Test and multiplier ideals

Matteo Varbaro

Università degli Studi di Genova

Measuring singularities

Measuring singularities

Given a polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ vanishing at $z \in \mathbb{C}^{N}$, by definition f is singular at z if $\frac{\partial f}{\partial x_{i}}(z)=0 \forall i=1, \ldots, N$.

Measuring singularities

Given a polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ vanishing at $z \in \mathbb{C}^{N}$, by definition f is singular at z if $\frac{\partial f}{\partial x_{i}}(z)=0 \forall i=1, \ldots, N$.

The first way to quantify how singular is f at z is by means of the multiplicity:

Measuring singularities

Given a polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ vanishing at $z \in \mathbb{C}^{N}$, by definition f is singular at z if $\frac{\partial f}{\partial x_{i}}(z)=0 \forall i=1, \ldots, N$.

The first way to quantify how singular is f at z is by means of the multiplicity: The multiplicity of f at z is the largest d such that $\partial f(z)=0$ for all differential operators ∂ of order less than d.

Measuring singularities

Given a polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ vanishing at $z \in \mathbb{C}^{N}$, by definition f is singular at z if $\frac{\partial f}{\partial x_{i}}(z)=0 \forall i=1, \ldots, N$.

The first way to quantify how singular is f at z is by means of the multiplicity: The multiplicity of f at z is the largest d such that $\partial f(z)=0$ for all differential operators ∂ of order less than d. So
f has multiplicity >1 at $z \Leftrightarrow f$ is singular at z.

Measuring singularities

Given a polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ vanishing at $z \in \mathbb{C}^{N}$, by definition f is singular at z if $\frac{\partial f}{\partial x_{i}}(z)=0 \forall i=1, \ldots, N$.

The first way to quantify how singular is f at z is by means of the multiplicity: The multiplicity of f at z is the largest d such that $\partial f(z)=0$ for all differential operators ∂ of order less than d. So f has multiplicity >1 at $z \Leftrightarrow f$ is singular at z.

If $z=0 \in \mathbb{C}^{N}$, then it is easy to see that the multiplicity of f in z is simply the degree of the lowest degree term of f.

Measuring singularities

Given a polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ vanishing at $z \in \mathbb{C}^{N}$, by definition f is singular at z if $\frac{\partial f}{\partial x_{i}}(z)=0 \forall i=1, \ldots, N$.

The first way to quantify how singular is f at z is by means of the multiplicity: The multiplicity of f at z is the largest d such that $\partial f(z)=0$ for all differential operators ∂ of order less than d. So f has multiplicity >1 at $z \Leftrightarrow f$ is singular at z.

If $z=0 \in \mathbb{C}^{N}$, then it is easy to see that the multiplicity of f in z is simply the degree of the lowest degree term of f.

The multiplicity is a quite rough measurement of singularities though...

Curves with multiplicity 2 at the origin

Curves with multiplicity 2 at the origin

Curves with multiplicity 2 at the origin

The three curves above have multiplicity 2 at the origin.

Curves with multiplicity 2 at the origin

The three curves above have multiplicity 2 at the origin. However, the above singularities are evidently quite different.

Curves with multiplicity 2 at the origin

The three curves above have multiplicity 2 at the origin. However, the above singularities are evidently quite different. For today, we will consider the first singularity better than the second, which in turns will be better than the third...

Analytic approach

Analytic approach

Given a polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$, let us consider the (almost everywhere defined) function

$$
\begin{aligned}
\mathbb{C}^{N}=\mathbb{R}^{2 N} & \rightarrow \mathbb{R} \\
z & \mapsto 1 /|f(z)|
\end{aligned}
$$

Analytic approach

Given a polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$, let us consider the (almost everywhere defined) function

$$
\begin{aligned}
\mathbb{C}^{N}=\mathbb{R}^{2 N} & \rightarrow \mathbb{R} \\
z & \mapsto 1 /|f(z)|
\end{aligned}
$$

We want to measure how fast the above function blows up at a point z such that $f(z)=0$.

Analytic approach

Given a polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$, let us consider the (almost everywhere defined) function

$$
\begin{aligned}
\mathbb{C}^{N}=\mathbb{R}^{2 N} & \rightarrow \mathbb{R} \\
z & \mapsto 1 /|f(z)|
\end{aligned}
$$

We want to measure how fast the above function blows up at a point z such that $f(z)=0$. The faster, the worse is the singularity.

Analytic approach

Given a polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$, let us consider the (almost everywhere defined) function

$$
\begin{aligned}
\mathbb{C}^{N}=\mathbb{R}^{2 N} & \rightarrow \mathbb{R} \\
z & \mapsto 1 /|f(z)|
\end{aligned}
$$

We want to measure how fast the above function blows up at a point z such that $f(z)=0$. The faster, the worse is the singularity.

WLOG, from now on we will consider $z=0$ (so that $f(z)=0$).

Analytic approach

Given a polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$, let us consider the (almost everywhere defined) function

$$
\begin{aligned}
\mathbb{C}^{N}=\mathbb{R}^{2 N} & \rightarrow \mathbb{R} \\
z & \mapsto 1 /|f(z)|
\end{aligned}
$$

We want to measure how fast the above function blows up at a point z such that $f(z)=0$. The faster, the worse is the singularity.

