F-splittings of the polynomial ring and compatibly split homogeneous ideals

Virtual Commutative Algebra Seminars, IIT Bombey

September 1, 2020

Matteo Varbaro (Università degli Studi di Genova)

Let R be a Noetherian ring of prime characteristic p. The **Frobenius map** on R is the ring homomorphism

$$F: R \longrightarrow R.$$
$$r \mapsto r^p$$

Denote by F_*R the *R*-module obtained restricting the scalars:

- $F_*R = R$ as additive group;
- $r \cdot x = r^p x$ for all $r \in R$ and $x \in F_*R$.

In this way we can think at F as the map of R-modules $F : R \longrightarrow F_*R$ sending $r \in R$ to $r^p \in F_*R = R$.

F-pure and F-split rings

Definition

R is *F*-**pure** if $F : R \to F_*R$ is a pure map of *R*-modules. That is, $F \otimes 1_M : M \to F_*R \otimes_R M$ is injective for any *R*-module *M*.

Remark/Exercise

- If *R* is *F*-pure, then it is reduced.
- If *R* is regular, then it is *F*-pure (since *F*_{*}*R* is a faithfully flat *R*-module by Kunz's theorem).

Definition

R is *F*-**split** if $F : R \to F_*R$ is a split-inclusion of *R*-modules. In this case, a map $\theta \in \operatorname{Hom}_R(F_*R, R)$ such that $\theta \circ F = \mathbf{1}_R$ is called an *F*-splitting of *R*.

Remark/Exercise

If R is F-split, then it is F-pure.

Assume R is F-split, and fix an F-splitting $\theta \in \operatorname{Hom}_R(F_*R, R)$. We say that an ideal $I \subset R$ is **compatibly split** (with respect to θ) if $\theta(I) \subset I$.

Remark

Of course $I \subset \theta(I)$ for any ideal $I \subset R$. In fact, if $r \in I$, then $r^p \in I$ and $\theta(r^p) = \theta(F(r)) = r$. In particular, an ideal $I \subset R$ is compatibly split if and only if $I = \theta(I)$.

If *I* is compatibly split, then $\overline{\theta}$: $F_*(R/I) = (F_*R)/I \rightarrow R/I$ is a well-defined map of Abelian groups. It is straightforward to check that it is also a map of R/I-modules. Hence $\overline{\theta}$ is an *F*-splitting of R/I, and then R/I is *F*-split.

Compatibly split ideals

Proposition

Let R be F-split, and fix an F-splitting $\theta \in \operatorname{Hom}_{R}(F_{*}R, R)$.

• If $I \subset R$ is a compatibly split ideal, so is I : J for all $J \subset R$.

2 If $I, J \subset R$ are compatibly split ideals, so are $I \cap J$ and I + J.

Proof. Let us prove (1): If $r \in \theta(I : J)$ and $x \in J$, then $r = \theta(y)$ where xy, and so x^py , belongs to I. So $xr = x\theta(y) = \theta(x \cdot y) = \theta(x^py) \in I$. Point (2) is straightforward to show. \Box

Example

Let *K* be a field of positive characteristic. The reduced ring R = K[X, Y]/(X(X + Y)Y) is not *F*-split: in fact, if there was an *F*-splitting of *R*, (0) would be a compatibly split ideal, and so (x) = (0) : (x + y)y, (x + y) = (0) : xy, (y) = (0) : x(x + y) and $(x(x + y)) = (x) \cap (x + y)$ would be compatibly split (where $x = \overline{X}$ and $y = \overline{Y}$). Hence the ideal $I = (x(x + y), y) = (x^2, y)$ would be compatibly split, whereas it is not even radical.

Even if there are rings R that are F-pure but not F-split, in some context the two concepts are the same:

Proposition

Assume that R satisfyies one of the following conditions:

- F_*R is a finitely generated *R*-module.
- R = ⊕_{i∈ℤ} R_i is a graded ring having a unique homogeneous ideal m which is maximal by inclusion and such that R₀ is a complete local ring.

