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ABSTRACT. In this paper, we study the Betti tables of homogeneous ideals in a polynomial ring. Espe-
cially, we concentrate ourselves on componentwise linear ideals, so that, exploiting the deformation to the
generic initial ideal, we can reduce the problem to study the Betti tables of strongly stable ideals. We obtain
a complete numerical characterization of the graded Betti numbers of ideals with linear resolution, giving
two different proofs. We provide a necessary (in general not sufficient) numerical condition for a table
being the Betti table of a componentwise linear ideal. Such a condition leads to a characterization of the
Betti tables of componentwise linear ideals in three variables. Furthermore we identify the Betti tables of
Gotzmann ideals. Eventually, provided the characteristic of the base field is 0, we succeed to characterize
the possible extremal Betti numbers (values as well as positions) of any homogeneous ideal.

INTRODUCTION

Minimal free resolutions of modules over a polynomial ring are a classical and fascinating subject.
After the work of Boij and Söderberg [BS], and successively of Eisenbud and Schreyer [ES], investiga-
tions on Betti tables of graded modules have become one of the central topics of research in Commutative
Algebra. In this paper we are going to study the Betti tables of certain classes of ideals of a polynomial
ring, and, where it is possible, to give a numerical characterization of them. Even if related, the present
article differs substantially in its scopes and methods from the mentioned works. Before explaining the
results and the techniques, it is convenient to give a list of the main results of the paper:

(a) A complete characterization of the Betti tables of ideals with linear resolution (Theorem 3.2);
(b) A necessary condition (in general not sufficient, see Example 5.4) for the Betti tables of com-

ponentwise linear ideals (Theorem 5.3). This leads to a complete characterization of the Betti
tables of componentwise linear ideals in 3 variables (Corollary 5.7);

(c) A complete characterization of the Betti tables of Gotzmann ideals (after Theorem 5.10);
(d) A complete characterization, in characteristic 0, of the extremal Betti numbers (dimensions and

positions) of any homogeneous ideal (Theorem 6.7).

Ideals with d-linear resolutions, i.e. generated in degree d and with all the syzygies linear, have been
introduced by Eisenbud and Goto in [EG], and since then came up in a lot of situations. As we announced,
we will give a complete characterization of the possible Betti tables of an ideal I ⊂ P = K[x1, . . . ,xn] with
d-linear resolution in Theorem 3.2. More than tables, in this case we should speak about vectors, since
the Betti table of an ideal with d-linear resolution has only one nonzero row, namely:

(β0,d ,β1,d+1, . . . ,βn−1,n−1+d).

To describe the possible Betti tables of ideals with d-linear resolution is equivalent to characterize the
possible Betti tables of a strongly stable monomial ideal generated in degree d, essentially thanks to a
result of Aramova, Herzog and Hibi [AHH] that allows us to study the generic initial ideal of I. (We
have such a reduction also in positive characteristic, but the argument in this case is a bit trickier, see
Proposition 3.1). If I is a strongly stable ideal generated in one degree, thanks to the Eliahou-Kervaire
formula [EK], to know the Betti numbers of I is equivalent to know the numerical invariants:

mi(I) = |{u ∈ G(I) : xi|u and x j - u ∀ j > i}|, i = 1, . . . ,n,
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where G(I) denotes the set of minimal monomial generators of I. We will show that (m1, . . . ,mn) cor-
responds to a strongly stable ideal generated in degree d if and only if it is an O-sequence with m2 ≤ d.
We give two different proofs of this result.

In Section 2, our approach to analyze the possible mi’s of a strongly stable ideal generated in degree
d, uses a quite unconventional multiplication ∗ on the dth graded component Sd of the polynomial ring
S = K[x0,x1,x2, . . .] in a countable number of variables. Given two monomials u and v in Sd , we write
them as u = xi1 · · ·xid with i1 ≤ . . . ≤ id and v = x j1 · · ·x jd with j1 ≤ . . . ≤ jd , define their product as
u∗ v = xi1+ j1xi2+ j2 · · ·xid+ jd and extend ∗ to all Sd by K-linearity. The K-vector space Sd equipped with
this multiplication, denoted Sd , turns out to be isomorphic as a K-algebra with the polynomial ring in d
variables, see Proposition 2.1. We characterize the monomial ideals of Sd in terms of Sd in Lemma 2.5,
and it turns out that strongly stable monomial spaces in Sd give rise to ideals of Sd . Furthermore the
Hilbert function of Sd modulo the obtained ideal remembers the mi’s of the starting monomial space,
so Macaulay’s theorem is the ingredient to conclude. (During the proof we will introduce the notion of
piecewise lexsegment monomial space, which will reveal itself a crucial concept throughout the paper).

An alternative proof of Theorem 3.2 is given in Section 4, where we define for each strongly stable
monomial ideal I ⊂ P generated in degree ≤ m a strongly stable ideal Idual ⊂ K[x1, . . . ,xm] generated in
degree≤ n such that I = (Idual)dual. This duality operator, based on Alexander duality and Kalai’s stretch-
ing operator, establishes a bijection between strongly stable monomial ideals I ⊂ K[x1, . . . ,xn] generated
in degree ≤ m and strongly stable ideals Idual ⊂ K[x1, . . . ,xm] generated in degree ≤ n, satisfying the ad-
ditional property that I ⊂ P has a d-linear resolution if and only if K[x1, . . . ,xd ]/Idual is Cohen–Macaulay,
see Theorem 4.1 and Corollary 4.2. When we wrote the present paper, we were not aware that Murai
proved the same characterization of the Betti tables of strongly stable ideals, and so Theorem 3.2, in
[Mu]. His proof is similar to the one just described, whereas the approach of Section 2 is different.

In Section 5 we attempt to give a similar explicit characterization of the possible graded Betti numbers
of componentwise linear ideals, introduced by Herzog and Hibi in [HH1]. Again, such an issue is
equivalent to characterize the graded Betti numbers of strongly stable ideals (not necessarily generated
in a single degree). A remark of Murai, 5.1, shows that there are almost no constraints for the total
Betti numbers of a strongly stable monomial ideal. The situation for the graded Betti numbers is much
harder to describe. We denote by I〈 j〉 the ideal generated by the jth graded component I j of a strongly
stable ideal I, set µi j(I) = mi(I〈 j〉) and define the matrix M (I) = (µi j(I)), which we call the matrix
of generators of I. As explained in the beginning of Section 5, the matrix M (I) and the graded Betti
numbers of I determine each other. Thus we are lead to characterize the integer matrices (µi j) for which
there exists a strongly stable ideal I such that M (I) = (µi j). Some necessary conditions for (µi j) being
the matrix of generators for some strongly stable ideal are provided in Theorem 5.3. Unfortunately these
conditions are not sufficient to describe the matrices of generators of strongly stable ideals, as shown
in Example 5.4. The difficulty of the task of characterizing Betti tables of componentwise linear ideals
is also shown by Example 5.5, where we exhibit a noncomponentwise linear ideal with the same Betti
table of a componentwise linear ideal, answering negatively a question raised by Nagel and Römer in
[NR]. After discussing the main obstruction to construct strongly stable ideals with prescribed matrix of
generators, we give sufficient conditions for a matrix to be of the form M (I) where I is strongly stable
in Proposition 5.6. As a consequence it is shown in Corollary 5.7 that the necessary conditions given
in Theorem 5.3 are also sufficient when dealing with strongly stable ideals in three variables. Another
instance for which the matrix of generators of a particular class of strongly stable ideals can be described,
is given in Theorem 5.10, which gives the possible matrices of generators of lexsegment ideals. Then it
is explained how to deduce a characterization of the Betti tables of Gotzmann ideals.

Though a complete characterization of the possible Betti numbers of a strongly stable ideal seems
to be quite difficult, we succeed in Section 6 to characterize all possible extremal Betti numbers of any
homogeneous ideal I ⊂ P = K[x1, . . . ,xn], provided that K has characteristic 0. According to Bayer,
Charalambous and Popescu [BCP], a Betti number βi,i+ j 6= 0 of I is called extremal if βk,k+l = 0 for all
pairs (k, l) 6= (i, j) with k ≥ i and l ≥ j. It is shown in [BCP] that the positions as well as the values
of the extremal Betti numbers of a graded ideal are preserved under taking the generic initial ideal with
respect to the reverse lexicographical order. Thus assuming that the base field is of characteristic 0
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we may restrict our attention to characterize the extremal Betti numbers of strongly stable ideals. For
componentwise linear ideals the restriction on the characteristic is not required. More precisely, let
i1 < i2 < · · ·< ik < n, j1 > j2 > · · ·> jk and b1, . . . ,bk be sequences of positive integers. In Theorem 6.7
we give numerical conditions which are equivalent to the property that there exists a componentwise
linear (or a strongly stable) ideal I whose extremal Betti numbers are precisely βip,ip+ jp(I) = bp for
p = 1, . . . ,k. In characteristic 0 this gives the possible extremal Betti numbers for any graded ideal.

We are very grateful to the anonymous referee for suggesting us the point (iv) of Theorem 6.7 and the
last statement in Lemma 6.3.

1. TERMINOLOGY

Throughout we denote by N the set of the natural numbers {0,1,2, . . .} and by n a positive natural
number. We will essentially work with the polynomial rings

S = K[xi : i ∈ N]
and

P = K[x1, . . . ,xn],

where the xi’s are variables over a field K. The reason why we consider a polynomial ring in infinite
variables is that it is more natural to deal with it in Section 2, when we will define the ∗-operation.
However, for the applications of the theory to the graded Betti numbers, P will be considered. To do not
make too heavy the notation, we will introduce the following notions just relatively to S, also if we will
use them also for P.

