F-splittings of the polynomial ring and compatibly split homogeneous ideals

Virtual Commutative Algebra Seminars, IIT Bombey

September 1, 2020

Matteo Varbaro (Università degli Studi di Genova)

Let R be a Noetherian ring of prime characteristic p. The Frobenius map on R is the ring homomorphism

$$
\begin{array}{rl}
F: \quad R & R \\
& r \mapsto r^{p}
\end{array}
$$

Denote by $F_{*} R$ the R-module obtained restricting the scalars:

- $F_{*} R=R$ as additive group;
- $r \cdot x=r^{p} x$ for all $r \in R$ and $x \in F_{*} R$.

In this way we can think at F as the map of R-modules
$F: R \longrightarrow F_{*} R$ sending $r \in R$ to $r^{p} \in F_{*} R=R$.

F-pure and F-split rings

Definition

R is F-pure if $F: R \rightarrow F_{*} R$ is a pure map of R-modules. That is, $F \otimes 1_{M}: M \rightarrow F_{*} R \otimes_{R} M$ is injective for any R-module M.

Remark/Exercise

- If R is F-pure, then it is reduced.
- If R is regular, then it is F-pure (since $F_{*} R$ is a faithfully flat R-module by Kunz's theorem).

Definition

R is F-split if $F: R \rightarrow F_{*} R$ is a split-inclusion of R-modules. In this case, a map $\theta \in \operatorname{Hom}_{R}\left(F_{*} R, R\right)$ such that $\theta \circ F=1_{R}$ is called an F-splitting of R.

Remark/Exercise

If R is F-split, then it is F-pure.

Compatibly split ideals

Assume R is F-split, and fix an F-splitting $\theta \in \operatorname{Hom}_{R}\left(F_{*} R, R\right)$. We say that an ideal $I \subset R$ is compatibly split (with respect to θ) if $\theta(I) \subset I$.

Remark

Of course $I \subset \theta(I)$ for any ideal $I \subset R$. In fact, if $r \in I$, then $r^{p} \in I$ and $\theta\left(r^{p}\right)=\theta(F(r))=r$. In particular, an ideal $I \subset R$ is compatibly split if and only if $I=\theta(I)$.

If I is compatibly split, then $\bar{\theta}: F_{*}(R / I)=\left(F_{*} R\right) / I \rightarrow R / I$ is a well-defined map of Abelian groups. It is straightforward to check that it is also a map of R / I-modules. Hence $\bar{\theta}$ is an F-splitting of R / I, and then R / I is F-split.

Compatibly split ideals

Proposition

Let R be F-split, and fix an F-splitting $\theta \in \operatorname{Hom}_{R}\left(F_{*} R, R\right)$.
(1) If $I \subset R$ is a compatibly split ideal, so is $I: J$ for all $J \subset R$.
(2) If $I, J \subset R$ are compatibly split ideals, so are $I \cap J$ and $I+J$.

Proof. Let us prove (1): If $r \in \theta(I: J)$ and $x \in J$, then $r=\theta(y)$ where $x y$, and so $x^{p} y$, belongs to I. So $x r=x \theta(y)=\theta(x \cdot y)=$ $\theta\left(x^{p} y\right) \in I$. Point (2) is straightforward to show.

Example

Let K be a field of positive characteristic. The reduced ring $R=K[X, Y] /(X(X+Y) Y)$ is not F-split: in fact, if there was an F-splitting of R, (0) would be a compatibly split ideal, and so $(x)=(0):(x+y) y, \quad(x+y)=(0): x y, \quad(y)=(0): x(x+y)$ and $(x(x+y))=(x) \cap(x+y)$ would be compatibly split (where $x=\bar{X}$ and $y=\bar{Y})$. Hence the ideal $I=(x(x+y), y)=\left(x^{2}, y\right)$ would be compatibly split, whereas it is not even radical.

F-pure and F-split rings

Even if there are rings R that are F-pure but not F-split, in some context the two concepts are the same:

Proposition

Assume that R satisfyies one of the following conditions:
(1) $F_{*} R$ is a finitely generated R-module.
(2) $R=\bigoplus_{i \in \mathbb{Z}} R_{i}$ is a graded ring having a unique homogeneous ideal \mathfrak{m} which is maximal by inclusion and such that R_{0} is a complete local ring.
Then R is F-pure if and only if it is F-split. In (2), these two properties are furthermore equivalent to the injectivity of the map $F \otimes 1_{E}: E \rightarrow M \otimes_{R} E$ where E is the injective hull of R / \mathfrak{m}.