WLOG, from now on we will consider $z=0$ (so that $f(z)=0$). As we learnt in the first calculus class, the function is not square integrable in a neighborhood of 0 ,

Analytic approach

Given a polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$, let us consider the (almost everywhere defined) function

$$
\begin{aligned}
\mathbb{C}^{N}=\mathbb{R}^{2 N} & \rightarrow \mathbb{R} \\
z & \mapsto 1 /|f(z)|
\end{aligned}
$$

We want to measure how fast the above function blows up at a point z such that $f(z)=0$. The faster, the worse is the singularity.

WLOG, from now on we will consider $z=0$ (so that $f(z)=0$). As we learnt in the first calculus class, the function is not square integrable in a neighborhood of 0 , that is: the integral

$$
\int_{B} \frac{1}{|f|^{2}}
$$

does not converge for any neighborhood B of 0 .

Analytic approach

Analytic approach

On the other hand, if f is nonsingular at 0 , then there exists a neighborhood B of 0 such that the integral

$$
\int_{B} \frac{1}{|f|^{2 \lambda}}
$$

converges for all real numbers $\lambda<1$.

Analytic approach

On the other hand, if f is nonsingular at 0 , then there exists a neighborhood B of 0 such that the integral

$$
\int_{B} \frac{1}{|f|^{2 \lambda}}
$$

converges for all real numbers $\lambda<1$. Does this property characterize smoothness?

Analytic approach

On the other hand, if f is nonsingular at 0 , then there exists a neighborhood B of 0 such that the integral

$$
\int_{B} \frac{1}{|f|^{2 \lambda}}
$$

converges for all real numbers $\lambda<1$. Does this property characterize smoothness? NO!

Analytic approach

On the other hand, if f is nonsingular at 0 , then there exists a neighborhood B of 0 such that the integral

$$
\int_{B} \frac{1}{|f|^{2 \lambda}}
$$

converges for all real numbers $\lambda<1$. Does this property characterize smoothness? NO!

EXAMPLE: If $f=x_{1}^{a_{1}} \cdots x_{N}^{a_{N}}$, it is easy to see that

$$
\int_{B} \frac{1}{|f|^{2 \lambda}}
$$

converges for a small neighborhood B of 0 iff $\lambda<\min _{i}\left\{1 / a_{i}\right\}$.

Analytic approach

On the other hand, if f is nonsingular at 0 , then there exists a neighborhood B of 0 such that the integral

$$
\int_{B} \frac{1}{|f|^{2 \lambda}}
$$

converges for all real numbers $\lambda<1$. Does this property characterize smoothness? NO!

EXAMPLE: If $f=x_{1}^{a_{1}} \cdots x_{N}^{a_{N}}$, it is easy to see that

$$
\int_{B} \frac{1}{|f|^{2 \lambda}}
$$

converges for a small neighborhood B of 0 iff $\lambda<\min _{i}\left\{1 / a_{i}\right\}$. In particular, if f is a square-free monomial, then the above integral converges for any $\lambda<1$, as in the smooth case!

Analytic definition

Analytic definition

Def.: The log-canonical threshold of $f \in \mathfrak{m}=\left(x_{1}, \ldots, x_{N}\right)$ is
$\operatorname{lct}(f)=\sup \left\{\lambda \in \mathbb{R}_{>0}: \exists\right.$ a neighborfood B of 0 s.t. $\left.\int_{B} \frac{1}{|f|^{2 \lambda}}<\infty\right\}$.

Analytic definition

Def.: The log-canonical threshold of $f \in \mathfrak{m}=\left(x_{1}, \ldots, x_{N}\right)$ is
$\operatorname{lct}(f)=\sup \left\{\lambda \in \mathbb{R}_{>0}: \exists\right.$ a neighborfood B of 0 s.t. $\left.\int_{B} \frac{1}{|f|^{2 \lambda}}<\infty\right\}$.
More generally, for each $\lambda \in \mathbb{R}_{+}$, the multiplier ideal (with coefficient λ) $\mathcal{J}(\lambda \bullet f)$ of f is the following ideal of $\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$:
$\left\{g \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]: \exists\right.$ a neighborfood B of 0 s.t. $\left.\int_{B} \frac{|g|^{2}}{|f|^{2 \lambda}}<\infty\right\}$

Analytic definition

Def.: The log-canonical threshold of $f \in \mathfrak{m}=\left(x_{1}, \ldots, x_{N}\right)$ is
$\operatorname{lct}(f)=\sup \left\{\lambda \in \mathbb{R}_{>0}: \exists\right.$ a neighborfood B of 0 s.t. $\left.\int_{B} \frac{1}{|f|^{2 \lambda}}<\infty\right\}$.
More generally, for each $\lambda \in \mathbb{R}_{+}$, the multiplier ideal (with coefficient λ) $\mathcal{J}(\lambda \bullet f)$ of f is the following ideal of $\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$:
$\left\{g \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]: \exists\right.$ a neighborfood B of 0 s.t. $\left.\int_{B} \frac{|g|^{2}}{|f|^{2 \lambda}}<\infty\right\}$

$$
(1) \supsetneq \mathcal{J}\left(c_{1} \bullet f\right) \supsetneq \mathcal{J}\left(c_{2} \bullet f\right) \supsetneq \ldots \supsetneq \mathcal{J}\left(c_{n} \bullet f\right) \supsetneq \ldots
$$