The ring S is graded on N, namely S =
⊕

d∈N Sd where

Sd = 〈xi1xi2 · · ·xid : i1 ≤ i2 ≤ . . .≤ id are natural numbers〉.
Given a monomial u ∈ Sd , with d ≥ 1, we set:

(1) m(u) = max{e ∈ N : xe divides u}.
A monomial space V ⊂ S is a K-vector subspace of S which has a K-basis consisting in monomials of S.
If V ⊂ Sd , we will refer to the complementary monomial space V c of V as the K-vector space generated
by the monomials of Sd which are not in V . Given a monomial space V ⊂ S and two natural numbers
i,d, such that d ≥ 1, we set:

wi,d(V ) = |{u monomials in V ∩Sd : m(u) = i}|.
Without taking in consideration the degrees,

wi(V ) = |{u monomials in V : m(u) = i}|.
We order the variables of S by the rule

xi > x j ⇐⇒ i < j,

so that x0 > x1 > x2 > .. .. On the monomials, unless we explicitly say differently, we use a degree
lexicographical order with respect to the above ordering of the variables. Therefore, given monomials
u = xi1xi2 · · ·xid with i1 ≤ i2 ≤ . . .≤ id and v = x j1x j2 · · ·x je with j1 ≤ j2 ≤ . . .≤ je, we have:

u > v ⇐⇒ d > e or d = e and ∃ ` ∈ {1, . . . ,d} : ik = jk ∀ k < ` and i` < j`.

A monomial space V ⊂ S is called stable if for any monomial u ∈ V , then (u/xm(u)) · xi ∈ V for all
i < m(u). It is called strongly stable if for any monomial u ∈V and for each j ∈N such that x j divides u,
then (u/x j) · xi ∈V for all i < j. Obviously a strongly stable monomial space is stable.

The remaining definitions of this section will be given for P, since we do not need them for S. A
monomial space V ⊂ P is called lexsegment if, for all d ∈ N, there exists a monomial u ∈ Pd such that

V ∩Pd = 〈v ∈ Pd : v≥ u〉.
We will sometimes denote by:

L≥u = {v ∈ Pd : v≥ u}.
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Clearly, a lexsegment monomial space is strongly stable. The celebrated theorem of Macaulay explains
when a lexsegment monomial space is an ideal. We remind that given a natural number a and a positive
integer d, the dth Macaulay representation of a is the unique writing:

a =
d

∑
i=1

(
k(i)

i

)
such that k(d)> k(d−1)> .. . > k(1)≥ 0,

see [BH, Lemma 4.2.6]. Then:

a〈d〉 =
d

∑
i=1

(
k(i)+1

i+1

)
.

A numerical sequence (hi)i∈N is called O-sequence if h0 = 1 and hd+1 ≤ h〈d〉d for all d ≥ 1. (The reader
should be careful because the definition of O-sequence depends on the numbering: A vector (m1, . . . ,mn)

will be a O-sequence if m1 = 1 and and mi+1 ≤ m〈i−1〉
i for all i ≥ 2). The theorem of Macaulay (for

example see [BH, Theorem 4.2.10]) says that, given a numerical sequence (hi)i∈N, the following are
equivalent:

(i) (hi)i∈N is an O-sequence with h1 ≤ n.
(ii) There is a homogeneous ideal I ⊂ P such that (hi)i∈N is the Hilbert function of P/I.

(iii) The lexsegment monomial space L ⊂ P such that L∩Pd consists in the biggest
(n+d−1

d

)
− hd

monomials, is an ideal.
For any Z-graded finitely generated P-module M, there is a minimal graded free resolution:

0→
⊕
j∈Z

P(− j)βp, j(M)→
⊕
j∈Z

P(− j)βp−1, j(M)→ . . .→
⊕
j∈Z

P(− j)β0, j(M)→M→ 0,

where P(k) denotes the P-module P supplied with the new grading P(k)i = Pk+i. The celebrated Hilbert’s
Syzygy theorem (for example see [BH, Corollary 2.2.14 (a)]) guarantees p ≤ n. The natural numbers
βi, j = βi, j(M) are numerical invariants of M, and they are called the graded Betti numbers of M. The
coarser invariants βi = βi(M) = ∑ j∈Z βi, j are called the (total) Betti numbers of M. We will refer to the
matrix (βi, j) as the Betti table of M. Actually, in the situations we will consider in this paper M = I is a
homogeneous ideal of P. In this case βi, j = 0 whenever i≥ n or j ≤ i (unless I = P). We will present the
Betti table of I as follows: 

β0,1 β1,2 β2,3 · · · · · · βn−1,n
β0,2 β1,3 β2,4 · · · · · · βn−1,n+1
β0,3 β1,4 β2,5 · · · · · · βn−1,n+2

...
...

... · · · · · ·
...

 .

Also if the definition of the Betti table of M predicts infinite many rows, only a finite number of entries
are not zero (because M is finitely generated). Consequently, only a finite number of rows are significant,
and in the examples we will present throughout the paper we will draw just the significant rows.

For an integer d, the P-module M is said to have a d-linear resolution if βi, j(M) = 0 for every i =
0, . . . , p and j 6= i+ d; equivalently, if βi(M) = βi,i+d(M) for any i = 0, . . . , p. Notice that if M has d-
linear resolution, then it is generated in degree d. The P-module M is said componentwise linear if M〈d〉
has d-linear resolution for all d ∈Z, where M〈d〉 means the P-submodule of M generated by the elements
of degree d of M. It is not difficult to show that if M has a linear resolution, then it is componentwise
linear.

We introduce the following numerical invariants of a Z-graded finitely generated P-module M: For all
i = 1, . . . ,n+1 and d ∈ Z:

(2) mi,d(M) =
n

∑
k=0

(−1)k−i+1
(

k
i−1

)
βk,k+d(M).

The following lemma shows that to know the mi,d(M)’s is equivalent to know the Betti table of M.

Lemma 1.1. Let M be a Z-graded finitely generated P-module. Then:

(3) βi,i+d(M) =
n+1

∑
k=i

(
k−1

i

)
mk,d(M).
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Proof. Set mk,d = mk,d(M) and βi, j = βi, j(M). By the definition of the mk,d’s we have the following
identity in Z[t]:

n+1

∑
k=1

mk,dtk−1 =
n

∑
i=0

βi,i+d(t−1)i.

Replacing t by s+1, we get the identity of Z[s]
n+1

∑
k=1

mk,d(s+1)k−1 =
n

∑
i=0

βi,i+dsi,

that implies the lemma. �

Let us define also the coarser invariants:

(4) mi(M) = ∑
d∈Z

mi,d(M) ∀ i = 1, . . . ,n+1.

If M = I is a homogeneous ideal of P, notice that mi,d = 0 if i = n+1 or d < 0. We say that a monomial
ideal I ⊂ P is stable (strongly stable) (lexsegment) if the underlining monomial space is. By G(I), we
will denote the unique minimal set of monomial generators of I. If I is a stable monomial ideal, we
have the following nice interpretation by the Eliahou-Kervaire formula [EK] (see also [HH2, Corollary
7.2.3]):

mi,d(I) = wi,d(〈G(I)〉) = |{u monomials in G(I)∩Pd : m(u) = i}|(5)
mi(I) = wi(〈G(I)〉) = |{u monomials in G(I) : m(u) = i}|.

From Lemma 1.1 and (5) follows that a stable ideal generated in degree d has a d-linear resolution.
Furthermore, if I is a stable ideal, then I〈d〉 is stable for all natural numbers d. So any stable ideal is
componentwise linear.

When M = I is a stable monomial ideal we will consider (5) the definition of the mi,d’s, and we will
refer to (3) as the Eliahou-Kervaire formula.

2. THE ∗-OPERATION ON MONOMIALS AND STRONGLY STABLE IDEALS

We are going to give a structure of associative commutative K-algebra to the K-vector space Sd ,
in the following way: Given two monomials u and v in Sd , we write them as u = xi1xi2 · · ·xid with
i1 ≤ i2 ≤ . . .≤ id and v = x j1x j2 · · ·x jd with j1 ≤ j2 ≤ . . .≤ jd . Then we define their product as

u∗ v = xi1+ j1xi2+ j2 · · ·xid+ jd .

We can extend ∗ to the whole Sd by K-linearity. It is straightforward to check that ∗ is associative and
commutative. Therefore K embeds in Sd by means of the rule λ 7→ λxd

0 . We will denote by Sd the
K-vector space Sd supplied with such an algebra structure. Actually Sd has a natural graded structure:
In fact, we can write Sd =⊕e∈N(Sd)e where

(Sd)e = 〈u monomial of Sd : m(u) = e〉.

Notice that (Sd)0 = 〈xd
0〉 ∼= K and that (Sd)e is a finite dimensional K-vector space. Therefore, Sd is

actually a positively graded K-algebra. Moreover, if u = xa0
0 · · ·xae

e ∈Sd , with ae 6= 0 and e≥ 1. Then

u = (xa0
0 xa1+...ae

1 )∗ (xa0+a1
0 xa2+...ae

1 )∗ . . .∗ (xa0+...+ae−1
0 xae

1 ),

so Sd is a standard graded K-algebra, that is Sd = K[(Sd)1]. Particularly, Sd is Noetherian. Notice that
(Sd)1 is a K-vector space of dimension d, namely:

(Sd)1 = 〈xd−1
0 x1,xd−2

0 x2
1, . . . ,x

d
1〉.

Actually, we are going to prove that Sd is a polynomial ring in d variables over K.

Proposition 2.1. The ring Sd is isomorphic, as a graded K-algebra, to the polynomial ring in d variables
over K.



6 JÜRGEN HERZOG, LEILA SHARIFAN, AND MATTEO VARBARO

Proof. Let K[y1, . . . ,yd ] be the polynomial ring over K in d variables. Of course there is a graded surjec-
tive homomorphism of K-algebras φ from K[y1, . . . ,yd ] to Sd , by extending the rule:

(6) φ(yi) = xi−1
0 xd+1−i

1 .