Then *R* is *F*-pure if and only if it is *F*-split. In (2), these two properties are furthermore equivalent to the injectivity of the map $F \otimes 1_E : E \to M \otimes_R E$ where *E* is the injective hull of R/\mathfrak{m} .

Since we will work with Noetherian \mathbb{N} -graded rings $R = \bigoplus_{i \in \mathbb{N}} R_i$ with R_0 a field, which automatically satisfy (2), for this seminar we are allowed to confuse the *F*-pure and *F*-split notions.

From now on K is a perfect field of positive characteristic p, and $R = K[X_1, ..., X_n]$ the polynomial ring in n variables over K.

Remark/Exercise

 F_*R is a free *R*-module of rank p^n . An *R*-basis is given by the set

$$\{X_1^{a_1}X_2^{a_2}\cdots X_n^{a_n}: 0 \le a_i$$

In particular, R is F-split.

We want to study the *F*-splittings of *R*. Of course $\text{Hom}_R(F_*R, R)$ is a free *R*-module of rank p^n and *R*-basis dual to the one of the above remark, say $\{\phi_{a_1,a_2,\ldots,a_n}: 0 \le a_i .$

Furthermore, given $f_{a_1,a_2,...,a_n} \in R$, the element

$$\theta = \sum_{0 \leq a_i < p} f_{a_1, a_2, \dots, a_n} \cdot \phi_{a_1, a_2, \dots, a_n} \in \operatorname{Hom}_R(F_*R, R)$$

is an *F*-splitting of *R* if and only if $f_{0,0,\ldots,0} = 1$.

Recall that F_*R , beyond being an *R*-module, is a ring (isomorphic to *R*), so it makes sense to consider the following F_*R -module structure on Hom_{*R*}(F_*R, R):

$$f \star heta : F_*R o R \qquad \forall \ f \in F_*R, heta \in \operatorname{Hom}_R(F_*R, R) \ g \mapsto heta(fg)$$

To understand the F_*R -module structure of $\operatorname{Hom}_R(F_*R, R)$, call $\operatorname{Tr} := \phi_{p-1,p-1,\dots,p-1}$. Then the following is an isomorphism of F_*R -modules:

$$\Psi: F_*R \to \operatorname{Hom}_R(F_*R, R)$$

 $f \mapsto f \star \operatorname{Tr}$

The fact that Ψ is an injective map of F_*R -modules is clear. For the surjectivity, just notice that, if a_1, \ldots, a_n are such that $0 \le a_i < p$ for all *i*, we have $\phi_{a_1,\ldots,a_n} = X_1^{p-a_1-1} \cdots X_n^{p-a_n-1} \star \text{Tr.}$

So, there is a 1-1 correspondence between polynomials of R and elements of $\operatorname{Hom}_R(F_*R, R)$, given by $f \leftrightarrow f \star \operatorname{Tr}$. Furthermore, $f \star \operatorname{Tr}$ is an F-splitting of R if and only if the following two conditions hold true simultaneously:

• $X_1^{p-1} \cdots X_n^{p-1} \in \operatorname{supp}(f)$ and its coefficient in f is 1.

② If $X_1^{u_1} \cdots X_n^{u_n} \in \text{supp}(f)$ and $u_1 \equiv \ldots \equiv u_n \equiv -1 \pmod{p}$, then $u_i = p - 1 \forall i = 1, \ldots, n$.

Remark/Exercise

Notice that, if R is equipped with a positive grading, (i.e. $\deg(X_i)$ is a positive integer for all i = 1, ..., n), then the second condition above is automatic whenever f is a homogeneous polynomial satisfying (1).

Definition

If
$$I \subset R$$
 is an ideal, then $I^{[p]} = (f^p : f \in I)$. Equivalently,
 $I^{[p]} = (f^p : f \in \mathcal{I})$ whenever $I = (\mathcal{I})$.