Analytic definition

Def.: The log-canonical threshold of $f \in \mathfrak{m}=\left(x_{1}, \ldots, x_{N}\right)$ is
$\operatorname{lct}(f)=\sup \left\{\lambda \in \mathbb{R}_{>0}: \exists\right.$ a neighborfood B of 0 s.t. $\left.\int_{B} \frac{1}{|f|^{2 \lambda}}<\infty\right\}$.
More generally, for each $\lambda \in \mathbb{R}_{+}$, the multiplier ideal (with coefficient λ) $\mathcal{J}(\lambda \bullet f)$ of f is the following ideal of $\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$:
$\left\{g \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]: \exists\right.$ a neighborfood B of 0 s.t. $\left.\int_{B} \frac{|g|^{2}}{|f|^{2 \lambda}}<\infty\right\}$

$$
(1) \supsetneq \mathcal{J}\left(c_{1} \bullet f\right) \supsetneq \mathcal{J}\left(c_{2} \bullet f\right) \supsetneq \ldots \supsetneq \mathcal{J}\left(c_{n} \bullet f\right) \supsetneq \ldots
$$

The c_{i} above are called jumping numbers. Note that $c_{1}=\operatorname{lct}(f)$.

Multiplier ideals in general

Multiplier ideals in general

Even more generally, one can define the multiplier ideals $\mathcal{J}(\lambda \bullet I)$ (and so the jumping numbers and the log-canonical threshold) for any ideal $I=\left(f_{1}, \ldots, f_{r}\right) \subseteq \mathfrak{m}$, and not just for a polynomial:
$\left\{g \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]: \exists\right.$ a neighborfood B of 0 s.t. $\left.\int_{B} \frac{|g|^{2}}{\left(\sum_{i=1}^{r}\left|f_{i}\right|^{2}\right)^{\lambda}}<\infty\right\}$

Multiplier ideals in general

Even more generally, one can define the multiplier ideals $\mathcal{J}(\lambda \bullet I)$ (and so the jumping numbers and the log-canonical threshold) for any ideal $I=\left(f_{1}, \ldots, f_{r}\right) \subseteq \mathfrak{m}$, and not just for a polynomial:
$\left\{g \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]: \exists\right.$ a neighborfood B of 0 s.t. $\left.\int_{B} \frac{|g|^{2}}{\left(\sum_{i=1}^{r}\left|f_{i}\right|^{2}\right)^{\lambda}}<\infty\right\}$
In the words of Lazarsfeld, "the intuition is that these ideals will measure the singularities of functions $f \in I$, with 'nastier' singularities being reflected in 'deeper' multiplier ideals".

Multiplier ideals in general

Even more generally, one can define the multiplier ideals $\mathcal{J}(\lambda \bullet$ I) (and so the jumping numbers and the log-canonical threshold) for any ideal $I=\left(f_{1}, \ldots, f_{r}\right) \subseteq \mathfrak{m}$, and not just for a polynomial:
$\left\{g \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]: \exists\right.$ a neighborfood B of 0 s.t. $\left.\int_{B} \frac{|g|^{2}}{\left(\sum_{i=1}^{r}\left|f_{i}\right|^{2}\right)^{\lambda}}<\infty\right\}$
In the words of Lazarsfeld, "the intuition is that these ideals will measure the singularities of functions $f \in I$, with 'nastier' singularities being reflected in 'deeper' multiplier ideals".

There is also a way to define the multiplier ideals via resolution of singularities (over a field of characteristic 0).

Multiplier ideals in general

Even more generally, one can define the multiplier ideals $\mathcal{J}(\lambda \bullet$ I) (and so the jumping numbers and the log-canonical threshold) for any ideal $I=\left(f_{1}, \ldots, f_{r}\right) \subseteq \mathfrak{m}$, and not just for a polynomial:
$\left\{g \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]: \exists\right.$ a neighborfood B of 0 s.t. $\left.\int_{B} \frac{|g|^{2}}{\left(\sum_{i=1}^{r}\left|f_{i}\right|^{2}\right)^{\lambda}}<\infty\right\}$
In the words of Lazarsfeld, "the intuition is that these ideals will measure the singularities of functions $f \in I$, with 'nastier' singularities being reflected in 'deeper' multiplier ideals".

There is also a way to define the multiplier ideals via resolution of singularities (over a field of characteristic 0). Although today we will not discuss this perspective, it is a fundamental point of view, providing several techniques to study multiplier ideals.

Multiplier ideals in general

Even more generally, one can define the multiplier ideals $\mathcal{J}(\lambda \bullet$ I) (and so the jumping numbers and the log-canonical threshold) for any ideal $I=\left(f_{1}, \ldots, f_{r}\right) \subseteq \mathfrak{m}$, and not just for a polynomial:
$\left\{g \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]: \exists\right.$ a neighborfood B of 0 s.t. $\left.\int_{B} \frac{|g|^{2}}{\left(\sum_{i=1}^{r}\left|f_{i}\right|^{2}\right)^{\lambda}}<\infty\right\}$
In the words of Lazarsfeld, "the intuition is that these ideals will measure the singularities of functions $f \in I$, with 'nastier' singularities being reflected in 'deeper' multiplier ideals".

There is also a way to define the multiplier ideals via resolution of singularities (over a field of characteristic 0). Although today we will not discuss this perspective, it is a fundamental point of view, providing several techniques to study multiplier ideals.
Furthermore, properties that are not clear from the analytic approach suddenly become evident from the algebro-geometric one: e.g., that the log-canonical threshold (indeed all the jumping numbers) is a rational number!