In order to show that φ is an isomorphism, it suffices to exhibit an isomorphism of K-vector spaces
between the graded components of Sd and K[y1, . . . ,yd ]. To this aim pick a monomial u ∈ (Sd)e:

u = xa0
0 · · ·x

ae
e , ai ∈ N, ae > 0 and

e

∑
i=0

ai = d.

To such a monomial we associate the monomial of K[y1, . . . ,yd ]e

ya0+1ya0+a1+1 · · ·ya0+...+ae−1+1.

It is easy to see that the above application is one-to-one, so the proposition follows. �

Remark 2.2. For the sequel it is useful to familiarize with the map φ . For instance, one can easily verify
that:

(7) φ(yb1
1 yb2

2 · · ·y
bd
d ) = xb1xb1+b2 · · ·xb1+...+bd .

Proposition 2.1 guarantees that φ has an inverse, that we will denote by ψ = φ−1 : Sd → K[y1, . . . ,yd ].
As one can show:

(8) ψ(xa0
0 xa1

1 · · ·x
ae
e ) = ya0+1ya0+a1+1 · · ·ya0+...+ae−1+1.

Given a monomial space V , of course we have an isomorphism of K-vector spaces

V ∼= Sd/V c.

However in general the above isomorphism does not yield a structure of K-algebra to V , because V c may
be not an ideal of Sd . We are interested to characterize those monomials spaces V ⊂ Sd such that V c is
an ideal of Sd . For what follows it is convenient to introduce the following definition.

Definition 2.3. Let V ⊂ S be a monomial space. We will call it block stable if for any u = xa0
0 · · ·xae

e ∈V
and for any i = 1, . . . ,e, we have that

u
xai

i · · ·x
ae
e
· xai

i−1 · · ·x
ae
e−1 ∈V.

Remark 2.4. Notice that a strongly stable monomial space is also stable and block stable. On the other
side block stable monomial spaces might be not stable (it is enough to consider 〈x2

0, x2
1〉). There are also

stable monomial spaces which are not block stable: Consider the monomial space:

V = 〈x3
0, x2

0x1, x0x2
1, x0x1x2, x0x1x3〉 ⊂ S3.

It turns out that V is stable, but not block stable, because
x0x1x3

x1x3
· x0x2 = x2

0x2 /∈V.

Eventually, the monomial space 〈x3
0, x2

0x1, x0x2
1, x0x1x2〉 ⊂ S3 is both stable and block stable, but is not

strongly stable.

Lemma 2.5. Let V ⊂ Sd be a monomial space. Then V is block stable if and only if V c is an ideal of Sd .

Proof. “Only if”-part. Consider a monomial u ∈ V c. By contradiction there is i ∈ {1, . . . ,d− 1} such
that

w = u∗ (xi
0xd−i

1 ) /∈V c.

If u = xp1 · · ·xpd with p1 ≤ . . .≤ pd , then

w = xp1 · · ·xpi · xpi+1+1 · · ·xpd+1.

Since V is block stable and w is a monomial of V , then

u =
w

xpi+1+1 · · ·xpd+1
· xpi+1 · · ·xpd ∈V,

a contradiction.
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“If”-part. Pick u = xa0
0 · · ·xae

e ∈V . By contradiction there is i ∈ {1, . . . ,e} such that

w =
u

xai
i · · ·x

ae
e
· xai

i−1 · · ·x
ae
e−1 /∈V.

Since V c is an ideal of Sd and w ∈V c, we have

u = w∗ (xa1+...+ai−1
0 xai+...+ae

1 ) ∈V c.

This contradicts the fact that we took u ∈V . �

The following corollary, essentially, is why we introduced Sd .

Corollary 2.6. Let (wi)i∈N be a sequence of natural numbers. If there exists a strongly stable monomial
space V ⊂ Sd (actually it is enough that V is block stable) such that wi(V ) = wi for any i ∈ N, then
(wi)i∈N is an O-sequence such that w1 ≤ d.

Proof. That w0 = 1 and w1 ≤ d is clear. By Lemma 2.5 V c is an ideal of Sd . So, Proposition 2.1 implies
that Sd/V c is a standard graded K-algebra. Clearly we have

HFSd/V c(i) = wi(V ) = wi ∀ i ∈ N,

(HF denotes the Hilbert function) so we get the conclusion by the theorem of Macaulay. �

The above corollary can be reversed. To this aim we need to understand the meaning of “strongly
stable” in Sd . By Proposition 2.1 Sd ∼= K[y1, . . . ,yd ], so we already have a notion of “strongly stable”
in Sd . However, we want to describe it in terms of the multiplication ∗.

Lemma 2.7. Let W be a monomial space of K[y1, . . . ,yd ]. We recall the isomorphism φ : K[y1, . . . ,yd ]→
Sd of (6). The following are equivalent:

(i) W is a strongly stable monomial space.
(ii) If xa0

0 · · ·xae
e ∈ φ(W ) with ae > 0, then xa0

0 · · ·x
ai−1
i ·xai+1+1

i+1 · · ·xae
e ∈ φ(W ) for all i ∈ {0, . . . ,e−1}

such that ai > 0.

Proof. (i) =⇒ (ii). If u = xa0
0 xa1

1 · · ·xae
e ∈ φ(W ) with ae > 0, then

ψ(u) = ya0+1ya0+a1+1 · · ·ya0+...+ae−1+1 ∈W,

see (8). Since W is strongly stable, then for all i ∈ {0, . . . ,e−1}:

w = ya0+1 · · ·ya0+...+(ai−1)+1 · ya0+...+(ai−1)+(ai+1+1)+1 · · ·ya0+...+ae−1+1 ∈W.

Therefore, if ai > 0, we get v = xa0
0 · · ·x

ai−1
i · xai+1+1

i+1 · · ·xae
e = φ(w), so v ∈ φ(W ).

(ii) =⇒ (i). Let w = yb1
1 yb2

2 · · ·y
bd
d ∈W . Then, using (7),

φ(w) = xb1xb1+b2 · · ·xb1+...+bd ∈ φ(W ).

By contradiction there exist p and q in {1, . . . ,d} such that bp > 0, q < p and
w
yp
· yq = yb1

1 · · ·y
bq+1
q · · ·ybp−1

p · · ·ybd
d /∈W.

Of course we can suppose that q = p−1, so we get a contradiction, because the assumptions yield:

φ

(
w
yp
· yp−1

)
= xb1 · · ·xb1+...+(bp−1+1)xb1+...+(bp−1+1)+(bp−1) · · ·xb1+...+bd ∈ φ(W ).

�

Thanks to Lemma 2.7, therefore, it will be clear what we mean for a monomial space of Sd being
strongly stable.

Proposition 2.8. Let V ⊂ Sd be a monomial space. The following are equivalent:
(i) V c is a strongly stable monomial subspace of Sd;

(ii) V is a strongly stable monomial subspace of Sd .
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Proof. First we prove (i) =⇒ (ii). Pick u = xa0
0 · · ·xae

e ∈ V . By contradiction, assume that there exists
i ∈ {1, . . . ,e} such that w = xa0

0 · · ·x
ai−1+1
i−1 xai−1

i · · ·xae
e /∈ V . So w ∈ V c, and since V c is a strongly stable

monomial ideal of Sd , by Lemma 2.7 we get u ∈V c, which is a contradiction.
(ii) =⇒ (i). By Lemma 2.5 we have that V c is an ideal of Sd . Consider u= xa0

0 · · ·xae
e ∈V c with ae > 0

and i ∈ {0, . . . ,e−1}. If w = xa0
0 · · ·x

ai−1
i · xai+1+1

i+1 · · ·xae
e were not in V c, then u would be in V because V

is a strongly stable monomial space. Thus V c has to be strongly stable once again using Lemma 2.7. �

Theorem 2.9. Let (wi)i∈N be a sequence of natural numbers. Then the following are equivalent:

(i) There exists a strongly stable monomial space V ⊂ Sd such that wi(V ) = wi for any i ∈ N.
(ii) There exists a block stable monomial space V ⊂ Sd such that wi(V ) = wi for any i ∈ N.

(iii) (wi)i∈N is an O-sequence such that w1 ≤ d.

Proof. (i) =⇒ (ii) is obvious and (ii) =⇒ (iii) is Corollary 2.6. So (iii) =⇒ (i) is the only thing we
still have to prove. If the sequence (wi)i∈N satisfies the conditions of (iii), then the theorem of Macaulay
guarantees that there exists a lexsegment ideal J ⊂ K[y1, . . . ,yd ] such that

HFK[y1,...,yd ]/J(i) = wi ∀ i ∈ N

Being a lexsegment ideal, J is strongly stable. So φ(J)c is a strongly stable monomial subspace of Sd by
Proposition 2.8. Clearly we have:

mi(φ(J)c) = HFK[y1,...,yd ]/J(i) = wi ∀ i ∈ N,

thus we conclude. �

Actually, a careful reading of the proof of Theorem 2.9 shows that, given a O-sequence, we can give
explicitly a strongly stable monomial subspace V ⊂ Sd such that wi(V ) = wi for any i ∈N. The reason is
that to any Hilbert function is associated a unique lexsegment ideal: Let (wi)i∈N be a sequence of natural
numbers. For any i ∈ N, set

Vi = {biggest wi monomials u ∈ Sd such that m(u) = i}.

Then we call V = 〈∪i∈NVi〉 ⊂ Sd the piecewise lexsegment monomial space (of type (d,(wi)N)). The
proof of Theorem 2.9 yields:

Corollary 2.10. The piecewise lexsegment of type (d,(wi)N) is strongly stable if and only if (wi)N is a
O-sequence such that w1 ≤ d.

Notice that the established interaction between Sd and K[y1, . . . ,yd ] can be also formulated between

K[x0, . . . ,xm] and K[y1, . . . ,yd ]/(y1, . . . ,yd)
m+1 ∀ m≥ 1.