Proposition

For any $f \in R$ and any ideal $I \subset R$, we have:

$$(f \star \operatorname{Tr})(I) \subset I \Leftrightarrow f \in I^{[p]} : I.$$

Therefore, given an ideal $I \subset R$, if we can find a polynomial $f \in I^{[p]} : I$ such that

- $X_1^{p-1} \cdots X_n^{p-1} \in \operatorname{supp}(f)$ and its coefficient in f is 1;
- 2 If $X_1^{u_1} \cdots X_n^{u_n} \in \operatorname{supp}(f)$ and $u_1 \equiv \ldots \equiv u_n \equiv -1 \pmod{p}$, then $u_i = p - 1 \forall i = 1, \ldots, n$,

then $f \star \text{Tr}$ is an *F*-splitting of *R* for which *I* is compatibly split. In particular *R*/*I* is *F*-split.

Theorem (Fedder's criterion)

Equip *R* with a positive grading, and consider a homogeneous ideal $I \subset R$. The following facts are equivalent:

- R/I is F-split.
- ② There is an F-splitting of R for which I is compatibly split.

$$I^{[p]}: I \not\subset (X_1^p, \ldots, X_n^p).$$

The third condition above can be rephrased like this: there is $f \in I^{[p]}$: I such that $X_1^{p-1} \cdots X_n^{p-1} \in \text{supp}(f)$ and its coefficient in f is 1; in this case I is compatibly split with respect to the *F*-splitting $f \star \text{Tr.}$ What if, furthermore, there is a monomial order such that

$$in(f) = X_1^{p-1} \cdots X_n^{p-1}$$
 ???

First of all, let us see what are the compatibly split ideals of the F-splitting of R

$$\theta = X_1^{p-1} \cdots X_n^{p-1} \star \operatorname{Tr} \in \operatorname{Hom}_R(F_*R, R).$$

Proposition

The compatibly split ideals w.r.t. θ are precisely the squarefree monomial ideals of R.

Proof. Let $I \subset R$ be an ideal generated by squarefree monomials $u_1, \ldots, u_k \in R$. As an *R*-submodule of F_*R , *I* is generated by

$$\{u_j X_1^{a_1} X_2^{a_2} \cdots X_n^{a_n} : j = 1, \dots, k, \ 0 \le a_i$$

Note that $\theta(u_j X_1^{a_1} X_2^{a_2} \cdots X_n^{a_n}) \neq 0$ iff $X_1^{a_1} X_2^{a_2} \cdots X_n^{a_n} = u_j^{p-1}$, so:

$$\theta(u_j X_1^{a_1} X_2^{a_2} \cdots X_n^{a_n}) = \theta(u_j^p) = \theta(u_j \cdot 1) = u_j \theta(1) = u_j \in I.$$

Check as an exercise that a compatibly split ideal w.r.t. θ must be a monomial ideal. \Box

Proposition/Exercise (Knutson)

Let < be a monomial order on R. Then, for any $g \in R$, either Tr(in(g)) = 0 or Tr(in(g)) = in(Tr(g)).

Corollary

Let < be a monomial order on R. If $I \subset R$ is an ideal such that there is $f \in I^{[p]} : I$ with, $in(f) = X_1^{p-1} \cdots X_n^{p-1}$, then R/I is F-split and in(I) is a squarefree monomial ideal.

Let $X = (X_{ij})$ be a $r \times s$ generic matrix, and suppose $r \leq s$. Let R = K[X] and $I \subset R$ the ideal generated by the maximal minors of X. Then I is a prime ideal of height s - r + 1, and contains the complete intersection $C = (\delta_1, \ldots, \delta_{s-r+1}) \subset R$, where the δ_i 's, as well as the α_j 's and the β_j 's, where j runs from 1 to r - 1, are the minors whose main diagonals are illustrated in the picture below.