Since we will work with Noetherian \mathbb{N}-graded rings $R=\bigoplus_{i \in \mathbb{N}} R_{i}$ with R_{0} a field, which automatically satisfy (2), for this seminar we are allowed to confuse the F-pure and F-split notions.

F-splitting of the polynomial ring

From now on K is a perfect field of positive characteristic p, and $R=K\left[X_{1}, \ldots, X_{n}\right]$ the polynomial ring in n variables over K.

Remark/Exercise

$F_{*} R$ is a free R-module of rank p^{n}. An R-basis is given by the set

$$
\left\{X_{1}^{a_{1}} X_{2}^{a_{2}} \cdots X_{n}^{a_{n}}: 0 \leq a_{i}<p \quad \forall i=1, \ldots, n\right\}
$$

In particular, R is F-split.
We want to study the F-splittings of R. Of course $\operatorname{Hom}_{R}\left(F_{*} R, R\right)$ is a free R-module of rank p^{n} and R-basis dual to the one of the above remark, say $\left\{\phi_{a_{1}, a_{2}, \ldots, a_{n}}: 0 \leq a_{i}<p \quad \forall i=1, \ldots, n\right\}$.

Furthermore, given $f_{a_{1}, a_{2}, \ldots, a_{n}} \in R$, the element

$$
\theta=\sum_{0 \leq a_{i}<p} f_{a_{1}, a_{2}, \ldots, a_{n}} \cdot \phi_{a_{1}, a_{2}, \ldots, a_{n}} \in \operatorname{Hom}_{R}\left(F_{*} R, R\right)
$$

is an F-splitting of R if and only if $f_{0,0, \ldots, 0}=1$.

F-splitting of the polynomial ring

Recall that $F_{*} R$, beyond being an R-module, is a ring (isomorphic to R), so it makes sense to consider the following $F_{*} R$-module structure on $\operatorname{Hom}_{R}\left(F_{*} R, R\right)$:

$$
\begin{aligned}
f \star \theta: F_{*} R & \rightarrow R \quad \forall f \in F_{*} R, \theta \in \operatorname{Hom}_{R}\left(F_{*} R, R\right) \\
g & \mapsto \theta(f g)
\end{aligned}
$$

To understand the $F_{*} R$-module structure of $\operatorname{Hom}_{R}\left(F_{*} R, R\right)$, call $\operatorname{Tr}:=\phi_{p-1, p-1, \ldots, p-1}$. Then the following is an isomorphism of $F_{*} R$-modules:

$$
\begin{aligned}
\Psi: \quad F_{*} R \rightarrow & \operatorname{Hom}_{R}\left(F_{*} R, R\right) \\
f \mapsto & f \star \operatorname{Tr}
\end{aligned}
$$

The fact that Ψ is an injective map of $F_{*} R$-modules is clear. For the surjectivity, just notice that, if a_{1}, \ldots, a_{n} are such that $0 \leq a_{i}<p$ for all i, we have $\phi_{a_{1}, \ldots, a_{n}}=X_{1}^{p-a_{1}-1} \cdots X_{n}^{p-a_{n}-1} \star \operatorname{Tr}$.

F-splitting of the polynomial ring

So, there is a 1-1 correspondence between polynomials of R and elements of $\operatorname{Hom}_{R}\left(F_{*} R, R\right)$, given by $f \leftrightarrow f \star \operatorname{Tr}$. Furthermore, $f \star \operatorname{Tr}$ is an F-splitting of R if and only if the following two conditions hold true simultaneously:
(1) $X_{1}^{p-1} \cdots X_{n}^{p-1} \in \operatorname{supp}(f)$ and its coefficient in f is 1 .
(2) If $X_{1}^{u_{1}} \ldots X_{n}^{u_{n}} \in \operatorname{supp}(f)$ and $u_{1} \equiv \ldots \equiv u_{n} \equiv-1(\bmod p)$, then $u_{i}=p-1 \forall i=1, \ldots, n$.

Remark/Exercise

Notice that, if R is equipped with a positive grading, (i.e. $\operatorname{deg}\left(X_{i}\right)$ is a positive integer for all $i=1, \ldots, n$), then the second condition above is automatic whenever f is a homogeneous polynomial satisfying (1).

F-splitting of the polynomial ring

Definition

If $I \subset R$ is an ideal, then $I^{[p]}=\left(f^{p}: f \in I\right)$. Equivalently, $\left.\right|^{[p]}=\left(f^{p}: f \in \mathcal{I}\right)$ whenever $I=(\mathcal{I})$.