Therefore, an interesting corollary of Proposition 2.8 is the following.

Corollary 2.11. Let us define the sets

A = {strongly stable monomial ideals of K[x0, . . . ,xm] generated in degree d}

and

B = {strongly stable monomial ideals of K[y1, . . . ,yd ] with height d and generated in degrees ≤ m+1}.

Then the assignation V 7→ ψ(V c) establishes a correspondence between A and B.

Proof. Notice that if I ⊂ K[y1, . . . ,yd ] is of height d, then (y1, . . . ,yd)
k ⊂ I for all k ≥ reg(I). Since I

is generated in degrees ≤ m+1 and componentwise linear, we have reg(I) ≤ m+1, so we are done by
what said before the corollary. �
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3. THE POSSIBLE BETTI NUMBERS OF AN IDEAL WITH LINEAR RESOLUTION

We would like to characterize the possible graded Betti numbers of a componentwise linear ideal of
P=K[x1, . . . ,xn]. This is a difficult task, in fact we are not going to solve the problem in its full generality.
In this section, exploiting the techniques developed in Section 2, we will give a complete characterization
when the ideal has a linear resolution. Such an issue is equivalent to characterize the possible graded Betti
numbers of a strongly stable monomial ideal of P generated in one degree. Actually, more generally, to
characterize the possible Betti tables of a componentwise linear ideal of P is equivalent to characterize
the possible Betti tables of a strongly stable monomial ideal of P. In fact, in characteristic 0 this is true
because the generic initial ideal of any ideal I is strongly stable [Ei, Theorem 15.23]. Moreover, if I is
componentwise linear and the term order is degree reverse lexicographic, then the graded Betti numbers
of I are the same of those of Gin(I) by a result of Aramova, Herzog and Hibi in [AHH]. In positive
characteristic it is still true that for a degree reverse lexicographic order the graded Betti numbers of I are
the same of those of Gin(I), provided that I is componentwise linear. But in this case Gin(I) might be
not strongly stable. However, it is known that, at least for componentwise linear ideals, it is stable [CHH,
Lemma 1.4]. The graded Betti numbers of a stable ideal do not depend from the characteristic, because
the Elihaou-Kervaire formula (3). So to compute the graded Betti numbers of Gin(I) we can consider it
in characteristic 0. Let us call J the ideal Gin(I) viewed in characteristic 0. The ideal J, being stable, is
componentwise linear, so we are done by what said above. Summarizing, we showed:

Proposition 3.1. The following sets coincide:
(1) {Betti tables (βi, j(I)) where I ⊂ P is componentwise linear};
(2) {Betti tables (βi, j(I)) where I ⊂ P is strongly stable};

So, we get the following:

Theorem 3.2. Let m1, . . . ,mn be a sequence of natural numbers. Then the following are equivalent:
(1) There exists a homogeneous ideal I ⊂ P with d-linear resolution such that mk(I) = mk for all

k = 1, . . . ,n;
(2) There exists a strongly stable monomial ideal I ⊂ P generated in degree d such that mk(I) = mk

for all k = 1, . . . ,n if and only if:
(3) (m1, . . . ,mn) is an O-sequence such that m2 ≤ d, that is:

(a) m1 = 1;
(b) m2 ≤ d;
(c) mi+1 ≤ m〈i−1〉

i for any i = 2, . . . ,n−1.

Proof. By virtue of Proposition 3.1, (1) ⇐⇒ (2). Moreover, if I is strongly stable, then mi(I) =
wi(〈G(I)〉) for all i = 1, . . . ,n, see (5). Since the monomial space 〈G(I)〉 is strongly stable, Theorem
2.9 yields the equivalence (2) ⇐⇒ (3). �

Example 3.3. Let us see an example: Theorem 3.2 assures that we will never find a homogeneous ideal
I ⊂ R = K[x1,x2,x3,x4] with minimal free resolution:

0−→ R(−6)6 −→ R(−5)22 −→ R(−4)29 −→ R(−3)14 −→ I −→ 0.

In fact I, using (2), should satisfy m1(I) = 1, m2(I) = 3, m3(I) = 4 and m4(I) = 6. This is not an
O-sequence, thus the existence of I would contradict Theorem 3.2.

4. A DUALITY FOR STRONGLY STABLE IDEALS

In this section we define a duality operator which assigns to each strongly stable monomial ideal
I ⊂ P = K[x1, . . . ,xn] generated in degree ≤ m a strongly stable ideal Idual ⊂ K[x1, . . . ,xm] such that
I = (Idual)dual. This duality will be used to give an alternative proof of Theorem 3.2.

The duality operator is a composition of several operators which we are now going to describe: let
u= xi1xi2 · · ·xid be a monomial with i1≤ i2≤ . . .≤ id . Following Kalai, we define the stretched monomial
arising from u to be

uσ = xi1xi2+1 · · ·xid+(d−1).

Notice that uσ is a squarefree monomial.
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The compress operator τ is inverse to σ . If v = x j1x j2 · · ·x jd is a squarefree monomial (therefore
j1 < j2 < .. . < jd) we define the compressed monomial arising from v to be

vτ = x j1x j2−1 · · ·x jd−(d−1).

Let I ⊂ P be a strongly stable ideal with G(I) = {u1, . . . ,ur} and m = maxi{degui}. We set

Iσ = (uσ
1 ,u

σ
2 , . . . ,u

σ
r )⊂ K[x1, . . . ,xn+m−1].

As shown in [HH2, Lemma 11.2.5], one has that Iσ is a squarefree strongly stable ideal. Recall that
a squarefree monomial ideal J ⊂ K[x1, . . . ,xt ] is called squarefree strongly stable, if for all squarefree
generators u of I and all i < j for which x j divides u and xi does not divides u, one has that (u/x j) ·xi ∈ J.

We need one more ingredient to define the dual of a strongly stable ideal: let J ⊂ K[x1, . . . ,xt ] be a
squarefree monomial ideal. Then J has an unique irredundant presentation J = PF1 ∩PF2 ∩ . . .∩PFr where
Fi ⊂ [t] = {1, . . . , t} for all i, and where PF = ({x j j ∈ F}) for F ⊂ [t]. We set J∨ = (xF1 , . . . ,xFr) where
xF = ∏ j∈F x j for F ⊂ [t], and call J∨ the Alexander dual of J. This naming is justified by the fact, that for
the Stanley–Reisner ideal I∆ of a simplicial complex we have that (I∆)

∨ = I∆∨ where ∆∨ is the Alexander
dual of the simplicial complex ∆, see [HH2, Subsection 1.5.3].

Now we are ready to define the dual of a strongly stable I. We set

Idual = ((Iσ )∨)τ ,

where for a squarefree monomial ideal J with G(J) = (u1, . . . ,um) we set Jτ = (uτ
1, . . . ,u

τ
m).

Theorem 4.1. Let I ⊂ P be a strongly stable ideal generated in degree ≤ m. Then
(a) Idual ⊂ K[x1, . . . ,xm], and is generated in degree ≤ n;
(b) Idual is strongly stable;
(c) (Idual)dual = I.

Thus the assignment I 7→ Idual establishes a bijection between strongly stable ideals in K[x1, . . . ,xn] gen-
erated in degree ≤ m, and strongly stable ideals in K[x1, . . . ,xm] generated in degree ≤ n.

Proof. (a) For a squarefree monomial u it holds that uτ ∈ K[x1, . . . ,xm] if m(u)−degu+1≤ m. Thus in
order to prove that Idual ⊂ K[x1, . . . ,xm] we have to show that m(u)−degu+1≤ m for all u ∈ G((Iσ )∨).
Since the Alexander dual of a squarefree strongly stable ideal is again squarefree strongly stable, it
follows from [HS, Proposition 4.1] that

projdimK[x1, . . . ,xn+m−1]/(Iσ )∨ = max{m(u)−degu+1 : u ∈ G((Iσ )∨)}.(9)

On the other hand, using a result of Terai obtained in [Te] and the fact that βi j(I) = βi j(Iσ ) for all i and
j, as shown in [HH1, Lemma 11.2.6], we obtain

projdimK[x1, . . . ,xn+m−1]/(Iσ )∨ = projdim(Iσ )∨+1 = regK[x1, . . . ,xn+m−1]/Iσ +1(10)
= reg(Iσ ) = reg(I)≤ m.

For the last inequality we used that for a strongly stable monomial ideal I the highest degree of a generator
of I coincides with reg(I), as follows from the Eliahou-Kervaire formula (3). Combining (9) and (10) we
see that Idual ⊂ K[x1, . . . ,xm].

Similarly one has

n ≥ projdimK[x1, . . . ,xn]/I = projdimK[x1, . . . ,xn+m−1]/Iσ(11)

= regK[x1, . . . ,xn+m−1]/(Iσ )∨+1 = reg(Iσ )∨ = reg(Idual).

The statements (b) and (c) are obvious by the definition of Idual and by the property of Alexander
duality and the stretching and compressing operators. �

The Hilbert series of a graded P-module M is of the form HSM(t) = Q(t)/(1− t)d where Q(t) =
h0 + h1t + · · ·+ hsts is an integer polynomial with Q(t) 6= 0 and where d = dimM, see [BH, Corollary
4.1.8]. The coefficient vector of Q(t) is called the h-vector of M. Observing that the Hilbert series is
additive on short exact sequences one obtains that

HSM(t) =
∑i, j(−1)iβi, j(M)t j

(1− t)n .(12)
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This is implies that the graded Betti numbers of M determine the h-vector.

The following corollary is an immediate consequence of Theorem 4.1 and a famous result of Eagon
and Reiner [ER, Theorem 3].

Corollary 4.2. Let I ⊂ P be a strongly stable ideal. The following conditions are equivalent:
(a) I has a d-linear resolution;
(b) I is generated in degree d;
(c) K[x1, . . . ,xd ]/Idual is Cohen–Macaulay.

