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Notation

Throughout the talk R =
⊕
i≥0

Ri will be a noetherian standard

graded algebra over a field K = R0 (i.e. R = K [R1]). Also,

set d = dimR, m =
⊕
i>0

Ri the maximal irrelevant ideal

and take a homogeneous ideal I ⊆ R. We will deal with:

(i) G (I ) =
⊕
s≥0

I s/I s+1 the associated graded ring of I .

(ii) F (I ) =
⊕
s≥0

I s/mI s the fiber cone of I .

The analytic spread of I is by definition:

`(I ) = dimF (I ) ≤ dimG (I ) = dimR = d .
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Multiplicities

If I is m-primary, then the Hilbert-Samuel multiplicity is:

e(I ) = lim
s→∞

(d − 1)!

sd−1
λR(I s/I s+1) ∈ N

When I = m, the multiplicity above is also referred as the degree
of R, and denoted by e(R). Therefore, we have e(I ) = e(G (I )).

One can easily realize that: e(I ) = lim
s→∞

d!

sd
λR(R/I s+1).
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Multiplicities

If one applies the definition of the Hilbert-Samuel multiplicity to
not m-primary ideals he will get ∞.

This lead, in 1993, Achilles
and Manaresi to introduce the concept of j-multiplicity:

j(I ) = lim
s→∞

(d − 1)!

sd−1
λR(H0

m(I s/I s+1)) ∈ N

This time j(I ) may differ from lim
s→∞

d!

sd
λR(H0

m(R/I s+1)). Indeed, it

is not even clear if the latter limit always exists. However,
Cutkosky proved recently its existence if R is reduced. Such a
quantity was introduced and studied by Ulrich and Validashti under
the name of ε-multiplicity:

ε(I ) = lim sup
s→∞

d!

sd
λR(H0

m(R/I s+1)).
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Some known results

(i) j(I ) 6= 0⇔ `(I ) = d .

(ii) (FlennerMa): f ∈ Ī ⇔ j(Ip) = j((I , f )p) ∀ p ∈ V(I ).

(iii) (AcMa, FlMa, NishidaUl). If a1, . . . , ad are general in I , then(
length

formula

)
j(I ) = λR

(
R

(a1, . . . , ad−1) : I∞ + (ad)

)

(iv) (CuHàSrinivasanTheodorescu). Example of irrational
ε-multiplicity (defining ideal of a smooth curve in P3).
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Lack of examples

Clearly if I is m-primary then j(I ) = ε(I ) = e(I ).

When R is a polynomial ring and I is a monomial ideal, recent
results of Jeffries and Montaño interpret j(I ) and ε(I ) as volumes
of suitable polytopal complexes in Rd .

NiUl used ad hoc methods to compute the j-multiplicity of the
ideals defining the rational normal curve in P4 and the rational
normal scroll of block-sizes 2 and 3 in P7.

A part from these, few other cases are known. A computational
implementation of the length formula yields the j-multiplicity with
high probability, however it is quite slow.

In this talk, we will give a formula for the j-multiplicity of any ideal
defining a rational normal scroll.
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The j-multiplicity vs the degree of the fiber

Thm (JeMo–): Suppose that R is a domain, I is generated in one
degree t and `(I ) = d . Then there is an integer k ≥ t such that:

j(I ) = k · e(F (I )).

If furthermore [(I s)sat]r = [I s ]r for all s � 0 and r ≥ st, then

j(I ) = t · e(F (I )).
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The j-multiplicity vs the degree of the fiber

From now on we will refer to the condition [(I s)sat]r = [I s ]r for all
s � 0 and r ≥ st as condition ♦.

It is a rather strong condition,
nevertheless interesting classes of ideals satisfy it. When this
happens, the equality j(I ) = t · e(F (I )) supplies us an easier way
to compute the j-multiplicity of I !