Multipliers of some invariant ideals

Multipliers of some invariant ideals

There are not many examples of ideals for which the multiplier ideals are known.

Multipliers of some invariant ideals

There are not many examples of ideals for which the multiplier ideals are known. A first class of examples was provided by Howald in 2001.

Multipliers of some invariant ideals

There are not many examples of ideals for which the multiplier ideals are known. A first class of examples was provided by Howald in 2001. He gave an explicit formula for the multiplier ideals of any monomial ideal.

Multipliers of some invariant ideals

There are not many examples of ideals for which the multiplier ideals are known. A first class of examples was provided by Howald in 2001. He gave an explicit formula for the multiplier ideals of any monomial ideal.

Recently, in a joint work with Ines Henriques, we provided another big class of examples:

Multipliers of some invariant ideals

There are not many examples of ideals for which the multiplier ideals are known. A first class of examples was provided by Howald in 2001. He gave an explicit formula for the multiplier ideals of any monomial ideal.

Recently, in a joint work with Ines Henriques, we provided another big class of examples: given a vector space V of dimension N over a field K, we have a ring isomorphism:

$$
S:=K\left[x_{1}, \ldots, x_{N}\right] \cong \operatorname{Sym} V=\bigoplus_{d \in \mathbb{N}} \operatorname{Sym}^{d} V
$$

Multipliers of some invariant ideals

There are not many examples of ideals for which the multiplier ideals are known. A first class of examples was provided by Howald in 2001. He gave an explicit formula for the multiplier ideals of any monomial ideal.

Recently, in a joint work with Ines Henriques, we provided another big class of examples: given a vector space V of dimension N over a field K, we have a ring isomorphism:

$$
S:=K\left[x_{1}, \ldots, x_{N}\right] \cong \operatorname{Sym} V=\bigoplus_{d \in \mathbb{N}} \operatorname{Sym}^{d} V
$$

If G is a subgroup of $G L(V)$, then, G acts naturally on S.

Multipliers of some invariant ideals

There are not many examples of ideals for which the multiplier ideals are known. A first class of examples was provided by Howald in 2001. He gave an explicit formula for the multiplier ideals of any monomial ideal.

Recently, in a joint work with Ines Henriques, we provided another big class of examples: given a vector space V of dimension N over a field K, we have a ring isomorphism:

$$
S:=K\left[x_{1}, \ldots, x_{N}\right] \cong \operatorname{Sym} V=\bigoplus_{d \in \mathbb{N}} \operatorname{Sym}^{d} V
$$

If G is a subgroup of $G L(V)$, then, G acts naturally on S. In such a situation, the question is the following:

Multipliers of some invariant ideals

There are not many examples of ideals for which the multiplier ideals are known. A first class of examples was provided by Howald in 2001. He gave an explicit formula for the multiplier ideals of any monomial ideal.

Recently, in a joint work with Ines Henriques, we provided another big class of examples: given a vector space V of dimension N over a field K, we have a ring isomorphism:

$$
S:=K\left[x_{1}, \ldots, x_{N}\right] \cong \operatorname{Sym} V=\bigoplus_{d \in \mathbb{N}} \operatorname{Sym}^{d} V
$$

If G is a subgroup of $G L(V)$, then, G acts naturally on S. In such a situation, the question is the following:

What are the multiplier ideals of the G-invariant ones?

Multipliers of some invariant ideals

Multipliers of some invariant ideals

- $G=G L(V)$ is easy (the only G-invariant ideals are the powers of the irrelevant ideal \mathfrak{m}):

$$
\mathcal{J}\left(\lambda \bullet \mathfrak{m}^{d}\right)=\mathfrak{m}^{\lfloor\lambda d\rfloor+1-N}
$$

Multipliers of some invariant ideals

- $G=G L(V)$ is easy (the only G-invariant ideals are the powers of the irrelevant ideal \mathfrak{m}):

$$
\mathcal{J}\left(\lambda \bullet \mathfrak{m}^{d}\right)=\mathfrak{m}^{\lfloor\lambda d\rfloor+1-N}
$$

- $G=\{1\}$ is hopeless (all the ideals are G-invariant).

Multipliers of some invariant ideals

- $G=G L(V)$ is easy (the only G-invariant ideals are the powers of the irrelevant ideal \mathfrak{m}):

$$
\mathcal{J}\left(\lambda \bullet \mathfrak{m}^{d}\right)=\mathfrak{m}^{\lfloor\lambda d\rfloor+1-N}
$$

- Intermediate G ?????
- $G=\{1\}$ is hopeless (all the ideals are G-invariant).

Multipliers of some invariant ideals

Multipliers of some invariant ideals

Theorem (Henriques, -): We give an explicit description of the multiplier ideals of all the homogeneous G-invariant ideals in these cases (E and F are finite K-vector spaces and $\operatorname{char}(K)=0$):

Multipliers of some invariant ideals

Theorem (Henriques, -): We give an explicit description of the multiplier ideals of all the homogeneous G-invariant ideals in these cases (E and F are finite K-vector spaces and $\operatorname{char}(K)=0$):

- $V=E \otimes F$ and $G=\mathrm{GL}(E) \times \mathrm{GL}(F)$ (the G-invariant ideals are ideals of minors of a generic matrix, their products, their symbolic powers, sums of these, and more...)

