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Measuring singularities

Given a polynomial f ∈ C[x1, . . . , xN ] vanishing at z ∈ CN , by
definition f is singular at z if ∂f

∂xi
(z) = 0 ∀ i = 1, . . . ,N.

The first way to quantify how singular is f at z is by means of the
multiplicity: The multiplicity of f at z is the largest d such that
∂f (z) = 0 for all differential operators ∂ of order less than d . So

f has multiplicity > 1 at z ⇔ f is singular at z .

If z = 0 ∈ CN , then it is easy to see that the multiplicity of f in z
is simply the degree of the lowest degree term of f .

The multiplicity is a quite rough measurement of singularities
though...
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Curves with multiplicity 2 at the origin

xy = 0 y2 = x3 y2 = x17

> >

The three curves above have multiplicity 2 at the origin. However,
the above singularities are evidently quite different. For today, we
will consider the first singularity better than the second, which in
turns will be better than the third...
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Analytic approach

Given a polynomial f ∈ C[x1, . . . , xN ], let us consider the (almost
everywhere defined) function

CN = R2N → R
z 7→ 1/|f (z)|

We want to measure how fast the above function blows up at a
point z such that f (z) = 0. The faster, the worse is the singularity.

WLOG, from now on we will consider z = 0 (so that f (z) = 0). As
we learnt in the first calculus class, the function is not square
integrable in a neighborhood of 0, that is: the integral∫

B

1

|f |2

does not converge for any neighborhood B of 0.
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Analytic approach

On the other hand, if f is nonsingular at 0, then there exists a
neighborhood B of 0 such that the integral∫

B

1

|f |2λ

converges for all real numbers λ < 1. Does this property
characterize smoothness? NO!

EXAMPLE: If f = xa11 · · · x
aN
N , it is easy to see that∫

B

1

|f |2λ

converges for a small neighborhood B of 0 iff λ < mini{1/ai}. In
particular, if f is a square-free monomial, then the above integral
converges for any λ < 1, as in the smooth case!
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Analytic definition

Def.: The log-canonical threshold of f ∈ m = (x1, . . . , xN) is

lct(f ) = sup{λ ∈ R>0 : ∃ a neighborfood B of 0 s.t.

∫
B

1

|f |2λ
<∞}.

More generally, for each λ ∈ R+, the multiplier ideal (with
coefficient λ) J (λ • f ) of f is the following ideal of C[x1, . . . , xN ]:{
g ∈ C[x1, . . . , xN ] : ∃ a neighborfood B of 0 s.t.

∫
B

|g |2

|f |2λ
<∞

}

[ )[ )[ )[ I λ-axis
J = (1) J 6= (1)

c1 c2 cn

. . . . . .

(1) ) J (c1 • f ) ) J (c2 • f ) ) . . . ) J (cn • f ) ) . . .

The ci above are called jumping numbers. Note that c1 = lct(f ).
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Multiplier ideals in general

Even more generally, one can define the multiplier ideals J (λ • I )
(and so the jumping numbers and the log-canonical threshold) for
any ideal I = (f1, . . . , fr ) ⊆ m, and not just for a polynomial:{
g ∈ C[x1, . . . , xN ] : ∃ a neighborfood B of 0 s.t.

∫
B

|g |2

(
∑r

i=1 |fi |2)λ
<∞

}
In the words of Lazarsfeld, “the intuition is that these ideals will
measure the singularities of functions f ∈ I , with ‘nastier’
singularities being reflected in ‘deeper’ multiplier ideals”.

There is also a way to define the multiplier ideals via resolution of
singularities (over a field of characteristic 0). Although today we
will not discuss this perspective, it is a fundamental point of view,
providing several techniques to study multiplier ideals.
Furthermore, properties that are not clear from the analytic
approach suddenly become evident from the algebro-geometric
one: e.g., that the log-canonical threshold (indeed all the jumping
numbers) is a rational number!
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Multipliers of some invariant ideals

There are not many examples of ideals for which the multiplier
ideals are known. A first class of examples was provided by Howald
in 2001. He gave an explicit formula for the multiplier ideals of any
monomial ideal.

Recently, in a joint work with Ines Henriques, we provided another
big class of examples: given a vector space V of dimension N over
a field K , we have a ring isomorphism:

S := K [x1, . . . , xN ] ∼= SymV =
⊕
d∈N

Symd V .

If G is a subgroup of GL(V ), then, G acts naturally on S . In such
a situation, the question is the following:

What are the multiplier ideals of the G -invariant ones?
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Multipliers of some invariant ideals

I G = GL(V ) is easy (the only G -invariant ideals are the
powers of the irrelevant ideal m):

J (λ •md) = mbλdc+1−N .

I Intermediate G ?????

I G = {1} is hopeless (all the ideals are G -invariant).
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Multipliers of some invariant ideals

Theorem (Henriques, -): We give an explicit description of the
multiplier ideals of all the homogeneous G -invariant ideals in these
cases (E and F are finite K -vector spaces and char(K ) = 0):

I V = E ⊗ F and G = GL(E )×GL(F ) (the G -invariant ideals
are ideals of minors of a generic matrix, their products, their
symbolic powers, sums of these, and more...)