Proposition

For any $f \in R$ and any ideal $I \subset R$, we have:

$$
(f \star \operatorname{Tr})(I) \subset I \Leftrightarrow f \in I[p]: I
$$

Therefore, given an ideal $I \subset R$, if we can find a polynomial $f \in I^{[p]}: I$ such that
(1) $X_{1}^{p-1} \cdots X_{n}^{p-1} \in \operatorname{supp}(f)$ and its coefficient in f is 1 ;
(2) If $X_{1}^{u_{1}} \cdots X_{n}^{u_{n}} \in \operatorname{supp}(f)$ and $u_{1} \equiv \ldots \equiv u_{n} \equiv-1(\bmod p)$, then $u_{i}=p-1 \forall i=1, \ldots, n$, then $f \star \operatorname{Tr}$ is an F-splitting of R for which $/$ is compatibly split. In particular R / I is F-split.

F-splitting of the polynomial ring

Theorem (Fedder's criterion)

Equip R with a positive grading, and consider a homogeneous ideal $I \subset R$. The following facts are equivalent:
(1) R / I is F-split.
(2) There is an F-splitting of R for which I is compatibly split.
(3) $I^{[p]}: I \not \subset\left(X_{1}^{p}, \ldots, X_{n}^{p}\right)$.

The third condition above can be rephrased like this: there is $f \in I^{[p]}: I$ such that $X_{1}^{p-1} \ldots X_{n}^{p-1} \in \operatorname{supp}(f)$ and its coefficient in f is 1 ; in this case l is compatibly split with respect to the F-splitting $f \star \operatorname{Tr}$. What if, furthermore, there is a monomial order such that

$$
\operatorname{in}(f)=X_{1}^{p-1} \ldots X_{n}^{p-1} \quad ? ? ?
$$

F-splitting of the polynomial ring

First of all, let us see what are the compatibly split ideals of the F-splitting of R

$$
\theta=X_{1}^{p-1} \cdots X_{n}^{p-1} \star \operatorname{Tr} \in \operatorname{Hom}_{R}\left(F_{*} R, R\right) .
$$

Proposition

The compatibly split ideals w.r.t. θ are precisely the squarefree monomial ideals of R.

Proof. Let $I \subset R$ be an ideal generated by squarefree monomials $u_{1}, \ldots, u_{k} \in R$. As an R-submodule of $F_{*} R, I$ is generated by

$$
\left\{u_{j} X_{1}^{a_{1}} X_{2}^{a_{2}} \cdots X_{n}^{a_{n}}: j=1, \ldots, k, 0 \leq a_{i}<p \quad \forall i=1, \ldots, n\right\}
$$

Note that $\theta\left(u_{j} X_{1}^{a_{1}} X_{2}^{a_{2}} \cdots X_{n}^{a_{n}}\right) \neq 0$ iff $X_{1}^{a_{1}} X_{2}^{a_{2}} \cdots X_{n}^{a_{n}}=u_{j}^{p-1}$, so:

$$
\theta\left(u_{j} X_{1}^{a_{1}} X_{2}^{a_{2}} \cdots X_{n}^{a_{n}}\right)=\theta\left(u_{j}^{p}\right)=\theta\left(u_{j} \cdot 1\right)=u_{j} \theta(1)=u_{j} \in I .
$$

F-splitting of the polynomial ring

Check as an exercise that a compatibly split ideal w.r.t. θ must be a monomial ideal. \square

Proposition/Exercise (Knutson)

Let $<$ be a monomial order on R. Then, for any $g \in R$, either $\operatorname{Tr}(\operatorname{in}(g))=0$ or $\operatorname{Tr}(\operatorname{in}(g))=\operatorname{in}(\operatorname{Tr}(g))$.

Corollary

Let $<$ be a monomial order on R. If $I \subset R$ is an ideal such that there is $f \in I^{[p]}: I$ with, $\operatorname{in}(f)=X_{1}^{p-1} \ldots X_{n}^{p-1}$, then R / I is F-split and $\operatorname{in}(I)$ is a squarefree monomial ideal.

Let $X=\left(X_{i j}\right)$ be a $r \times s$ generic matrix, and suppose $r \leq s$. Let $R=K[X]$ and $I \subset R$ the ideal generated by the maximal minors of X. Then I is a prime ideal of height $s-r+1$, and contains the complete intersection $C=\left(\delta_{1}, \ldots, \delta_{s-r+1}\right) \subset R$, where the δ_{i} 's, as well as the α_{j} 's and the β_{j} 's, where j runs from 1 to $r-1$, are the minors whose main diagonals are illustrated in the picture below.