Multipliers of some invariant ideals

Theorem (Henriques, -): We give an explicit description of the multiplier ideals of all the homogeneous G-invariant ideals in these cases (E and F are finite K-vector spaces and $\operatorname{char}(K)=0$):

- $V=E \otimes F$ and $G=\mathrm{GL}(E) \times \mathrm{GL}(F)$ (the G-invariant ideals are ideals of minors of a generic matrix, their products, their symbolic powers, sums of these, and more...)
- $V=\operatorname{Sym}^{2} E$ and $G=\mathrm{GL}(E)$ (the G-invariant ideals are ideals of minors of a generic symmetric matrix, their products, their symbolic powers, sums of these, and more...)

Multipliers of some invariant ideals

Theorem (Henriques, -): We give an explicit description of the multiplier ideals of all the homogeneous G-invariant ideals in these cases (E and F are finite K-vector spaces and $\operatorname{char}(K)=0$):

- $V=E \otimes F$ and $G=\mathrm{GL}(E) \times \mathrm{GL}(F)$ (the G-invariant ideals are ideals of minors of a generic matrix, their products, their symbolic powers, sums of these, and more...)
- $V=\operatorname{Sym}^{2} E$ and $G=G L(E)$ (the G-invariant ideals are ideals of minors of a generic symmetric matrix, their products, their symbolic powers, sums of these, and more...)
- $V=\bigwedge^{2} E$ and $G=G L(E)$ (the G-invariant ideals are ideals of pfaffians of a generic skew-symmetric matrix, their products, their symbolic powers, sums of these, and more...)

Reduction to positive characteristic

Reduction to positive characteristic

How did we do?

Reduction to positive characteristic

How did we do? Actually, we proved more, in fact we developed a strategy to compute all the (generalized) test ideals of some (not all but enough) invariant ideals in characteristic $p>0$ and by a result of Hara-Yoshida their "limit as $p \rightarrow \infty$ " will be the multiplier ideal.

Reduction to positive characteristic

How did we do? Actually, we proved more, in fact we developed a strategy to compute all the (generalized) test ideals of some (not all but enough) invariant ideals in characteristic $p>0$ and by a result of Hara-Yoshida their "limit as $p \rightarrow \infty$ " will be the multiplier ideal.

Let me notice that the reduction to characteristic p in this situation is quite surprising, since the G-invariant ideals in positive characteristic are not well-understood

Reduction to positive characteristic

How did we do? Actually, we proved more, in fact we developed a strategy to compute all the (generalized) test ideals of some (not all but enough) invariant ideals in characteristic $p>0$ and by a result of Hara-Yoshida their "limit as $p \rightarrow \infty$ " will be the multiplier ideal.

Let me notice that the reduction to characteristic p in this situation is quite surprising, since the G-invariant ideals in positive characteristic are not well-understood (whereas in characteristic 0 they are by the work of De Concini, Eisenbud and Procesi).

Reduction to positive characteristic

How did we do? Actually, we proved more, in fact we developed a strategy to compute all the (generalized) test ideals of some (not all but enough) invariant ideals in characteristic $p>0$ and by a result of Hara-Yoshida their "limit as $p \rightarrow \infty$ " will be the multiplier ideal.

Let me notice that the reduction to characteristic p in this situation is quite surprising, since the G-invariant ideals in positive characteristic are not well-understood (whereas in characteristic 0 they are by the work of De Concini, Eisenbud and Procesi).

In the final part of the talk we will introduce the F-pure threshold, that is the characteristic- p-analog of the log-canonical threshold.
F-pure threshold

F-pure threshold

Let K be a field of characteristic $p>0$ and $S=K\left[x_{1}, \ldots, x_{N}\right]$.

F-pure threshold

Let K be a field of characteristic $p>0$ and $S=K\left[x_{1}, \ldots, x_{N}\right]$.
The following fundamental ring map

$$
\begin{aligned}
F: S & \rightarrow S \\
f & \mapsto f^{p}
\end{aligned}
$$

is called the Frobenius map.

F-pure threshold

Let K be a field of characteristic $p>0$ and $S=K\left[x_{1}, \ldots, x_{N}\right]$.
The following fundamental ring map

$$
\begin{aligned}
F: S & \rightarrow S \\
f & \mapsto f^{p}
\end{aligned}
$$

is called the Frobenius map.

For each positive integer e and ideal $I \subseteq S$, we denote by $l^{\left[p^{e}\right]}=\left(F^{e}(I)\right)$.

F-pure threshold

Let K be a field of characteristic $p>0$ and $S=K\left[x_{1}, \ldots, x_{N}\right]$.
The following fundamental ring map

$$
\begin{aligned}
F: S & \rightarrow S \\
f & \mapsto f^{p}
\end{aligned}
$$

is called the Frobenius map.
For each positive integer e and ideal $I \subseteq S$, we denote by $I^{\left[p^{e}\right]}=\left(F^{e}(I)\right)$. In other words, if $I=\left(f_{1}, \ldots, f_{r}\right)$, then

$$
I^{\left[p^{e}\right]}=\left(f_{1}^{p^{e}}, \ldots, f_{r}^{p^{e}}\right)
$$

F-pure threshold

Let K be a field of characteristic $p>0$ and $S=K\left[x_{1}, \ldots, x_{N}\right]$.
The following fundamental ring map

$$
\begin{array}{rll}
F: S & \rightarrow S \\
f & \mapsto f^{p}
\end{array}
$$

is called the Frobenius map.
For each positive integer e and ideal $I \subseteq S$, we denote by $I^{\left[p^{e}\right]}=\left(F^{e}(I)\right)$. In other words, if $I=\left(f_{1}, \ldots, f_{r}\right)$, then

$$
I^{\left[p^{e}\right]}=\left(f_{1}^{p^{e}}, \ldots, f_{r}^{p^{e}}\right)
$$

Notice that this definition does not depend on the choice of generators because $\operatorname{char}(K)=p$!
F-pure threshold