If the equivalent conditions hold, then

∑
i≥0

βi(I)t i = ∑
j≥0

h j(1+ t) j,

where (h0,h1, . . .) is the h-vector of K[x1, . . . ,xd ]/Idual.

Proof. The equivalence of (a) and (b) is a consequence of the Eliahou-Kervaire formula (3).
(a)⇔ (c): By the result [ER, Theorem 3] of Eagon and Reiner the equivalence of (a) and (c) holds for

any squarefree monomial ideal if we replace the dual operator by Alexander duality. Since the stretching
operator and the compressing operator, which are inverse to each other, preserve the graded Betti numbers
([HH2, Lemma 11.2.6]) for strongly stable and squarefree strongly stable ideals, respectively, they also
preserve the property of having a linear resolution and of being Cohen–Macaulay, and also preserve
the h-vectors, as can be easily deduced from (12). Thus all assertions follow from the Eagon–Reiner
theorem. �

Let I be a strongly stable ideal generated in one degree d. From the Elihaou-Kervaire formula (3)
yields:

∑
i≥0

βi(I)t i = ∑
j≥0

m j+1(I)(1+ t) j,(13)

Comparing (13) with the identity given in Corollary 4.2 we see that m j+1(I) = h j for all j. Since
(h0,h1, . . .) is the h-vector of a Cohen–Macaulay ring, the m j(I) is an O-sequence by Macaulay’s theo-
rem. This yields a new proof of Theorem 3.2 (2)⇒ (3).

The converse implication (3) ⇒ (2) can also be proved by using this duality: let m1, . . . ,mn be an
O-sequence such that m2 ≤ d. Then the proof of Macaulay’s theorem as given in [BH, Theorem 4.2.10]
shows that there exists a lexsegment ideal I ⊂ K[x1, . . . ,xd ] such that dimK(K[x1, . . . ,xd ]/I) j = m j+1 for
j = 0, . . . ,n− 1, and dimK(K[x1, . . . ,xd ]/I) j = 0 for j ≥ n. Since K[x1, . . . ,xd ]/I is of Krull dimension
0, it is in particular Cohen–Macaulay and its h-vector coincides with (m1, . . . ,mn). Thus Corollary 4.2
implies Idual is a strongly stable ideal generated in degree d with mi(Idual) = mi for all i.

Remark 4.3. A similar argument was also used by Murai in [Mu, Proposition 3.8] to achieve Theorem
3.2.

Example 4.4. This example demonstrates the above construction: the sequence of numbers m1 = 1, m2 =
3 and m3 = 5 satisfy the conditions of Theorem 3.2 (c). The (unique) lexsegment ideal I ⊂ K[x1,x2,x3]
with h-vector (1,3,5) is I = (x2

1,x1x2
2,x1x2x3,x1x2

3,x
3
2,x

2
2x3,x2x2

3,x
3
3). Then we get

Iσ = (x1x2,x1x3x4,x1x3x5,x1x4x5,x2x3x4,x2x3x5,x2x4x5,x3x4x5),

and
(Iσ )∨ = (x1x2x3,x1x2x4,x1x2x5,x1x3x4,x1x3x5,x1x4x5,x2x3x4,x2x3x5,x2x4x5).

Finally, we obtain

Idual = ((Iσ )∨)τ = (x3
1,x

2
1x2,x2

1x3,x1x2
2,x1x2x3,x1x3

3,x
3
2,x

2
2x3,x2x2

3).

Remark 4.5. Corollary 4.2 implies that the assignment I 7→ Idual establishes the bijection given in Corol-
lary 2.11 between strongly stable ideals in P = K[x1, . . . ,xn] generated in degree d, and strongly stable
ideals in K[x1, . . . ,xd ] of height d generated in degree ≤ n. This happens because if I ⊂ P is a strongly
stable ideal generated in degree d then by [HH2, Lemma 11.2.6] and equation (10),

projdim(K[x1, . . . ,xd ]/Idual) = projdim(K[x1, . . . ,xd+n−1]/(Iσ )∨) = reg(I) = d.
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So dim(K[x1, · · · ,xd ]/Idual) = depth(K[x1, · · · ,xd ]/Idual) = 0 and the conclusion follows.
It is worth remarking that this bijection actually coincides with the one described in Corollary 2.11. In

the sense that, if J ⊂K[x0, · · · ,xn−1] is a strongly stable ideal generated in degree d and J′ ⊂K[x1, . . . ,xn]
is the ideal J under the transformation xi 7→ xi+1, then

ψ(〈G(J)c〉) = J′dual,

where ψ(〈G(J)c〉) is considered in the xi’s, and not in the yi’s. To show this equality, it is enough to
prove that J′dual ⊂ ψ(〈G(J)c〉) because the graded rings K[x1, · · · ,xd ]/J′dual and K[x1, · · · ,xd ]/〈G(J)c〉
share the same Hilbert function.

By contrary assume that there exists u ∈G(J′dual)\〈G(J)c〉. So there is v = x`1 · · ·x`e ∈G((J′σ )∨) and
w = xα1

0 · · ·x
α f+1
f ∈ G(J) such that u = vτ = ψ(w). So

x`1x`2−1 · · ·x`e−(e−1) = xα1+1xα1+α2+1 · · ·xα1+···+α f +1.

This means that e = f and v = xα1+1xα1+α2+2 · · ·xα1+···+αe+e. So

J′σ ⊂ (xα1+1,xα1+α2+2, · · · ,xα1+···+αe+e).

By definition of J′ we have w′ = xα1
1 · · ·x

αe+1
e+1 ∈ G(J′), but

w′σ =
α1

∏
i=1

xi ·
α1+α2

∏
i=α1+1

xi+1 · · ·
α1+...+αe+1

∏
i=α1+...+αe+1

xi+e /∈ (xα1+1,xα1+α2+2, · · · ,xα1+···+αe+e),

which is a contradiction.

5. GRADED BETTI NUMBERS OF COMPONENTWISE LINEAR IDEALS

In this section we want to discuss the problem of characterizing the graded Betti numbers of a com-
ponentwise linear ideal I ⊂ P = K[x1, . . . ,xn]. By Proposition 3.1, to this purpose we can assume that I is
strongly stable. So, by Eliahou-Kervaire (3), we have to consider the possible matrices (mi, j(I)) where
I ranges over the strongly stable ideals. Actually, we will formulate the results with respect to another
matrix, that will be denoted by (µi, j(I)). As we will see soon, to know (mi, j(I)) or (µi, j(I)) is equivalent.

Before beginning the discussion on graded Betti numbers, we want to show that to characterize the
total Betti numbers of a componentwise linear ideal is an easy task. Using Proposition 3.1 and (3), it is
enough to characterize the possible sequences (m1(I), . . . ,mn(I)) where I is a strongly stable ideal. The
following remark, due to Satoshi Murai, yields the answer:

Remark 5.1. (Murai). Let (m1, . . . ,mn) be a sequence of natural numbers. The following are equivalent:
(i) m1 = 1 and mi+1 = 0 whenever mi = 0.

(ii) There exists a strongly stable ideal I ⊂ P such that mi(I) = mi for any i = 1, . . . ,n.
That (ii) =⇒ (i) is very easy to show. For the reverse implication, given a sequence (m1, . . . ,mn)
satisfying (i), set k = max`{m` 6= 0}. By assumption we have mi ≥ 1 for all i = 1, . . . ,k, therefore it
makes sense to define the following monomials spaces for each j = 1, . . . ,k−1:

Vj =

〈 j−2

∏
i=1

xmi+1−1
i · xm j−1

j−1 xm j+1
j ,

j−2

∏
i=1

xmi+1−1
i · xm j−2

j−1 xm j+1+1
j , . . . ,

j−2

∏
i=1

xmi+1−1
i · xm j+m j+1−1

j

〉
.

We also define:

Vk =

〈 k−2

∏
i=1

xmi+1−1
i · xmk−1

k−1 xk,
k−2

∏
i=1

xmi+1−1
i · xmk−2

k−1 x2
k , . . . ,

k2

∏
i=1

xmi+1−1
i · xmk

k

〉
.

Clearly, for all j = 1, . . . ,k, we have wi(Vj) = m j if i = j and wi(Vj) = 0 otherwise. Set:

I =
( k⊕

j=1

Vk

)
⊂ P.

It is easy to see that I is a strongly stable monomial ideal and that 〈G(I)〉=
⊕k

j=1Vk, so we conclude.
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Let I ⊂ P be a strongly stable monomial ideal. Notice that both I〈 j〉 and mI, where j is a natural
number and m = (x1, . . . ,xn) is the graded maximal ideal of P, are strongly stable. For all j ∈ N and
i = 1, . . . ,n, we define:

µi, j(I) = mi(I〈 j〉).

As we said in the beginning of this section, to know the matrix (mi, j(I)) or (µi, j(I)) are equivalent issues.
To see it, notice that if J ⊂ P is a strongly stable monomial ideal, then for all i = 1, . . . ,n:

mi(mJ) =
i

∑
q=1

mq(J).

Therefore we have the formula:

(14) mi, j(I) = mi(I〈 j〉)−mi(mI〈 j−1〉) = µi, j(I)−
i

∑
q=1

µq, j−1(I)

that implies that we can pass from the µi, j’s to the mi, j’s. From it follows also that we can do the
converse path by induction on j, because µi,d(I) = mi,d(I) if d is the smallest degree in which I is not
zero. Therefore, using Proposition 3.1, to characterize the possible Betti tables of the componentwise
linear ideals is equivalent to answer the following question:

Question 5.2. What are the possible matrices M (I) = (µi, j(I)) where I ⊂ P is a strongly stable ideal?