Put
$$\Delta = \prod_{i=1}^{r-1} \alpha_i \prod_{i=1}^{s-r+1} \delta_i \prod_{i=1}^{r-1} \beta_i \in R$$
, and notice that

$$\mu^{p-1} \in \operatorname{supp}(\Delta^{p-1}), \text{ where } \mu = \prod_{i=1}^{r} \prod_{j=1}^{s} X_{ij}:$$

indeed, if < is the lexicographic term order with

$$X_{11} > X_{12} > \ldots > X_{1s} > X_{21} > \ldots > X_{2s} > \ldots > X_{rs},$$

then $in(\Delta) = \mu$, so that $in(\Delta^{p-1}) = in(\Delta)^{p-1} = \mu^{p-1}$.

Therefore $\theta = \Delta^{p-1} \star \text{Tr}$ is an *F*-splitting of *R*, and since $C\Delta^{p-1} \subset C^{[p]}$, the ideal *C* is compatibly split w.r.t. θ . Since *I* is a prime ideal containing *C* and ht I = ht C, then I = C : f for some $f \in R$. So *I* is a compatibly split ideal w.r.t. θ .

Indeed, one can show that, for any positive integer $t \le r$, the ideal I_t generated by the *t*-minors of X is compatibly split w.r.t. θ , using a result of De Concini, Eisenbud and Process stating that

$\Delta \in I_t^{(\mathrm{ht}\,I_t)}.$

Recently, Lisa Seccia even proved that any I_t can be obtained by iteratively taking colons and sums starting from Δ , as we did for $I = I_r$.

Anyway, by what previously said, we get that in(I) is a squarefree monomial ideal. This is an important information, for example we can deduce from a result of Conca and myself that

$$\mathsf{reg}(\mathsf{in}(I)) = \mathsf{reg}(I) = r,$$

where the second equality holds since the Eagon-Northcott complex resolves *I*.

If $1 \le i_1 < \ldots < i_r \le s$, denoting by $[i_1 \ldots i_r]$ the *r*-minor of X insisting on the columns i_1, \ldots, i_r , one has

$$\mathsf{in}([i_1\ldots i_r])=X_{1i_1}\cdots X_{ri_r},$$

so $\{[i_1 \dots i_r] : 1 \le i_1 < \dots < i_r \le s\}$ is a Gröbner basis of I, because

$$I = ([i_1 \dots i_r] : 1 \le i_1 < \dots < i_r \le s).$$

 $in([i_1 \ldots i_r]) \neq in([j_1 \ldots j_r]) if [i_1 \ldots i_r] \neq [j_1 \ldots j_r].$

 \bigcirc in(*I*) has a linear resolution.

All of this was already known, but the same argument gives the following...

Proposition

Let $I \subset R = K[X_1, \ldots, X_n]$ be a homogeneous ideal which is compatibly split w.r.t. $f \star \text{Tr}$ with $in(f) = X_1^{p-1} \cdots X_n^{p-1}$. If I has a linear resolution, then there exists a minimal system of generators of I which is a Gröbner basis.

An open question about the ideal of maximal minors of a generic matrix

We conclude stating a problem about maximal minors. Whenever $1 \le i_1 < \ldots < i_r \le s$, from the previous discussion, it follows that there is a writing:

$$\Delta^{p-1}[i_1 \dots i_r] = \sum_{1 \le j_1 < \dots < j_r \le s} f_{j_1, \dots, j_r}^{i_1, \dots, i_r}[j_1 \dots j_r]^p, \quad f_{j_1, \dots, j_r}^{i_1, \dots, i_r} \in R.$$

It is not known, at least to my knowledge, an explicit writing like above. It would be interesting to know one minimizing the set

$$\{1 \le j_1 < \ldots < j_r \le s : f_{j_1,\ldots,j_r}^{i_1,\ldots,i_r} \ne 0\}.$$

Thank you for the attention!