F-pure threshold

Let $f \in S$ vanishing at 0 (i.e. $f \in \mathfrak{m}=\left(x_{1}, \ldots, x_{N}\right)$ and e be a positive integer.

F-pure threshold

Let $f \in S$ vanishing at 0 (i.e. $f \in \mathfrak{m}=\left(x_{1}, \ldots, x_{N}\right)$ and e be a positive integer. Define

$$
\nu_{f}(e)=\max \left\{s \in \mathbb{N}: f^{s} \notin \mathfrak{m}^{\left[p^{e}\right]}\right\}
$$

F-pure threshold

Let $f \in S$ vanishing at 0 (i.e. $f \in \mathfrak{m}=\left(x_{1}, \ldots, x_{N}\right)$ and e be a positive integer. Define

$$
\nu_{f}(e)=\max \left\{s \in \mathbb{N}: f^{s} \notin \mathfrak{m}^{\left[p^{e}\right]}\right\}
$$

We have:

- $0 \leq \nu_{f}(e) \leq p^{e}$
- $\nu_{f}(e+1) \geq p \cdot \nu_{f}(e) \quad\left(f^{s} \notin \mathfrak{m}^{\left[p^{e}\right]} \Rightarrow\left(f^{s}\right)^{p} \notin \mathfrak{m}^{\left[p^{e+1}\right]}\right)$.

F-pure threshold

Let $f \in S$ vanishing at 0 (i.e. $f \in \mathfrak{m}=\left(x_{1}, \ldots, x_{N}\right)$ and e be a positive integer. Define

$$
\nu_{f}(e)=\max \left\{s \in \mathbb{N}: f^{s} \notin \mathfrak{m}^{\left[p^{e}\right]}\right\}
$$

We have:

- $0 \leq \nu_{f}(e) \leq p^{e}$
- $\nu_{f}(e+1) \geq p \cdot \nu_{f}(e) \quad\left(f^{s} \notin \mathfrak{m}^{\left[p^{e}\right]} \Rightarrow\left(f^{s}\right)^{p} \notin \mathfrak{m}^{\left[p^{e+1}\right]}\right)$.

So $\left\{\nu(e) / p^{e}\right\}_{e \in \mathbb{N}}$ is a monotone sequence in $[0,1]$, thus it admits a limit.

F-pure threshold

Let $f \in S$ vanishing at 0 (i.e. $f \in \mathfrak{m}=\left(x_{1}, \ldots, x_{N}\right)$ and e be a positive integer. Define

$$
\nu_{f}(e)=\max \left\{s \in \mathbb{N}: f^{s} \notin \mathfrak{m}^{\left[p^{e}\right]}\right\}
$$

We have:

- $0 \leq \nu_{f}(e) \leq p^{e}$
- $\nu_{f}(e+1) \geq p \cdot \nu_{f}(e) \quad\left(f^{s} \notin \mathfrak{m}^{\left[p^{e}\right]} \Rightarrow\left(f^{s}\right)^{p} \notin \mathfrak{m}^{\left[p^{e+1}\right]}\right)$.

So $\left\{\nu(e) / p^{e}\right\}_{e \in \mathbb{N}}$ is a monotone sequence in $[0,1]$, thus it admits a limit. The F-pure threshold of f is:

$$
\operatorname{fpt}(f)=\lim _{e \rightarrow \infty} \nu_{f}(e) / p^{e}
$$

F-pure threshold

F-pure threshold

Notice that $0 \leq \operatorname{fpt}(f) \leq 1$,

F-pure threshold

Notice that $0 \leq \operatorname{fpt}(f) \leq 1$, and it is 1 if f is smooth at 0 .

F-pure threshold

Notice that $0 \leq \operatorname{fpt}(f) \leq 1$, and it is 1 if f is smooth at 0 .
Once again, this property does not characterize smoothness:

F-pure threshold

Notice that $0 \leq \operatorname{fpt}(f) \leq 1$, and it is 1 if f is smooth at 0 .
Once again, this property does not characterize smoothness:
Let $f \in \mathbb{Z}[x, y, z]$ be a homogeneous polynomial of degree 3 and with an isolated singularity at 0 .

F-pure threshold

Notice that $0 \leq \operatorname{fpt}(f) \leq 1$, and it is 1 if f is smooth at 0 .
Once again, this property does not characterize smoothness:
Let $f \in \mathbb{Z}[x, y, z]$ be a homogeneous polynomial of degree 3 and with an isolated singularity at 0 . By reducing coefficients mod p, thus, we get a polynomial f_{p} defining an elliptic curve $E_{p} \subseteq \mathbb{P}^{2}$.