We will refer to M = M (I) as the matrix of generators of the strongly stable ideal I. We will feature
M as follows:

M =


µ1,1 µ2,1 µ3,1 · · · · · · µn,1
µ1,2 µ2,2 µ3,2 · · · · · · µn,2
µ1,3 µ2,3 µ3,3 · · · · · · µn,3

...
...

... · · · · · ·
...


We can immediately state the following:

Theorem 5.3. Let M = (µi, j) be the matrix of generators of a strongly stable monomial ideal I ⊂ P.
Then the following conditions hold:

(i) Each non-zero row vector (µ1, j,µ2, j, . . . ,µn, j) of M is an O-sequence such that µ2, j ≤ j.
(ii) For all i and j one has µi, j ≥ ∑

i
q=1 µq, j−1.

Proof. Condition (i) follows from Theorem 3.2 since I〈 j〉 has a j-linear resolution for all j greater than
or equal to the lower degree in which I is not zero. Condition (ii) follows from (14). �

Notice that the Noetherianity of P (or if you prefer conditions (i) and (ii) of Theorem 5.3) implies that
there exists m ∈ N such that µi, j(I) = ∑

i
q=1 µq, j−1(I) for all j > m and i ∈ {1, . . . ,n}. So, though M has

infinitely many rows, the relevant ones are just a finite number, and in the examples we will write just
them.

One may expect that the conditions described in Theorem 5.3 are sufficient. But this is not the case at
all:

Example 5.4. One obstruction is illustrated already by Remark 5.1: Consider the matrix

M =


0 0 0 0
...

...
...

...
0 0 0 0
1 d 0 0
1 d +1 d +1 k


where the first nonzero row from the top is the dth and d + 1 < k ≤ (d + 1)〈2〉. Such a matrix clearly
satisfies the necessary conditions of Theorem 5.3. However, if there existed a strongly stable ideal
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I ⊂ K[x1,x2,x3,x4] with matrix of generators M , then it would satisfy m1(I) = 1, m2(I) = d, m3(I) = 0
and m4(I) = k−d−1 > 0, a contradiction to Remark 5.1. The first matrix of this kind is:

M =

 0 0 0 0
1 2 0 0
1 3 3 4

 .

The explained obstruction gives rise to a class of counterexamples. However, such a class does not fill
the gap between the existence of a strongly stable ideal with matrix of generators M and the necessary
conditions of Theorem 5.3. Let us look at the following matrix.

M =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 3 2 2
1 4 6 9

 .

One can check that the necessary conditions described in Theorem 5.3 hold. However one can show that
there is no strongly stable monomial ideal I ⊂ K[x1, . . . ,x4] with M as matrix of generators. Notice that
such an ideal would have m1(I) = 1, m2(I) = 3, m3(I) = 2 and m4(I) = 3, which does not contradict
Remark 5.1.

Example 5.5. Obviously the property of having linear resolution can be detected looking at the graded
Betti numbers. In the following example we show that this is not anymore true for componentwise linear
ideals, and this strengthens the impression that to give a complete characterization of the possible graded
Betti numbers of a componentwise linear ideal is probably a hard task. More precisely, we are going
to exhibit two ideals I and J, one componentwise linear and one not, with the same Betti tables. This
answers negatively a question raised by Nagel and Römer [NR, Question 1.1].

Consider the ideals of K[x1,x2,x3]:

I = (x4
1, x3

1x2, x2
1x2

2, x1x3
2, x4

2, x3
1x3, x2

1x2x2
3, x2

1x3
3, x1x2

2x2
3)

and
J = (x4

1, x3
1x2, x2

1x2
2, x3

1x3, x1x2
2x3, x1x2x2

3, x1x4
2, x2

1x3
3, x4

2x3).

Notice that I and J are generated in degrees 4 and 5. By CoCoA [Co] one can check that I and J have
the same Betti table, namely: 

0 0 0
0 0 0
0 0 0
6 6 1
3 6 3

 .

One can easily check that I is strongly stable, so in particular it is componentwise linear. On the contrary
J is not componentwise linear, since J〈4〉 = (x4

1,x
3
1x2,x2

1x2
2,x

3
1x3,x1x2

2x3,x1x2x2
3), as one can check by

CoCoA, has not a 4-linear resolution.

We are going to explain some reasons why the conditions of Theorem 5.3 for a matrix M are in general
not sufficient to have a strongly stable ideal corresponding to it. By the discussion after Theorem 2.9,
we know that for a given sequences (m1, . . . ,mn) of integers, there exists a strongly stable monomial
ideal J generated in degree d such that mi(J) = mi, if and only if the piecewise lexsegment ideal of type
(d,(m1, . . . ,mn)) is strongly stable. Unfortunately, even if J is a piecewise lexsegment, the ideal mJ is
not necessarily a piecewise lexsegment. For instance, keeping in mind the last matrix in Example 5.4,
the piecewise lexsegment ideal of type (5,(1,3,2,2)) is:

J = (x5
1,x

4
1x2,x3

1x2
2,x

2
1x3

2,x
4
1x3,x3

1x2x3,x4
1x4,x3

1x2x4).

However u = x3
1x3

3 /∈ mJ, whereas v = x2
1x3

2x3 ∈ mJ. Since v is lexicographically smaller than u and
m(u) = m(v) = 3, mJ is not a piecewise lexsegment ideal. This fact does not make any troubles when the



GRADED BETTI NUMBERS OF COMPONENTWISE LINEAR IDEALS 15

number of variables is at most three, as we can see later. To see this, we need the following more general
proposition.

Proposition 5.6. Let M = (µi, j) be a matrix. Then M is the matrix of generators of a strongly stable
monomial ideal I ⊂ P, provided that the following conditions hold:

(1) Each nonzero row vector (µ1, j, . . . ,µn, j) of M is an O-sequence with µ2, j ≤ j.
(2) For all i ∈ {1, . . . ,n} one has µi, j ≥ ∑

i
q=1 µq, j−1.

(3) If m ∈ N is the least number such that µi,h = ∑
i
q=1 µq,h−1 for each h > m, then for each j ≤ m

there exists a strongly stable ideal jI ⊂ P generated in degree j such that mi(
jI) = µi, j for all

i = 1, . . . ,n and jI∩K[x1, . . . ,xn−1] j+1 is a piecewise lexsegment monomial space.

Proof. Let d be the least natural number such that the row vector (µ1,d , . . . ,µn,d) is nonzero. We claim
to have built a strongly stable ideal I( j) ⊂ P such that µi,k(I( j)) = µi,k for any k ≤ j and I( j)〈 j〉 ∩
K[x1, . . . ,xn−1] =

jI∩K[x1, . . . ,xn−1]. If j = m, then the desired ideal is I = I(m). If not, however we can
assume j ≥ d (I(d) = dI). We set

mi, j+1 = µi, j+1−
i

∑
q=1

µq, j.

Let L( j+ 1) be the ideal generated by the biggest mi, j+1 (i = 1, . . . ,n) monomials u ∈ Pj+1 \ I( j) such
that m(u) = i (they exist thanks to condition (1)). Set I( j+ 1) = I( j)+L( j+ 1). Clearly the first j+ 1
rows of the matrix of generators of I( j+1) coincide with the ones of M . Then notice that I( j+1)〈 j+1〉∩
K[x1, . . . ,xn−1] is the piecewise lexsegment of type ( j+ 1,(µ1, j+1, · · · ,µn−1, j+1)) by construction. Be-
cause j+1I∩K[x1, . . . ,xn−1] j+2 is a piecewise lexsegment monomial space, j+1I∩K[x1, . . . ,xn−1] is forced
to be the piecewise lexsegment of type ( j+1,(µ1, j+1, · · · ,µn−1, j+1)). So we get the equality:

I( j+1)〈 j+1〉∩K[x1, . . . ,xn−1] =
j+1I∩K[x1, . . . ,xn−1].

To conclude the proof, we have to show that I( j + 1) is strongly stable. This reduces to show that, if
u ∈ I( j + 1) is a monomial of degree j + 1 with m(u) = n, then (u/xi)xk belongs to I( j + 1) for all
1≤ k < i≤ n such that xi | u. We consider two cases. If u ∈ I( j) we are done, because I( j)⊂ I( j+1) is
strongly stable. If u ∈ L( j+1), then we consider the monomial ideal

T ( j+1) = (v ∈ G(I( j+1)〈 j+1〉) : m(v)< n or v≥ u)⊂ I( j+1).

Observe that T ( j + 1) is a piecewise lexsegment ideal of type ( j + 1,(µ1, j+1, . . . ,µn−1, j+1,a)), where
a≤ µn, j+1. Since (µ1, j+1, . . . ,µn−1, j+1,a) is an O-sequence with µ2, j+1 ≤ j+1, it follows that T ( j+1)
is strongly stable by the discussion after Theorem 2.9. Thus for each 1 ≤ k < i ≤ n such that xi|u, we
have that (u/xi)xk ∈ T ( j+1)⊂ I( j+1). �

Corollary 5.7. Let M = (µi, j) be a matrix with 3 columns. Then M is the matrix of generators of a
strongly stable monomial ideal I ⊂ K[x1,x2,x3] if and only if the following conditions hold:

(1) Each non-zero column vector (µ1, j,µ2, j,µ3, j) of M is an O-sequence with µ2, j ≤ j.
(2) For all j ∈ N one has µ2, j ≥ µ1, j−1 +µ2, j−1 and µ3, j ≥ µ1, j−1 +µ2, j−1 +µ3, j−1.

Proof. The conditions are necessary from Theorem 5.3. Furthermore, since an ideal I ⊂ K[x1,x2] gen-
erated in one degree is piecewise lexsegment if and only if it is strongly stable, we automatically have
condition (3) of Proposition 5.6. �

Although the complete characterization of the matrix of generators of an arbitrary strongly stable ideal
seems to be very complicated, based on the fact that the lexsegment property of an ideal is preserved un-
der multiplication by the maximal ideal m, one may expect a characterization for the matrix of generators
of lexsegment ideals. For answering this question, first we define the concept of a d-lex sequence.

