T the associated graded ring of /.
s>0

(i) F(I) = EB I°/ml® the fiber cone of /.

s>0

The analytic spread of [ is by definition:

(1) = dim F(1) < dim G(/) = dim R = d.
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Multiplicities

If | is m-primary, then the Hilbert-Samuel multiplicity is:

e(l) = lim (d=1}

s—oo  sd—1 )\R(IS/IS+1) eN
When | = m, the multiplicity above is also referred as the degree
of R, and denoted by ¢(R). Therefore, we have e(/) = e(G(/)).

d!
One can easily realize that:  e(/) = ILm S—d)\R(R/ISH).
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Multiplicities

If one applies the definition of the Hilbert-Samuel multiplicity to
not m-primary ideals he will get co. This lead, in 1993, Achilles
and Manaresi to introduce the concept of j-multiplicity:

—1)!

i) = Jim Dk e
d!

This time j(/) may differ from sIgr;o S—d)\R(HSI(R/ISH)). Indeed, it
is not even clear if the latter limit always exists. However,
Cutkosky proved recently its existence if R is reduced. Such a
quantity was introduced and studied by Ulrich and Validashti under
the name of e-multiplicity:

(1) = limsup %/\R(Hg(R/ISH)).

$§—00
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(i) (1) # 0 €(1) = d.
(i) (FlennerMa): f € I < j(h) =i((I,f)p) ¥ p € V(I).
(iii) (AcMa, FIMa, NishidaUl). If a1,...,aq are general in I, then

(floerrr]‘r%zil]a) i) = A <(a1, ey ale) D1+ (ad)>

(iv) (CuHaSrinivasanTheodorescu). Example of irrational
e-multiplicity (defining ideal of a smooth curve in P3).
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Lack of examples

Clearly if I is m-primary then j(/) = (/) = e(/).

When R is a polynomial ring and / is a monomial ideal, recent
results of Jeffries and Montafio interpret j(/) and (/) as volumes
of suitable polytopal complexes in RY.

NiUl used ad hoc methods to compute the j-multiplicity of the
ideals defining the rational normal curve in P* and the rational
normal scroll of block-sizes 2 and 3 in P7.

A part from these, few other cases are known. A computational
implementation of the length formula yields the j-multiplicity with
high probability, however it is quite slow.

In this talk, we will give a formula for the j-multiplicity of any ideal
defining a rational normal scroll.
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The j-multiplicity vs the degree of the fiber

Thm (JeMo-): Suppose that R is a domain, / is generated in one
degree t and ¢(/) = d. Then there is an integer k > t such that:

i(1) = k-e(F(1)).

If furthermore [(/°)5], = [/*], for all s > 0 and r > st, then

J(1) = t- e(F(1)).
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The j-multiplicity vs the degree of the fiber

From now on we will refer to the condition [(/5)%2Y], = [I*], for all
s> 0 and r > st as condition <}. It is a rather strong condition,
nevertheless interesting classes of ideals satisfy it. When this
happens, the equality j(/) = t - e(F(/)) supplies us an easier way
to compute the j-multiplicity of /!

It might be helpful to remark that, if R is a polynomial ring and /
is minimally generated by degree t polynomials fi,...,f,, then:

F(I) = K[f, ..., f].
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Fixed integers 1 < a; < ... < a,, consider the vector bundle on Pl
r
&= @ Opl(ai)
i=1

and its projectivized vector bundle P(€) = Proj(Sym &) — P*.
The tautological line bundle Oﬂm(g)(].) supplies a morphism

P(&) — PV,

where N =Y. a; + r. The image of the above map is denoted by
S(a) and is the rational normal scroll associated to the sequence
a=aj,...,ar. Notice that S(a) has dimension r and codimension

c=Y;a.
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Rational normal scrolls

The ideal / defining the rational normal scroll S(a) has a nice
determinantal description: Let R be the polynomial ring in the
variables x; ; over K where (i,j) € {1,...,r} x{0,...,aj}. The
ideal I C R is generated by the 2-minors of the matrix:

X1,0 r Xl,a—-1 X2,0 1t X231 co Xr0 0 Xra—1
Xl,l cee X1,31 X27]_ “ee X2732 cee Xr,l . e Xr,a,

We will denote such an ideal by /(a). By definition /(a) has
generators in degree 2, so either j(/(a)) = 0, or there is an integer
k > 2 such that:

i(I(a)) = k- e(F(I(a)))-
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Thm (BrunsConca—=): (A) Any power /(a)° has 2s-linear resolution.

In other words the Castelnuovo-Mumford regularity of /(a)® is 2s,
which thereby implies that all the /(a) satisfiy condition . So,

either j(/(a)) =0, or j(/(a)) =2-e(F(I(a))).

However, to determine directly the degree of F(/(a)) is not easy:
for example, the equations defining these algebras are not known in
general. They are known, and they even form a quadratic Grobner
basis, when the scroll is balanced, i. e. a, < a; — 1, thanks to a
result of Co, Herzog and Valla, who as a byproduct computed the
degree of F(/(a)) in the balanced case.



Rational normal scrolls

Thm (BrCo-): (B) Moreover, the Betti numbers of /(a)® depend
only on s, the dimension r and the codimension ¢ = ), a; of S(a).



Rational normal scrolls

Thm (BrCo-): (B) Moreover, the Betti numbers of /(a)® depend
only on s, the dimension r and the codimension ¢ = ), a; of S(a).



Rational normal scrolls

Thm (BrCo-): (B) Moreover, the Betti numbers of /(a)® depend
only on s, the dimension r and the codimension ¢ = ), a; of S(a).

Notice that dimk[F(/(a))]s = Bo(/(a)®), and that for any rational
normal scroll there is a balanced one with same dimension and
codimension.



Rational normal scrolls

Thm (BrCo-): (B) Moreover, the Betti numbers of /(a)® depend
only on s, the dimension r and the codimension ¢ = ), a; of S(a).

Notice that dimk[F(/(a))]s = Bo(/(a)®), and that for any rational
normal scroll there is a balanced one with same dimension and
codimension. Putting all together we get:

Cor (JeMo-):



Rational normal scrolls

Thm (BrCo-): (B) Moreover, the Betti numbers of /(a)® depend
only on s, the dimension r and the codimension ¢ = ), a; of S(a).

Notice that dimk[F(/(a))]s = Bo(/(a)®), and that for any rational
normal scroll there is a balanced one with same dimension and
codimension. Putting all together we get:

Cor (JeMo—): The j-multiplicity of the ideal defining a rational
normal scroll of dimension r and codimension c is:

0 ifce<r+3,
2c—4 2c—4 .
2(<C2)_<C1>> Feori3,

2<czr:l<c+r_,1>—<C:111>(c—r—2)) ifc>r+3.

c_
=2 J