F-pure threshold

Notice that $0 \leq \operatorname{fpt}(f) \leq 1$, and it is 1 if f is smooth at 0 .
Once again, this property does not characterize smoothness:
Let $f \in \mathbb{Z}[x, y, z]$ be a homogeneous polynomial of degree 3 and with an isolated singularity at 0 . By reducing coefficients mod p, thus, we get a polynomial f_{p} defining an elliptic curve $E_{p} \subseteq \mathbb{P}^{2}$. Recently, Bhatt proved that:

$$
\operatorname{fpt}\left(f_{p}\right)= \begin{cases}1 & \text { if } E_{p} \text { is ordinary } \\ 1-1 / p & \text { if } E_{p} \text { is supersingular }\end{cases}
$$

F-pure threshold

Notice that $0 \leq \operatorname{fpt}(f) \leq 1$, and it is 1 if f is smooth at 0 .
Once again, this property does not characterize smoothness:
Let $f \in \mathbb{Z}[x, y, z]$ be a homogeneous polynomial of degree 3 and with an isolated singularity at 0 . By reducing coefficients mod p, thus, we get a polynomial f_{p} defining an elliptic curve $E_{p} \subseteq \mathbb{P}^{2}$. Recently, Bhatt proved that:

$$
\operatorname{fpt}\left(f_{p}\right)= \begin{cases}1 & \text { if } E_{p} \text { is ordinary } \\ 1-1 / p & \text { if } E_{p} \text { is supersingular }\end{cases}
$$

Recall that, by a classical result of Elkies, E_{p} is ordinary for infinitely many primes p as well it is supersingular for infinitely primes p.

What has fpt to do with lct?

What has fpt to do with lct?

To define the log-canonical threshold over \mathbb{C}, we tried to control the growth of the function $1 /|f|^{2 \lambda}$.

What has fpt to do with lct?

To define the log-canonical threshold over \mathbb{C}, we tried to control the growth of the function $1 /|f|^{2 \lambda}$. In positive characteristic, can we even define fractional powers?

What has fpt to do with lct?

To define the log-canonical threshold over \mathbb{C}, we tried to control the growth of the function $1 /|f|^{2 \lambda}$. In positive characteristic, can we even define fractional powers?

Let $K=\mathbb{Z} / p \mathbb{Z}$, and

$$
S^{1 / p^{e}}=K\left[x_{1}^{1 / p^{e}}, \ldots, x_{N}^{1 / p^{e}}\right] \supseteq S
$$

What has fpt to do with lct?

To define the log-canonical threshold over \mathbb{C}, we tried to control the growth of the function $1 /|f|^{2 \lambda}$. In positive characteristic, can we even define fractional powers?

Let $K=\mathbb{Z} / p \mathbb{Z}$, and

$$
S^{1 / p^{e}}=K\left[x_{1}^{1 / p^{e}}, \ldots, x_{N}^{1 / p^{e}}\right] \supseteq S
$$

For any polynomial f we can consider its fractional power f^{c} as an element of $S^{1 / p^{e}}$, where c is a rational number of the form a / p^{e}.

What has fpt to do with lct?

What has fpt to do with lct?

Let $f \in \mathfrak{m}$.

What has fpt to do with lct?

Let $f \in \mathfrak{m}$. Since we are in positive characteristic, we cannot integrate nor take the absolute value.

What has fpt to do with lct?

Let $f \in \mathfrak{m}$. Since we are in positive characteristic, we cannot integrate nor take the absolute value. We can just say whether the function $1 / f^{c}$ does or does not blow up at 0 ,

What has fpt to do with lct?

Let $f \in \mathfrak{m}$. Since we are in positive characteristic, we cannot integrate nor take the absolute value. We can just say whether the function $1 / f^{c}$ does or does not blow up at 0 , meaning that f^{c} is or is not in $\mathfrak{m} S^{1 / p^{e}}\left(c=a / p^{e}\right)$.

What has fpt to do with lct?

Let $f \in \mathfrak{m}$. Since we are in positive characteristic, we cannot integrate nor take the absolute value. We can just say whether the function $1 / f^{c}$ does or does not blow up at 0 , meaning that f^{c} is or is not in $\mathfrak{m} S^{1 / p^{e}}\left(c=a / p^{e}\right)$. It is immediate to see that:

$$
\operatorname{fpt}(f)=\sup \left\{c=a / p^{e} \in \mathbb{Z}[1 / p]: f^{c} \notin \mathfrak{m} S^{1 / p^{e}}\right\}
$$

What has fpt to do with lct?

Let $f \in \mathfrak{m}$. Since we are in positive characteristic, we cannot integrate nor take the absolute value. We can just say whether the function $1 / f^{c}$ does or does not blow up at 0 , meaning that f^{c} is or is not in $\mathfrak{m} S^{1 / p^{e}}\left(c=a / p^{e}\right)$. It is immediate to see that:

$$
\operatorname{fpt}(f)=\sup \left\{c=a / p^{e} \in \mathbb{Z}[1 / p]: f^{c} \notin \mathfrak{m} S^{1 / p^{e}}\right\}
$$

If $g \in \mathbb{Z}\left[x_{1}, \ldots, x_{N}\right]$ we denote by g_{p} and by g_{0} the images of g in $\mathbb{Z} / p \mathbb{Z}\left[x_{1}, \ldots, x_{N}\right]$ and, respectively, in $\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$.

What has fpt to do with lct?