Definition 5.8. A sequence of non-negative integers m1, · · · ,mn is called a d-lex sequence, if there exists
a lexsegment ideal L⊂ P generated in degree d such that mi(L) = mi for all i.

Because if I ⊂ P is a lexsegment ideal, then mI is still a lexsegment ideal, we clearly have that
M = (µi, j) is the matrix of generators of a lexsegment ideal if and only if the following conditions
hold:
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(1) Each non-zero column vector (µ1, j,µ2, j, . . . ,µn, j) of M is a j-lex sequence.
(2) For all i and j one has µi, j ≥ ∑

i
q=1 µq, j−1.

Therefore to characterize the matrix of generators of lexsegment ideals we need to characterize arbitrary
d-lex sequences. To do this, we have to recall the definition of the natural decomposition of the comple-
ment set of monomials belonging to a lexsegment ideal generated in a fixed degree. In what follows we
denote by [xt , . . . ,xn]r (1≤ t ≤ n) the set of all monomials of degree r in the variables xt , . . . ,xn.

Definition 5.9. Let u = x j(1) . . .x j(d) ∈ Pd (1≤ j(1)≤ ·· · ≤ j(d)≤ n) be a monomial and set L<u = {v ∈
Pd | v < u}. Following the method described in [BH, page 159] (where L<u is denoted by Lu) we can
partition the set L<u as:

L<u =
d⋃

i=1

[x j(i)+1, . . . ,xn]d−i+1 · x j(1) · · ·x j(i−1),

which is called the natural decomposition of L<u.

Before proving the next result, notice that the powers of the maximal ideal are lexsegment ideals, and
the following formula holds for their d-lex sequences:

(15) mi(m
d) =

(
i+d−2

d−1

)
.

Theorem 5.10. Let m1, . . . ,mn be a sequence of natural numbers and let µ = ∑
n
i=1 mi. Suppose that

`=

(
n+d−1

d

)
−µ =

d

∑
i=1

(
k(i)

i

)
is the d-th Macaulay representation of `. Then m1, · · · ,mn is a d-lex sequence, if and only if

mi =

(
i+d−2

d−1

)
−

d

∑
j=1

(
k( j)−n+ i−1

j−1

)
.

Proof. The sequence m1, . . . ,mn is a d-lex sequence if and only if Iu = (L≥u) satisfies mi(Iu) = mi for all
i = 1, . . . ,n, where u is the µth biggest monomial of degree d. Let us write u = x j(1) · · ·x j(d),1≤ j(1)≤
·· · ≤ j(d)≤ n. By the natural decomposition of L<u we have:

`= |L<u|=
d

∑
i=1

dimK [x j(i)+1, . . . ,xn]d−i+1 =
d

∑
i=1

(
n− j(i)+d− i

d− i+1

)
.

Setting t = d− i+ 1 and k(t) = n− j(d− t + 1)+ t − 1, we have that ∑
d
t=1
(k(t)

t

)
is the dth Macaulay

representation of `. The natural decomposition of L<u and (15) show that

mi((L<u)) =
d

∑
t=1

mi(x j(d−t+1)+1, . . . ,xn)
t =

d

∑
t=1

(
i− j(d− t +1)+ t−2

t−1

)
=

d

∑
t=1

(
k(t)−n+ i−1

t−1

)
.

Because
mi(Iu) = mi(m

d)−mi((L<u)),

we get the conclusion thanks to (15). �

We recall that a homogeneous ideal I ⊂ P is said to be Gotzmann if the number of minimal generators
of mI〈 j〉 is the smallest possible for every j ∈ N, namely equal to:(

n+ j
j+1

)
−
((

n+ j−1
j

)
−µ j

)〈 j〉
,

where µ j is the number of minimal generators of I〈 j〉. The graded Betti numbers of a Gotzmann ideal
coincide with its associated lexsegment ideal, see [HH1]. Therefore Theorem 5.10 characterizes also the
graded Betti numbers of Gotzmann ideals.
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6. THE POSSIBLE EXTREMAL BETTI NUMBERS OF A GRADED IDEAL

For a fixed ` ∈ {1, . . . ,n}, d ∈ N and k ≤
(
`+d−2
`−1

)
, we denote by u(`,k,d) the kth biggest monomial

u ∈ Sd such that m(u) = `. Or, equivalently, x` times the kth biggest monomial in K[x1, . . . ,x`]d−1. By
U(`,k,d) we denote the ideal of S generated by the set L≥u(`,k,d) ∩K[x1, . . . ,x`]. Notice that U(`,k,d)
is not a lexsegment in S. However, it is the extension of a lexsegment in K[x1, . . . ,x`]. Furthermore,
U(`,k,d) is obviously a piecewise lexsegment in S. In this section we need to introduce the following
definition: A monomial ideal I ⊂ S generated in one degree is called piecewise lexsegment up to ` if
I∩K[x1, . . . ,x`]⊂ K[x1, . . . ,x`] is piecewise lexsegment.

Remark 6.1. Notice that, for all q ∈ N, denoting by m⊂ S the maximal irrelevant ideal, mqU(`,k,d)∩
K[x1, . . . ,x`] is equal to U(`,m`(m

qU(`,k,d)),d + q))∩K[x1, . . . ,x`]. In particular, mqU(`,k,d) is a
piecewise lexsegment up to `.

Lemma 6.2. The ideal U(`,k,d)⊂ S is the smallest strongly stable ideal containing the biggest k mono-
mials ui ∈ Sd such that m(ui) = ` for all i = 1, . . . ,k.

Proof. Let J ⊂ S be the smallest strongly stable ideal containing the biggest k monomials ui ∈ Sd such
that m(ui) = ` for all i = 1, . . . ,k. Being the extension of a lexsegment, U(`,k,d) is strongly stable, so
that J ⊂U(`,k,d). Therefore, let us show the inclusion U(`,k,d) ⊂ J. Let u be a minimal monomial
generator of U(`,k,d). So u has degree d and m(u) ≤ `. Actually, we can assume m(u) < `, otherwise
there is nothing to prove. So let us write:

u = xa1
1 . . .xa`−1

`−1 .

By definition u > u(`,k,d) = xb1
1 . . .xb`

` . Set F = {i : ai > bi}. Because u > u(`,k,d), we have F 6= /0
and a j = b j for all j < i0 = min{i : i ∈ F}. If |F | = 1, then ai = bi for all i0 < i < ` and b` = ai0 − bi0 ,

so that u = x
ai0−bi0
i0 · (u(`,k,d)/x

ai0−bi0
` ) ∈ J. If |F | > 1, take j > i0 such that a j > b j. The monomial

u′ = x` · (u/x j) is such that u′ > u(`,k,d) and m(u′) = `. Therefore u′ ∈ J, so that u = x j · (u′/x`) belongs
to J too. �

The above lemma allows us to characterize the possible extremal Betti numbers of a homogeneous
ideal in a polynomial ring. To this aim, we start with a discussion. To U(`,k,d) we can associate the
numerical sequence (m1, . . . ,m`) where mi = mi(U(`,k,d)). Notice that m` = k. By the theory developed
in Section 2, if V is a strongly stable monomial ideal generated in degree d such that m`(V ) = k, then
there must exist a strongly stable piecewise lexsegment ideal U such that mi(U) = mi(V ) and containing
the k biggest monomials u ∈ Sd such that m(u) = `. By Lemma 6.2 U(`,k,d) ⊂U , so that mi ≤ mi(V )
for all i. It is possible to characterize the possible numerical sequences like these. To this purpose, we
need to introduce a notion. Given a natural number a and a positive integer d, consider the dth Macaulay
representation of a, say a = ∑

d
i=1
(k(i)

i

)
. For all integer numbers j, we set:

a〈d, j〉 =
d

∑
i=1

(
k(i)+ j

i+ j

)
,

where we put
(p

q

)
= 0 whenever p or q are negative, and

(0
0

)
= 1. Notice that a〈d,0〉 = a and a〈d,1〉 = a〈d〉.

Lemma 6.3. If k ≤
(
`+d−2
`−1

)
, then:

mi(U(`,k,d)) = k〈`−1,i−`〉 ∀ i = 1, . . . , `.

Furthermore, if i≥ 2, then k〈`−1,i−`〉 = min{a : k ≤ a〈i−1,`−i〉}.

Proof. First we will show that, if i≥ 2, then:

k〈`−1,i−`〉 = min{a : k ≤ a〈i−1,`−i〉}.

Let us consider the (`−1)th Macaulay representation of k, namely k = ∑
`−1
j=1

(k( j)
j

)
. So

b = k〈`−1,i−`〉 =
`−1

∑
j=`−i

(
k( j)+ i− `

j+ i− `

)
.
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If max{ j : k( j)< j}≥ `− i, then the above one is the (i−1)th Macaulay representation of b: Therefore
b〈i−1,`−i〉 = k, so the statement is obvious in this case.

So we can assume that max{ j : k( j) < j} < `− i. In particular, k(`− i) ≥ `− i, so that the (i− 1)th
Macaulay representation of b−1 is

b−1 =
`−1

∑
j=`−i+1

(
k( j)+ i− `

j+ i− `

)
.

Thus (b−1)〈i−1,`−i〉=∑
`−1
j=`−i+1

(k( j)
j

)
, which in this case is smaller than k. So b≤min{a : k≤ a〈i−1,`−i〉}.

On the other hand, let us consider the (i−1)th Macaulay representation of b, namely b = ∑
i−1
j=1

(h( j)
j

)
. By

[BH, Lemma 4.2.7], we infer the inequality

(h(i−1), . . . ,h(1))> (k(`−1)+ i− `, . . . ,k(`− i+1)+ i− `)

in the lexicographical order. Of course the inequality keeps to be true when shifting of `− i, namely

(h(i−1)+ `− i, . . . ,h(1)+ `− i)> (k(`−1), . . . ,k(`− i+1))

in the lexicographical order. Again using [BH, Lemma 4.2.7], we deduce that b〈i−1,`−i〉 > k. So b ≥
min{a : k ≤ a〈i−1,`−i〉}, that lets us conclude this part.