It might be helpful to remark that, if R is a polynomial ring and I
is minimally generated by degree t polynomials f1, . . . , fr , then:

F (I ) ∼= K [f1, . . . , fr ].
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Rational normal scrolls

Fixed integers 1 ≤ a1 ≤ . . . ≤ ar , consider the vector bundle on P1

E =
r⊕

i=1

OP1(ai )

and its projectivized vector bundle P(E) = Proj(Sym E)→ P1.
The tautological line bundle OP(E)(1) supplies a morphism

P(E) −→ PN ,

where N =
∑

i ai + r . The image of the above map is denoted by
S(a) and is the rational normal scroll associated to the sequence
a = a1, . . . , ar . Notice that S(a) has dimension r and codimension
c =

∑
i ai .
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Rational normal scrolls

The ideal I defining the rational normal scroll S(a) has a nice
determinantal description: Let R be the polynomial ring in the
variables xi ,j over K where (i , j) ∈ {1, . . . , r} × {0, . . . , ai}. The
ideal I ⊆ R is generated by the 2-minors of the matrix:(
x1,0 · · · x1,a1−1 x2,0 · · · x2,a2−1 · · · xr ,0 · · · xr ,ar−1

x1,1 · · · x1,a1 x2,1 · · · x2,a2 · · · xr ,1 · · · xr ,ar

)

We will denote such an ideal by I (a). By definition I (a) has
generators in degree 2, so either j(I (a)) = 0, or there is an integer
k ≥ 2 such that:

j(I (a)) = k · e(F (I (a))).
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Rational normal scrolls

Thm (BrunsConca–): (A) Any power I (a)s has 2s-linear resolution.

In other words the Castelnuovo-Mumford regularity of I (a)s is 2s,
which thereby implies that all the I (a) satisfiy condition ♦. So,
either j(I (a)) = 0, or j(I (a)) = 2 · e(F (I (a))).

However, to determine directly the degree of F (I (a)) is not easy:
for example, the equations defining these algebras are not known in
general. They are known, and they even form a quadratic Gröbner
basis, when the scroll is balanced, i. e. ar ≤ a1 − 1, thanks to a
result of Co, Herzog and Valla, who as a byproduct computed the
degree of F (I (a)) in the balanced case.
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basis, when the scroll is balanced, i. e. ar ≤ a1 − 1, thanks to a
result of Co, Herzog and Valla, who as a byproduct computed the
degree of F (I (a)) in the balanced case.



Rational normal scrolls

Thm (BrunsConca–): (A) Any power I (a)s has 2s-linear resolution.

In other words the Castelnuovo-Mumford regularity of I (a)s is 2s,
which thereby implies that all the I (a) satisfiy condition ♦. So,
either j(I (a)) = 0, or j(I (a)) = 2 · e(F (I (a))).

However, to determine directly the degree of F (I (a)) is not easy:
for example, the equations defining these algebras are not known in
general.

They are known, and they even form a quadratic Gröbner
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basis, when the scroll is balanced, i. e. ar ≤ a1 − 1, thanks to a
result of Co, Herzog and Valla, who as a byproduct computed the
degree of F (I (a)) in the balanced case.



Rational normal scrolls

Thm (BrCo–): (B) Moreover, the Betti numbers of I (a)s depend
only on s, the dimension r and the codimension c =

∑
i ai of S(a).

Notice that dimK [F (I (a))]s = β0(I (a)s), and that for any rational
normal scroll there is a balanced one with same dimension and
codimension. Putting all together we get:

Cor (JeMo–): The j-multiplicity of the ideal defining a rational
normal scroll of dimension r and codimension c is:

0 if c < r + 3 ,

2

((
2c − 4

c − 2

)
−

(
2c − 4

c − 1

))
if c = r + 3 ,

2

(
c−r−1∑
j=2

(
c + r − 1

c − j

)
−

(
c + r − 1

c − 1

)
(c − r − 2)

)
if c > r + 3 .
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