Put $\Delta=\prod_{i=1}^{r-1} \alpha_{i} \prod_{i=1}^{s-r+1} \delta_{i} \prod_{i=1}^{r-1} \beta_{i} \in R$, and notice that

$$
\mu^{p-1} \in \operatorname{supp}\left(\Delta^{p-1}\right), \quad \text { where } \mu=\prod_{i=1}^{r} \prod_{j=1}^{s} X_{i j}:
$$

indeed, if $<$ is the lexicographic term order with

$$
X_{11}>X_{12}>\ldots>X_{1 s}>X_{21}>\ldots>X_{2 s}>\ldots>X_{r s}
$$

then in $(\Delta)=\mu$, so that in $\left(\Delta^{p-1}\right)=\operatorname{in}(\Delta)^{p-1}=\mu^{p-1}$.
Therefore $\theta=\Delta^{p-1} \star \operatorname{Tr}$ is an F-splitting of R, and since $C \Delta^{p-1} \subset C^{[p]}$, the ideal C is compatibly split w.r.t. θ. Since I is a prime ideal containing C and ht $I=$ ht C, then $I=C: f$ for some $f \in R$. So I is a compatibly split ideal w.r.t. θ.

The ideal of maximal minors of a generic matrix

Indeed, one can show that, for any positive integer $t \leq r$, the ideal I_{t} generated by the t-minors of X is compatibly split w.r.t. θ, using a result of De Concini, Eisenbud and Process stating that

$$
\Delta \in I_{t}^{\left(\mathrm{ht} I_{t}\right)}
$$

Recently, Lisa Seccia even proved that any I_{t} can be obtained by iteratively taking colons and sums starting from Δ, as we did for $I=I_{r}$.

Anyway, by what previously said, we get that in (I) is a squarefree monomial ideal. This is an important information, for example we can deduce from a result of Conca and myself that

$$
\operatorname{reg}(\operatorname{in}(I))=\operatorname{reg}(I)=r
$$

where the second equality holds since the Eagon-Northcott complex resolves I.

If $1 \leq i_{1}<\ldots<i_{r} \leq s$, denoting by $\left[i_{1} \ldots i_{r}\right]$ the r-minor of X insisting on the columns i_{1}, \ldots, i_{r}, one has

$$
\operatorname{in}\left(\left[i_{1} \ldots i_{r}\right]\right)=X_{1 i_{1}} \cdots X_{r i r}
$$

so $\left\{\left[i_{1} \ldots i_{r}\right]: 1 \leq i_{1}<\ldots<i_{r} \leq s\right\}$ is a Gröbner basis of I, because
(1) $I=\left(\left[i_{1} \ldots i_{r}\right]: 1 \leq i_{1}<\ldots<i_{r} \leq s\right)$.
(2) $\operatorname{in}\left(\left[i_{1} \ldots i_{r}\right]\right) \neq \operatorname{in}\left(\left[j_{1} \ldots j_{r}\right]\right)$ if $\left[i_{1} \ldots i_{r}\right] \neq\left[j_{1} \ldots j_{r}\right]$.
(3) in (I) has a linear resolution.

All of this was already known, but the same argument gives the following...

A general statement

Proposition

Let $I \subset R=K\left[X_{1}, \ldots, X_{n}\right]$ be a homogeneous ideal which is compatibly split w.r.t. $f \star \operatorname{Tr}$ with $\operatorname{in}(f)=X_{1}^{p-1} \ldots X_{n}^{p-1}$. If I has a linear resolution, then there exists a minimal system of generators of I which is a Gröbner basis.

An open question about the ideal of maximal minors of a generic matrix

We conclude stating a problem about maximal minors. Whenever $1 \leq i_{1}<\ldots<i_{r} \leq s$, from the previous discussion, it follows that there is a writing:

$$
\Delta^{p-1}\left[i_{1} \ldots i_{r}\right]=\sum_{1 \leq j_{1}<\ldots<j_{r} \leq s} f_{j_{1}, \ldots, j_{r}}^{i_{1}, \ldots, i_{r}}\left[j_{1} \ldots j_{r}\right]^{p}, \quad f_{j_{1}, \ldots, j_{r}}^{i_{1}, \ldots, i_{r}} \in R .
$$

It is not known, at least to my knowledge, an explicit writing like above. It would be interesting to know one minimizing the set

$$
\left\{1 \leq j_{1}<\ldots<j_{r} \leq s: f_{j_{1}, \ldots, j_{r}}^{i_{1}, \ldots, i_{r}} \neq 0\right\}
$$

Thank you for the attention!