Let us prove that
mi(U(`,k,d)) = k〈`−1,i−`〉 ∀ i = 1, . . . , `.

The condition k ≤
(
`+d−1

`

)
assures that we can construct V = U(`,k,d). The equality is true for i = 1,

because k〈`−1,1−`〉 = 1. From Theorem 3.2 we have, for all i = 2, . . . , `:

mi+1(V )≤ mi(V )〈i−1〉 , mi+2(V )≤ mi+1(V )〈i〉 , . . . , k = m`(V )≤ m`−1(V )〈`−2〉.

Putting together the above inequalities, we get:

k ≤ mi(V )〈i−1,`−i〉.

From this and what proved above we deduce that:

mi(V )≥ k〈`−1,i−`〉.

From Section 2 it is clear that a piecewise lexsegment monomial space W ⊂ Sd with mi(W )= k〈`−1,i−`〉 ∀ i=
1, . . . , ` must exist. We have V ⊂W by Lemma 6.2, so we get also the inequality:

mi(V )≤ k〈`−1,i−`〉.

�

We introduce the function T : Nr → Nr such that T(v) = (v1, v1 + v2, . . . , v1 + v2 + . . .+ vr), where
v = (v1, . . . ,vr). Furthermore, we define Sq(v) as the last entry of Tq(v).

Remark 6.4. The significance of the above definition is the following: Let I ⊂ S = K[x1, . . . ,xn] be a
stable ideal generated in one degree. One can easily show that, for all q ∈ N and i ∈ {1, . . . ,n},

Sq((m1(I),m2(I), . . . ,mi(I))) = mi(m
qI).

Notice that we can also rephrase the second condition of Theorem 5.3 as

µi, j ≥ S1((µ1, j−1,µ2, j−1, . . . ,µi, j−1)).

Example 6.5. In the next theorem the functions Sq will play a crucial role. Especially, using Remark
6.4, Lemma 6.3 and Remark 6.1, one has:

Sq((k〈`−1,1−`〉,k〈`−1,2−`〉, . . . ,k〈`−1,i−`〉)) = Sq((m1(U(`,k,d)),m2(U(`,k,d)), . . . ,mi(U(`,k,d))))
= mi(m

qU(`,k,d)))
= mi(U(`,m`(m

qU(`,k,d)),d +q)))

= Sq((k〈`−1,1−`〉,k〈`−1,2−`〉, . . . ,k))〈`−1,i−`〉.

Notice that the first time Sq is applied to a vector in Ni, whereas the last time to a vector in N`.
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Let I be a homogeneous ideal of S and βi, j = βi, j(I) its graded Betti numbers. Let the extremal Betti
numbers of I be

βi1,i1+ j1 ,βi2,i2+ j2 , . . . ,βik,ik+ jk .

Notice that k < n, and up to a reordering, we can assume 0 < i1 < i2 < .. . < ik < n and j1 > j2 > .. . >
jk ≥ 0. If I is a stable ideal then, exploiting the Eliahou-Kervaire formula, one can check that βi,i+ j(I) is
extremal if and only if mi+1, j(I) 6= 0 and mp+1,q(I) = 0 for all (p,q) 6= (i, j) such that p ≥ i and q ≥ j.
In this case, moreover, we have βi,i+ j(I) = mi+1, j(I). Before showing the main result of the paper, we
introduce the following concept.

Definition 6.6. Let i = (i1, . . . , ik) and j = ( j1, . . . , jk) be such that 0 < i1 < i2 < .. . < ik < n, j1 > j2 >
.. . > jk > 0. We say that I ⊂ S is a (i, j)-lex ideal if I = ∑

k
p=1(Lp), where Lp is a lexsegment ideal

generated in degree jp in K[x1, . . . ,xip+1].

Theorem 6.7. Let i = (i1, . . . , ik) and j = ( j1, . . . , jk) be such that 0 < i1 < i2 < .. . < ik < n and j1 >
j2 > .. . > jk > 0, and let b1, . . . ,bk be positive integers. For all p = 1, . . . ,k let :

vp = (b〈ip,−ip〉
p ,b〈ip,1−ip〉

p , . . . ,b〈ip,ip−1−ip〉
p ) ∈ Nip−1+1.

If K has characteristic 0, then the following are equivalent:
(i) There is a homogeneous ideal I ⊂ S with extremal Betti numbers βip,ip+ jp(I) = bp for all p =

1, . . . ,k.
(ii) There is a strongly stable ideal I ⊂ S with extremal Betti numbers βip,ip+ jp(I) = bp for all p =

1, . . . ,k.
(iii) bk ≤

(ik+ jk−1
ik

)
and S jp− jp+1(vp+1)+bp ≤

(ip+ jp−1
ip

)
for all p = 1, . . . ,k−1.

(iv) There is an (i, j)-lex ideal I ⊂ S with extremal Betti numbers βip,ip+ jp(I) = bp for all p = 1, . . . ,k.

Proof. (i) ⇐⇒ (ii) follows by by [BCP, Theorem 1.6]. (iv) =⇒ (i) is obvious.
(ii) =⇒ (iii). By what said before the theorem, we can replace βip,ip+ jp(I) by mip+1, jp(I) with

mr+1,s(I) = 0 for all (r,s) 6= (ip, jp) such that r ≥ ip and s≥ jp. Since mik+1, jk(I) = bk, we have

bk ≤
(

ik + jk−1
ik

)
.

We must have that:

mik−1+1
(
m jk−1− jk(I〈 jk〉)

)
+bk−1 = |{monomials u ∈ I〈 jk〉∩S jk−1 with m(u) = ik−1 +1}|

+|{monomials u ∈ I jk−1 \ I〈 jk−1−1〉 with m(u) = ik−1 +1}|
≤ |{monomials u ∈ S jk−1 with m(u) = ik−1 +1}|

=

(
ik−1 + jk−1−1

ik−1

)
From the discussion before the theorem, we also have:

mi
(
I〈 jk〉
)
≥ b〈ik,i−ik−1〉

k ∀ i≤ ik.

We eventually get:
mik−1+1

(
m jk−1− jk(I〈 jk〉)

)
≥ S jk−1− jk(v

k).

Putting together the above inequalities we obtain, for p = k−1,

S jp− jp+1(v
p+1)+bp ≤

(
ip + jp−1

ip

)
,

and we can go on in the same way to show this for all p = 1, . . . ,k−1.
(iii) =⇒ (iv). If bk ≤

(ik+ jk−1
ik

)
, then we can form U(ik +1,bk, jk). Let us call kI =U(ik +1,bk, jk).

We have that:

mik−1+1

(
(kI)〈 jk−1〉

)
= S jk−1− jk(v

k).

From Remark 6.1, we deduce that

(kI)〈 jk−1〉∩K[x1, . . . ,xik−1+1] =U(ik−1 +1,S jk−1− jk(v
k), jk−1)∩K[x1, . . . ,xik−1+1].
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By the assumed numerical conditions, U(ik−1 +1,S jk−1− jk(vk)+bk−1, jk−1) exists and contains exactly
bk−1 new monomials u such that m(u) = ik−1 +1. Therefore set:

k−1I′ = (U(ik−1 +1,S jk−1− jk(v
k)+bk−1, jk−1)).

and
k−1I = kI + k−1I′.

By construction k−1I is a ((ik−1, ik),( jk−1, jk))-lex ideal with extremal Betti numbers βik−1,ik−1+ jk−1(
k−1I)=

bk−1 and βik,ik+ jk(
k−1I) = bk. Keeping on with the recursion we will end up with the desired (i, j)-lex

ideal I = 1I. �

Remark 6.8. For the reader who likes more the language of algebraic geometry, Theorem 6.7 can be
used in the following setting: Let X ⊂ Pn−1 be a projective scheme over a field of characteristic 0 and
IX its ideal sheaf. Then, by the graded version of the Grothendieck’s local duality, βi,i+d is an extremal
Betti number of the ideal

⊕
m∈N Γ(X ,IX(m))⊂ S if and only if, setting p = n− i−1 and q = d−1:

(1) p≥ 1;
(2) dimK(H p(X ,IX(q− p))) = βi,i+d 6= 0.
(3) Hr(X ,IX(s− r)) = 0 for all (r,s) 6= (p,q) with 1≤ r ≤ p and s≥ q.

Example 6.9. Let us consider the following Betti table:
∗ ∗ ∗ ∗ ∗ ∗ · · ·
∗ ∗ ∗ a 0 0 · · ·
∗ ∗ ∗ 0 0 0 · · ·
∗ ∗ b 0 0 0 · · ·
0 0 0 0 0 0 · · ·

 .

Theorem 6.7 implies that there exists a homogeneous ideal in a polynomial ring (of characteristic 0)
whose Betti table looks like the above one (where a and b are extremal) if and only if we are in one of
the following cases:

(i) a = 2 and b = 1,2;
(ii) a = 1 and b = 1,2,3,4.

In fact, we have b = β2,6 and a = β3,5. Theorem 6.7 implies a≤ 4.
If a = 2, then the vector v2 ∈ N3 is:

v2 = (1,2,2).
Therefore S2(v2) = 8, and Theorem 6.7 gives 8+b≤ 10. So we get b = 1,2 as desired.

If a = 1, then the vector v2 ∈ N3 is:
v2 = (1,1,1).

So S2(v2) = 6, and Theorem 6.7 yields b = 1,2,3,4 as desired.
Eventually, if a > 2, a positive integer b satisfying the conditions of Theorem 6.7 does not exist.
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