Let $f \in \mathfrak{m}$. Since we are in positive characteristic, we cannot integrate nor take the absolute value. We can just say whether the function $1 / f^{c}$ does or does not blow up at 0 , meaning that f^{c} is or is not in $\mathfrak{m} S^{1 / p^{e}}\left(c=a / p^{e}\right)$. It is immediate to see that:

$$
\operatorname{fpt}(f)=\sup \left\{c=a / p^{e} \in \mathbb{Z}[1 / p]: f^{c} \notin \mathfrak{m} S^{1 / p^{e}}\right\}
$$

If $g \in \mathbb{Z}\left[x_{1}, \ldots, x_{N}\right]$ we denote by g_{p} and by g_{0} the images of g in $\mathbb{Z} / p \mathbb{Z}\left[x_{1}, \ldots, x_{N}\right]$ and, respectively, in $\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$.

Hara-Yoshida: $\lim _{p \rightarrow \infty} \operatorname{fpt}\left(g_{p}\right)=\operatorname{lct}\left(g_{0}\right)$.

Test ideals and rationality

Test ideals and rationality

Analogously to the characteristic 0 case, one can define the test ideals $\tau(\lambda \bullet I)$ for all ideals $I \subseteq \mathfrak{m}$ and $\lambda \in \mathbb{R}_{+}$.

Test ideals and rationality

Analogously to the characteristic 0 case, one can define the test ideals $\tau(\lambda \bullet I)$ for all ideals $I \subseteq \mathfrak{m}$ and $\lambda \in \mathbb{R}_{+}$. If J is an ideal of $\mathbb{Z}\left[x_{1}, \ldots, x_{N}\right]$, Hara-Yoshida proved that $\tau\left(\lambda \bullet J_{p}\right)=\mathcal{J}\left(\lambda \bullet J_{0}\right)_{p}$ for p large enough prime number (depending on λ).

Test ideals and rationality

Analogously to the characteristic 0 case, one can define the test ideals $\tau(\lambda \bullet I)$ for all ideals $I \subseteq \mathfrak{m}$ and $\lambda \in \mathbb{R}_{+}$. If J is an ideal of $\mathbb{Z}\left[x_{1}, \ldots, x_{N}\right]$, Hara-Yoshida proved that $\tau\left(\lambda \bullet J_{p}\right)=\mathcal{J}\left(\lambda \bullet J_{0}\right)_{p}$ for p large enough prime number (depending on λ).

$$
(1) \supsetneq \tau\left(c_{1} \bullet I\right) \supsetneq \tau\left(c_{2} \bullet I\right) \supsetneq \ldots \supsetneq \tau\left(c_{n} \bullet I\right) \supsetneq \ldots
$$

Test ideals and rationality

Analogously to the characteristic 0 case, one can define the test ideals $\tau(\lambda \bullet I)$ for all ideals $I \subseteq \mathfrak{m}$ and $\lambda \in \mathbb{R}_{+}$. If J is an ideal of $\mathbb{Z}\left[x_{1}, \ldots, x_{N}\right]$, Hara-Yoshida proved that $\tau\left(\lambda \bullet J_{p}\right)=\mathcal{J}\left(\lambda \bullet J_{0}\right)_{p}$ for p large enough prime number (depending on λ).

$$
(1) \supsetneq \tau\left(c_{1} \bullet I\right) \supsetneq \tau\left(c_{2} \bullet I\right) \supsetneq \ldots \supsetneq \tau\left(c_{n} \bullet I\right) \supsetneq \ldots
$$

The c_{i} 's are called F-jumping numbers $\left(c_{1}=\operatorname{fpt}(I)\right)$.

Test ideals and rationality

Analogously to the characteristic 0 case, one can define the test ideals $\tau(\lambda \bullet I)$ for all ideals $I \subseteq \mathfrak{m}$ and $\lambda \in \mathbb{R}_{+}$. If J is an ideal of $\mathbb{Z}\left[x_{1}, \ldots, x_{N}\right]$, Hara-Yoshida proved that $\tau\left(\lambda \bullet J_{p}\right)=\mathcal{J}\left(\lambda \bullet J_{0}\right)_{p}$ for p large enough prime number (depending on λ).

$$
(1) \supsetneq \tau\left(c_{1} \bullet I\right) \supsetneq \tau\left(c_{2} \bullet I\right) \supsetneq \ldots \supsetneq \tau\left(c_{n} \bullet I\right) \supsetneq \ldots
$$

The c_{i} 's are called F-jumping numbers $\left(c_{1}=\mathrm{fpt}(I)\right)$.
Blickle-Mustață-Smith: In our setting, all the F-jumping numbers (so in particular the F-pure threshold) are rational numbers.

References

- A. Benito, E. Faber, K.E. Smith, Measuring singularities with Frobenius: the basics, Commutative Algebra: Expository Papers Dedicated to David Eisenbud on the Occasion of His 65th Birthday Springer 2013, 57-97.
- M. Blickle, M. Mustață, and K.E. Smith, Discreteness and rationality of F-thresholds, Michigan Math. J. 57 (2008), 43-61.
- N.Hara, K.I. Yoshida, A generalization of tight closure and multiplier ideals, Trans. Amer. Math. Soc. 355 (2003), 3143-3174.
- I.B. Henriques, M. Varbaro, Test, multiplier and invariant ideals, arXiv:1407.4324.