I V = Sym2 E and G = GL(E ) (the G -invariant ideals are
ideals of minors of a generic symmetric matrix, their products,
their symbolic powers, sums of these, and more...)

I V =
∧2 E and G = GL(E ) (the G -invariant ideals are ideals

of pfaffians of a generic skew-symmetric matrix, their
products, their symbolic powers, sums of these, and more...)
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Reduction to positive characteristic

How did we do? Actually, we proved more, in fact we developed a
strategy to compute all the (generalized) test ideals of some (not
all but enough) invariant ideals in characteristic p > 0 and by a
result of Hara-Yoshida their “limit as p →∞” will be the
multiplier ideal.

Let me notice that the reduction to characteristic p in this
situation is quite surprising, since the G -invariant ideals in positive
characteristic are not well-understood (whereas in characteristic 0
they are by the work of De Concini, Eisenbud and Procesi).

In the final part of the talk we will introduce the F -pure threshold,
that is the characteristic-p-analog of the log-canonical threshold.
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F -pure threshold

Let K be a field of characteristic p > 0 and S = K [x1, . . . , xN ].

The following fundamental ring map

F : S → S

f 7→ f p

is called the Frobenius map.

For each positive integer e and ideal I ⊆ S , we denote by
I [p

e ] = (F e(I )). In other words, if I = (f1, . . . , fr ), then

I [p
e ] = (f p

e

1 , . . . , f p
e

r ).

Notice that this definition does not depend on the choice of
generators because char(K ) = p !
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F -pure threshold

Let f ∈ S vanishing at 0 (i.e. f ∈ m = (x1, . . . , xN) and e be a
positive integer. Define

νf (e) = max{s ∈ N : f s /∈ m[pe ]}

We have:

I 0 ≤ νf (e) ≤ pe

I νf (e + 1) ≥ p · νf (e) (f s /∈ m[pe ] ⇒ (f s)p /∈ m[pe+1]).

So {ν(e)/pe}e∈N is a monotone sequence in [0, 1], thus it admits a
limit. The F -pure threshold of f is:

fpt(f ) = lim
e→∞

νf (e)/pe .
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F -pure threshold

Notice that 0 ≤ fpt(f ) ≤ 1, and it is 1 if f is smooth at 0.

Once again, this property does not characterize smoothness:

Let f ∈ Z[x , y , z ] be a homogeneous polynomial of degree 3 and
with an isolated singularity at 0. By reducing coefficients mod p,
thus, we get a polynomial fp defining an elliptic curve Ep ⊆ P2.
Recently, Bhatt proved that:

fpt(fp) =

{
1 if Ep is ordinary

1− 1/p if Ep is supersingular

Recall that, by a classical result of Elkies, Ep is ordinary for
infinitely many primes p as well it is supersingular for infinitely
primes p.
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What has fpt to do with lct?

To define the log-canonical threshold over C, we tried to control
the growth of the function 1/|f |2λ. In positive characteristic, can
we even define fractional powers?

Let K = Z/pZ, and

S1/pe = K [x
1/pe

1 , . . . , x
1/pe

N ] ⊇ S .

For any polynomial f we can consider its fractional power f c as an
element of S1/pe , where c is a rational number of the form a/pe .
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Let f ∈ m. Since we are in positive characteristic, we cannot
integrate nor take the absolute value. We can just say whether the
function 1/f c does or does not blow up at 0, meaning that f c is or
is not in mS1/pe (c = a/pe). It is immediate to see that:

fpt(f ) = sup{c = a/pe ∈ Z[1/p] : f c /∈ mS1/pe}.

If g ∈ Z[x1, . . . , xN ] we denote by gp and by g0 the images of g in
Z/pZ[x1, . . . , xN ] and, respectively, in C[x1, . . . , xN ].

Hara-Yoshida: limp→∞ fpt(gp) = lct(g0).
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Test ideals and rationality

Analogously to the characteristic 0 case, one can define the test
ideals τ(λ • I ) for all ideals I ⊆ m and λ ∈ R+. If J is an ideal of
Z[x1, . . . , xN ], Hara-Yoshida proved that τ(λ • Jp) = J (λ • J0)p for
p large enough prime number (depending on λ).

[ )[ )[ )[ I λ-axis
τ = (1) τ 6= (1)

c1 c2 cn

. . . . . .

(1) ) τ(c1 • I ) ) τ(c2 • I ) ) . . . ) τ(cn • I ) ) . . .

The ci ’s are called F -jumping numbers (c1 = fpt(I )).

Blickle-Mustaţă-Smith: In our setting, all the F -jumping numbers
(so in particular the F -pure threshold) are rational numbers.
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I M. Blickle, M. Mustaţă, and K.E. Smith, Discreteness and
rationality of F -thresholds, Michigan Math. J. 57 (2008),
43–61.

I N.Hara, K.I. Yoshida, A generalization of tight closure and
multiplier ideals, Trans. Amer. Math. Soc. 355 (2003),
3143–3174.

I I.B. Henriques, M. Varbaro, Test, multiplier and invariant
ideals, arXiv:1407.4324.

18 / 18


